H$_2$O$_2$-nonproducing *Streptococcus pyogenes* strains: survival in stationary phase and virulence in chronic granulomatous disease

Mitsumasa Saito,1,2 Shouichi Ohga,2 Miyoko Endoh,3 Hiroaki Nakayama,4† Yoshimitsu Mizunoe,1 Toshiro Hara2 and Shin-ichi Yoshida1

Author for correspondence: Mitsumasa Saito. Tel: +81 92 642 6130. Fax: +81 92 642 6133. e-mail: msaito!bact.med.kyushu-u.ac.jp

The production of hydrogen peroxide (H$_2$O$_2$) and related phenotypes were studied with *Streptococcus pyogenes* strains isolated from cases of pharyngitis or severe group A streptococcal infections. Of the 46 strains examined (34 from severe infections and 12 from pharyngitis cases), 25 strains accumulated H$_2$O$_2$ in the culture medium when grown under glucose-limited, aerobic conditions, whereas the rest of the strains did not. There was no correlation between these traits and the type of disease from which each strain had been isolated. The H$_2$O$_2$-nonproducing strains tested in this study belonged to T type 3 or T type 12. The accumulation of H$_2$O$_2$ started when the culture reached the late exponential phase. A rapid loss of cell viability accompanied H$_2$O$_2$ accumulation but was completely prevented by the addition of a catalase, indicating that the lethality was actually caused by H$_2$O$_2$. Cells of H$_2$O$_2$-nonproducing strains were resistant to killing by phagocytes from patients with chronic granulomatous disease (CGD), whereas those of H$_2$O$_2$-producing strains were subject to killing. Subcutaneous inoculation of 10^5 c.f.u. H$_2$O$_2$-nonproducing *S. pyogenes* strains into the hind footpads of CGD mice provoked more prominent swelling of the footpad than did H$_2$O$_2$-producing strains. The mortality rate in the CGD mice infected with the H$_2$O$_2$-nonproducing strains was higher than that produced by the H$_2$O$_2$-producing strains. It is suggested that H$_2$O$_2$-nonproducing *S. pyogenes* strains are prevalent in humans and that they may be a potential threat to the health of CGD patients.

Keywords: group A streptococci, hydrogen peroxide, CGD, gp91-phox knockout mice

INTRODUCTION

Streptococcus pyogenes is the causative agent of a variety of human diseases, including pharyngitis, impetigo, necrotizing fasciitis, toxic-shock-like syndrome, and post-streptococcal diseases (acute glomerulonephritis and rheumatic fever) (Holm et al., 1992; Shanley et al., 1996; Talkington et al., 1993). Of these, necrotizing fasciitis and toxic-shock-like syndrome, often referred to as severe group A streptococcal infections, are particularly notable in that they are extremely life-threatening. Although a number of factors have been implicated in the virulence of this micro-organism, relatively little is known about what distinguishes this severe form from other common streptococcal diseases.

During the course of our study on pathogenicity factors of *S. pyogenes* strains in relation to the severe form of infection, we found that some strains were killed in the early stationary phase of growth under aerobic conditions, while others survived for more than 24 h after entering the stationary phase. Subsequent studies revealed that this loss of viability could be accounted for by a build-up of hydrogen peroxide (H$_2$O$_2$) in the culture medium, and established the presence of a dichotomy between positive and negative H$_2$O$_2$ accumulation in *S. pyogenes*. Streptococci possess superoxide dismutase, and many strains are known to produce H$_2$O$_2$. There have been many studies on H$_2$O$_2$...
production by oral streptococci (Garcia-Mendoza et al., 1993; Holmberg & Hallander, 1973; LeBien & Bromel, 1975; Liebana et al., 1993; Wilcox & Drucker, 1988), and this characteristic has often been important for the classification of these species (McLeod & Gordon, 1922; Whiley et al., 1990). However, there are few reports on \(\text{H}_2\text{O}_2 \) production by \textit{S. pyogenes} (Gibson et al., 2000).

