The methylcitric acid pathway in *Ralstonia eutropha*: new genes identified involved in propionate metabolism

Christian O. Brämer and Alexander Steinbüchel

Author for correspondence: Alexander Steinbüchel. Tel: +49 251 8339821. Fax: +49 251 8338388. e-mail: steinbu@uni-muenster.de

Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149 Münster, Germany

From *Ralstonia eutropha* HF39 null-allele mutants were created by Tn5 mutagenesis and by homologous recombination which were impaired in growth on propionic acid and levulinic acid. From the molecular, physiological and enzymic analysis of these mutants it was concluded that in this bacterium propionic acid is metabolized via the methylcitric acid pathway. The genes encoding enzymes of this pathway are organized in a cluster in the order prpR, prpB, prpC, acnM, ORF5 and prpD, with prpR transcribed divergently from the other genes. (i) prpC encodes a 2-methylcitric acid synthase (42720 Da) as shown by the measurement of the respective enzyme activity, complementation of a