It has been known that \(\text{H}_2\text{O}_2 \)-nonproducing organisms are common causes of infections in patients with chronic granulomatous disease (CGD) (Segal et al., 2000). CGD is an inherited disease involving phagocyte dysfunction, and is characterized by recurrent pyogenic infections that usually begin early in life (Gallin et al., 1983; Roos, 1994). The NADPH oxidase complex in CGD granulocytes produces deficient levels of \(\text{H}_2\text{O}_2 \). This results in impaired intracellular killing (Roos, 1994), which is compensated for by the \(\text{H}_2\text{O}_2 \) production of some infecting micro-organisms. Here we report the impaired bactericidal activity of CGD granulocytes against \(\text{H}_2\text{O}_2 \)-nonproducing \textit{S. pyogenes} strains.

Recently, gene targeting has led to the development of mouse models for both \(\text{X} \)-linked (gp91-phox) and autosomal recessive (p47-phox) forms of CGD (Jackson et al., 1995; Pollock et al., 1995). To compare the virulence of \(\text{H}_2\text{O}_2 \)-producing and \(\text{H}_2\text{O}_2 \)-nonproducing strains for CGD \textit{in vivo}, we infected \(\text{X} \)-linked CGD mice with \textit{S. pyogenes} strains (via the footpads of the animals). \(\text{H}_2\text{O}_2 \)-nonproducing \textit{S. pyogenes} strains provoked prominent footpad swelling and were more lethal to CGD mice.

METHODS

Bacterial strains, culture and characterization. The \textit{S. pyogenes} strains used in this study comprised 34 isolates from severe group A streptococcal infections and 12 from pharyngitis cases. All of the strains were epidemiologically unrelated to each other. Strains were cultured in brain-heart infusion (BHI) broth (pH 7.4, 0.2% glucose concentration; Eiken Chemical) at 37 °C with shaking under aerobic conditions. C medium [0.5% Protease Peptone no. 3 (Difco), 1.5% yeast extract (Difco), 10 mM K\(\text{H}_2\text{PO}_4 \), 0.4 mM \(\text{MgSO}_4 \), and 17 mM NaCl], was adjusted to pH 7.5 and used as a low-glucose basal medium to study the effects of glucose on \(\text{H}_2\text{O}_2 \) production.

Effects of glucose on \(\text{H}_2\text{O}_2 \) accumulation. To test the effect of glucose on \(\text{H}_2\text{O}_2 \) accumulation, strains to be tested were cultured in C medium and glucose-supplemented C medium (the final glucose concentration was 1%, w/v) at 37 °C with shaking under aerobic conditions. At intervals, samples were taken to measure c.f.u. and the concentration of \(\text{H}_2\text{O}_2 \). The samples were serially diluted 10-fold with PBS then plated onto 10% sheep blood agar. The plates were incubated at 37 °C and the c.f.u. were counted after 18 h. The concentrations of \(\text{H}_2\text{O}_2 \) in the supernatants of the samples were measured by using the above method.

Lactate-sensitivity assays at different pH values. To study the lactate sensitivity of the \textit{S. pyogenes} strain, cells were grown in BHI broth (pH 7.4) at 37 °C. The cells (at early stationary phase) were washed twice and resuspended in PBS with or without sodium lactate, which was adjusted to the desired pH with HCl. The suspensions were incubated at 37 °C with gentle shaking. At intervals, 200 µl aliquots of the samples were transferred to test tubes, and after serial 10-fold dilution with PBS, 0.1 ml was plated onto blood agar. The plates were incubated at 37 °C, and c.f.u. were counted after 18 h.

Intracellular bacterial killing by granulocytes of CGD patients. Human peripheral blood was obtained from three patients with CGD (patients 1, 2 and 3) and from three healthy adults (controls). The granulocytes were separated aseptically by the dextran method (Kaplan et al., 1968). Patients 1 and 2 were diagnosed as having X-CGD (gp91-phox). Patient 3 was diagnosed with autosomal recessive-type CGD (p47-phox). Early stationary-phase \textit{S. pyogenes} cells were used in the assay. Cells in broth cultures were collected by centrifugation then washed twice with sterile PBS. Intracellular killing by granulocytes was studied by using the method described by Hiemstra et al. (1992). \textit{In vitro} phagocytosis of serum-opsonized \textit{S. pyogenes} was carried out for 5 min at 37 °C at a bacterium (c.f.u.)/granulocyte ratio of 1:1 in Hank's balanced salt solution containing 0.1% (w/v) gelatin (gelatin-HBSS). Non-phagocytized bacteria were removed, and phagocytosis was stopped by washing twice with cold gelatin-HBSS. Approximately 5 × 10⁵ granulocytes containing phagocytosed bacteria were suspended in 1 ml gelatin-HBSS containing 10% (v/v) fresh human serum from healthy adults of the AB blood group, and 0.25 ml portions were transferred to four sterile 1.5 ml microtubes (12310MTB1.5; Ibaki Glass). The granulocytes in the microtubes were cultured at 37 °C under room temperature in a spectrophotofluorometer (model RF-500; Shimadzu) at a \(\lambda_{em} \) of 315 nm and a \(\lambda_{ex} \) of 425 nm (Guilbault et al., 1966). When a plateau was reached, a known amount of authentic \(\text{H}_2\text{O}_2 \) was added as internal reference, and the resulting increment in the fluorescence intensity was recorded; this was then used to convert the final fluorescence intensities for the samples into \(\text{H}_2\text{O}_2 \) concentrations.

H\textsubscript{2}O\textsubscript{2} sensitivity of organisms. The \(\text{H}_2\text{O}_2 \) sensitivity of organisms was measured using the method described by Cleary & Larkin (1979). Strains to be tested were cultured in BHI broth at 37 °C. At early stationary phase, the bacteria in 5 ml culture broth were washed with sterile PBS then resuspended in 5 ml PBS. \(\text{H}_2\text{O}_2 \) was added to each suspension to a final concentration of 3 × 10⁻³ mol ml⁻¹. The suspension was incubated at 37 °C under anaerobic conditions; at 0, 2, 4, 6 and 8 h after the addition of \(\text{H}_2\text{O}_2 \), samples were taken, and catalase (final concentration, 200 U ml⁻¹) was added to each sample to eliminate the \(\text{H}_2\text{O}_2 \). After serial 10-fold dilution of the suspension with PBS, 0.1 ml was plated onto blood agar. The plates were incubated at 37 °C, and c.f.u. were counted after 18 h.
slow rotation (10 r.p.m). At 0, 30, 60 and 120 min, one sample tube each was taken and its inner wall scraped with a sterile scraper (Techno Plastic Products) to remove adhering granulocytes. The cells were well suspended and then disrupted by dilution with distilled water containing 0.01% (w/v) BSA followed by vigorous mixing. The lysate was spread on blood-agar plates to determine the numbers of viable bacteria.

Animals. Male and female X-linked CGD mice (Pollock et al., 1995), which were produced by knockout of gp91-phox of C57BL/6 mice, were donated by Dr Dinauer (Riley Children’s Hospital, Indianapolis, IN, USA) and Dr Kume (Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan), and were reproduced in a specific pathogen-free animal room in our laboratory. Male, 6-week-old, X-linked CGD mice were used in the experiment. C57BL/6 mice of the same age and sex were also used as controls. They were purchased from Japan SLC.

Experimental infection, footpad swelling and mortality. One group consisted of three mice infected with one *S. pyogenes* strain; they were kept in one cage. Subcutaneous infection was performed by inoculating the suspension of strain; they were kept in one cage. Subcutaneous infection was performed by inoculating the suspension of *S. pyogenes* strains (10⁶ c.f.u. in a volume of 0.05 ml PBS) into the left hind footpads of mice, using a 27-gauge needle and a 1 ml syringe. As a control, 0.05 ml PBS was injected into the right hind footpad. The footpad thickness was measured by using a dial thickness gauge caliper (model G; Ozaki) at 24 and 48 h after inoculation; the difference between the thicknesses of left and right footpads was taken as the footpad swelling. The mortality of the CGD and control mice was observed until 10 d after infection. The mortality rates were determined by counting the number of dead mice in each group (consisting of 12 mice infected with four *H₂O₂*-producing and four *H₂O₂*-nonproducing strains, respectively).

Statistics. The correlation between *H₂O₂* production and the type of disease was analysed using Fisher’s exact test. Statistical analysis of the results of intracellular killing assay and animal experiments was performed with analysis of variance followed by a Student’s *t*-test. Data monitored over time were compared by using the area under the curve.

RESULTS

Bacterial growth curves and *H₂O₂* production

Bacterial growth in BHI broth and the concentration of *H₂O₂* accumulated in four representative strains are shown in Fig. 1. *H₂O₂* accumulated in the culture media of strains SP2 and MK5 in the late exponential and early stationary phases, whereas it was undetectable in those of strains SP1 and ME198 throughout the whole culture period. The turbidity of the cultures of the four strains was maintained or found to decrease only slowly during the stationary phase. The numbers of viable cells of strains SP2 and MK5, but not those of strains SP1 and ME198, decreased rapidly in the stationary phase. When catalase (final concentration, 200 U ml⁻¹) was added to the culture, the viability loss in strains SP2 and MK5 was prevented (data not shown). These results indicated that *S. pyogenes* strains were heterogeneous with respect to *H₂O₂* production, which was responsible for the rapid loss of viability observed in the stationary phase of the culture. We therefore examined all of the 46 test strains for *H₂O₂* production; the results obtained are shown, with reference to T types, in Table 1. Of the 34 strains that were isolated from patients with severe streptococcal disease, 15 strains (44.1%) did not produce *H₂O₂*. Six strains out of 12 isolates (50%) from patients with pharyngitis did not produce *H₂O₂*. There was no correlation between *H₂O₂* production and the type of disease from which each strain had been isolated (*P* = 0.75). All of the *H₂O₂*-nonproducing strains, which were epidemiologically unrelated to each other, belong to T types 3 or 12. Neither catalase activity nor thioredoxin peroxidase activity was detected in any strain (data not shown).

H₂O₂ sensitivity

The sensitivity to *H₂O₂* of strains SP2 and MK5 (*H₂O₂* producers) and strains SP1 and ME198 (*H₂O₂* nonproducers) was compared. All strains were killed at equal rates in the presence of *H₂O₂* at a concentration of 5 µmol ml⁻¹, and a complete loss of viability was observed by 8 h (data not shown). It was also found that when *H₂O₂* was added directly to stationary-phase cultures of strains SP1 and ME198 (*H₂O₂* nonproducers) to a final concentration of 5 µmol ml⁻¹, a complete loss of viability was observed by 8 h, and the *H₂O₂* concentration of the cultures had been maintained for this period (data not shown).

Effects of glucose on *H₂O₂* production and bacterial survival

It is known that *H₂O₂* production by *S. pyogenes* is depressed when the micro-organism is cultured in a glucose-rich medium (Gibson et al., 2000). To test the effects of glucose in the culture medium on *H₂O₂* production, two strains (SP1 and SP2) were cultured in C medium and glucose-supplemented C medium. When C medium was used, the results were the same as those with BHI broth (Fig. 1). Thus, *H₂O₂* accumulated in the C medium of strain SP2, but not at all in that of strain SP1 (Fig. 2a, c). The numbers of viable cells of strain SP2, but not of strain SP1, decreased rapidly in the stationary phase because of *H₂O₂* accumulation, as they did not decrease in the presence of catalase (data not shown). After cultivation in C medium for 36 h, the cultures showed final pH values in the range 6.6–6.7.

When glucose was added to C medium at a final concentration of 1% (w/v), the cultures of strain SP2, like those of strain SP1, did not accumulate *H₂O₂* (Fig. 2b, d). However, despite the fact that two strains produced no detectable *H₂O₂*, they were killed very rapidly in the stationary phase (Fig. 2b, d). This apparent deviation from *H₂O₂*-dependent cell killing may be largely explained by the effect of the lactic acid derived from the glucose supplementation. Thus, the pH of the culture in glucose-enriched C medium was found to drop as low as 4.8 in the stationary phase. It was also found that 0.75% sodium lactate at pH 5.0 (a condition thought to be somewhat less severe than that actually present in the stationary phase culture) was capable of...
Fig. 1. Bacterial growth in BHI broth and H₂O₂ production of S. pyogenes strains SP1 (a), SP2 (b), ME198 (c) and MK5 (d). SP1 and SP2 are strains isolated from patients with severe group A streptococcal infection; ME198 and MK5 are strains isolated from patients with pharyngitis. ●, Concentration of H₂O₂ in the culture medium; ○, OD₆₆₀; ■, numbers of viable bacteria.

Table 1. H₂O₂ production and T type of 46 S. pyogenes strains examined in this study

<table>
<thead>
<tr>
<th>Source</th>
<th>H₂O₂ production</th>
<th>T type</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Severe group A streptococcal infection</td>
<td>+</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>-</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>+</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>17</td>
<td>4</td>
</tr>
</tbody>
</table>

lowering the viability of SP1 cells by two orders of magnitude within a 3 h period (data not shown).

Intracellular killing by granulocytes of CGD patients

Intracellular killing of S. pyogenes strains was assayed by using human granulocytes from three CGD patients and three healthy control adults. S. pyogenes strains used in this assay were two H₂O₂-producers (strains SP2 and MK5) and two H₂O₂ nonproducers (strains SP1 and ME198). Strains SP1 and SP2 were isolated from the patients with severe group A infection. Strains MK5 and ME198 were isolated from the patients with pharyngitis. Fig. 3 shows the mean percentage of viable intracellular bacteria in normal and CGD granulocytes over 120 min after in vitro phagocytosis. In granulocytes from three CGD patients, strains SP2 and MK5 (H₂O₂-producers) showed similar change over 120 min, and the killing rates did not differ significantly (all P > 0.05) at all three time points. Therefore, the data for these two strains
Patients were pooled, and their mean data (H₂O₂ phagocytosed by the granulocytes from three CGD patients) were shown in Fig. 3. Likewise, as strains SP1 and ME198 (H₂O₂ nonproducers) showed similar changes (all P > 0.05), their data were pooled as ‘H₂O₂-nonproducing strains phagocytosed by CGD granulocytes’ (Fig. 3). In granulocytes from three normal control granulocytes, the difference between the two strains and the individual difference were also not significant (all P > 0.05). Therefore, the results fell into four groups, i.e., H₂O₂-nonproducing and H₂O₂-producing strains phagocytosed by normal and CGD granulocytes.

In CGD granulocytes, the survival levels of intracellular H₂O₂-nonproducing organisms were almost 100% after a 120 min period, whereas those of H₂O₂-producing organisms decreased by 50% at 120 min (Fig. 3). There was a significant difference between the two groups in terms of the killing by CGD granulocytes (P = 0.0001). These results demonstrated that the ability of S. pyogenes cells to produce H₂O₂ rendered them susceptible to intracellular killing by CGD granulocytes. On the other hand, normal granulocytes killed both H₂O₂-producers and H₂O₂ nonproducers at the same rate (P = 0.90) (Fig. 3). The percentages of viable H₂O₂-nonproducing and H₂O₂-producing organisms in normal granulocytes were significantly lower than those in CGD granulocytes over 120 min, respectively (both P = 0.0001). Thus, cells of H₂O₂-nonproducing strains were totally resistant to killing by phagocytes from patients with CGD, whereas those of H₂O₂-producing strains were subject to moderate killing.

Mouse footpad infection

To clarify the virulence of H₂O₂-nonproducing strains for CGD in vivo, we used X-linked CGD mice and performed subcutaneous infection by inoculating S. pyogenes strains into the footpads of the mice. Footpad swelling has been used for the assessment of inflammation and may reflect the defect of initial killing of bacteria by neutrophils. C57BL/6 mice were used as the control. S. pyogenes strains used in this experimental infection were four H₂O₂-producers (strains SP2, MK5, ME1410 and ME1123) and four H₂O₂ nonproducers (strains SP1, ME198, ME206 and ME1125). Strains SP1, SP2, ME206 and ME1410 were isolated from patients with severe group A streptococcal infection; the others were isolated from patients with pharyngitis. Fig. 4

Fig. 2. Effects of glucose on H₂O₂ production. Strains SP1 (a, b) and strain SP2 (c, d) were cultured in C medium (a, c) and in glucose-supplemented C medium (b, d). Numbers of viable bacteria; ●, concentration of H₂O₂ in the culture medium.
shows the footpad swelling of CGD and control mice at 48 h after infection with eight strains. The mean (±SD) footpad swelling of CGD mice inoculated with H$_2$O$_2$-nonproducing and H$_2$O$_2$-producing strains was 2.42 (±0.49) mm and 0.34 (±0.46) mm at 24 h, and 3.16 (±0.43) mm and 0.58 (±0.65) mm at 48 h after inoculation, respectively. In CGD mice, the swelling of the footpads infected with H$_2$O$_2$-nonproducing strains was more prominent than that of footpads infected with H$_2$O$_2$-producing strains at both time points (both P = 0.001). On the other hand, in control C57BL/6 mice, the mean (±SD) swelling of footpads infected with H$_2$O$_2$-nonproducers and H$_2$O$_2$-producers was, respectively, 0.20 (±0.20) mm and 0.17 (±0.18) mm at 24 h, and 0.33 (±0.36) mm and 0.15 (±0.15) mm at 48 h after infection. There were no differences between the two groups at both time points (P = 0.82 and 0.31, respectively). The footpad swelling of CGD mice, in comparison to control mice, was significantly greater for challenges with both H$_2$O$_2$-nonproducing (P = 0.0001) and H$_2$O$_2$-producing strains (P = 0.0174) at 48 h after infection. Within 10 d after inoculation, some CGD mice were dead because of systemic infection. Fig. 5 shows the survival curves of the CGD and control mice after the infection of footpads. The mortality rate at day 10 in CGD mice infected with H$_2$O$_2$-nonproducing strains was higher than that for mice infected with H$_2$O$_2$-producing strains (92% versus 42%, respectively). No control mice died within the same period.
DISCUSSION

The ability to produce and excrete H$_2$O$_2$, manifested at low glucose concentrations, has been documented recently for a strain of *S. pyogenes* (Gibson et al., 2000). In the present study, we found that clinical isolates of this bacterium could be divided into two classes characterized by the presence or absence of H$_2$O$_2$ accumulation in the culture medium. Of the 46 strains examined, 21 were H$_2$O$_2$ nonproducers. The H$_2$O$_2$ accumulation was growth-phase dependent; it started when the culture was in the late exponential phase, the maximum level being attained in the early stationary phase. The rapid viability loss in H$_2$O$_2$-producing strains during the stationary phase was due to the toxicity of endogenously produced H$_2$O$_2$ (since it was abolished by the addition of catalase to the medium). Furthermore, there was no difference between H$_2$O$_2$-producing and H$_2$O$_2$-nonproducing strains in terms of sensitivity to exogenous H$_2$O$_2$.

The rapid cell death in the glucose-rich medium during the stationary phase was apparently independent of H$_2$O$_2$ production. This cell death was probably due to undissociated lactic acid (thought to be capable of crossing the plasma membrane) that was increased in the bacterial cells under weakly acid conditions (pH < 5) and caused cell damage. The toxicity of organic acids produced by fermentation is generally explained by the transmembrane flux of undissociated acids under the acidic conditions (Russell & Diez-Gonzalez, 1998; Shimokawa & Nakayama, 1999).

One potentially significant finding was that all the H$_2$O$_2$-nonproducing strains, which were epidemiologically unrelated to each other, belonged to either T type 3 or T type 12. This apparent correlation must be studied with an expanded array of clinical isolates before its meaning is considered any further; however, it must be pointed out that both T types have H$_2$O$_2$-producing members as well. There was no correlation between the ability of a strain to accumulate H$_2$O$_2$ and the severity of the infection from which it had been isolated (Table 1).

The H$_2$O$_2$-producing phenotype was shown to affect the fate of bacterial cells within phagocytes. Cells of H$_2$O$_2$-producing were moderately susceptible to intracellular killing by CGD granulocytes deficient in H$_2$O$_2$ generation by the NADPH oxidase system, whereas those of H$_2$O$_2$ nonproducers were totally resistant to it. This finding is consistent with the well-known fact that bacteria that do not produce H$_2$O$_2$ constitute the main cause of pyogenic infections in CGD patients (Segal et al., 2000). Furthermore, we noted that H$_2$O$_2$-nonproducing *S. pyogenes* strains caused prominent inflammation (Fig. 4) and higher mortality (Fig. 5) in CGD mice. This suggests the possibility that the H$_2$O$_2$-nonproducing *S. pyogenes* strains would be important causative agents of severe infections in the patients with CGD. However, this relationship is not readily recognizable in clinical cases of streptococcal infections. Thus, Gallin et al. (1983) reported that out of 119 major febrile episodes in 14 CGD patients, *Streptococcus* was isolated only rarely (three *Streptococcus pneumoniae* strains). Regelmann et al. (1983) found only five *Streptococcus* strains (three *S. pneumoniae* and two *Streptococcus intermedius*) among 93 micro-organisms isolated from 15 CGD patients. It is known that *S. pneumoniae* produces H$_2$O$_2$ (Spellerberg et al., 1996; Ukada et al., 1959). However, the significance of its isolation from CGD patients is unclear, because it is the most common cause of pneumonia, even in healthy individuals. On the other hand, our previous study demonstrated that *S. intermedius*, an H$_2$O$_2$ nonproducer (Whiley et al., 1990), was the causative agent of severe infection (brain abscess) in a CGD patient, and its pathogenicity was attributed to the lack of H$_2$O$_2$ production (Nagatomo et al., 1999).

The rarity of *S. pyogenes* infection in CGD patients may be due to an early start of antimicrobial therapy and the virtual absence of drug-resistant strains. Although *S. pyogenes* infections are presently not common in CGD patients, it would be of interest to examine the H$_2$O$_2$-production phenotypes of isolates from such rare cases. In contrast to CGD granulocytes, normal granulocytes killed H$_2$O$_2$-producers and H$_2$O$_2$ nonproducers with practically equal efficiency. This may be taken to suggest that the H$_2$O$_2$ phenotype of *S. pyogenes* should be of little significance as a virulence factor for infections in healthy individuals.

Also interesting is the biochemistry of H$_2$O$_2$ production and related matters in this organism. Accumulation of H$_2$O$_2$ in the culture medium in large amounts is a unique feature common among lactic acid bacteria (streptococci, lactococci, enterococci and lactobacilli). At variance with most other organisms (in which H$_2$O$_2$ is derived largely from the superoxide anion), lactic acid bacteria are generally believed to produce H$_2$O$_2$ mainly through oxidation of substrates such as NADH by H$_2$O$_2$-producing oxidases (Thomas & Pera, 1983; Murphy & Condon, 1984; Marty-Teysset et al., 2000; Gibson et al., 2000). In fact, a homology search of the *S. pyogenes* genome database has revealed the genes of putative H$_2$O$_2$-producing oxidases for NADH, x-glycerophosphate and lactate, and their involvement in H$_2$O$_2$ production has been suggested (Gibson et al., 2000). In accordance with the widely held view, we are also of the opinion that at least a major part of the H$_2$O$_2$ accumulated in *S. pyogenes* cultures is produced by one or more of the above-mentioned oxidases.

The accumulation of H$_2$O$_2$ was repressed by the presence of high concentrations of glucose, and was manifested only after cell growth had slowed down in the late exponential phase. This apparent ‘glucose effect’ has also been well documented for lactic acid bacteria. Although precise mechanisms for these phenomena still remain unclear, their biological significance might be evident if one takes account of the fact that the above-mentioned oxidase reactions are functionally linked to the ‘thioclastic’ pathway of pyruvate metabolism. This ATP-coupled pathway is known to operate under...
glucose-limited conditions in a variety of lactic acid bacteria, and is energetically advantageous (for a review, see Stouthamer, 1978). In fact, the *S. pyogenes* genome database shows the presence of the complete set of genes for the thioctic pathway. Finally, the dichotomy between the presence and absence of H$_2$O$_2$ accumulation, a situation also widely seen among lactic acid bacteria, awaits explanation. Although not discussed here, a role for the H$_2$O$_2$-degrading system must be considered when such a dichotomy is addressed. Attempts to answer these unsolved questions are under way in the authors’ laboratory.

In conclusion, we found that H$_2$O$_2$-nonproducing *S. pyogenes* strains resisted intracellular killing by CGD phagocytes, and we demonstrated their virulence to CGD mice *in vivo*. Our findings raise the possibility that H$_2$O$_2$-nonproducing *S. pyogenes* strains could be a potential threat to CGD patients, though such cases have not yet been documented.

ACKNOWLEDGEMENTS

We thank M. Kurokawa for providing the clinical *S. pyogenes* strains, K. Ohga, H. Kajiwara and T. Ishikawa for technical assistance, W. Kong for analysis of thioredoxin peroxidase activity, S. Kono for statistical analysis, and K. Nakayama for helpful discussion and advice. We also thank Linda Saza for her valuable editorial advice on the manuscript.

REFERENCES

Received 2 March 2001; revised 10 May 2001; accepted 18 May 2001.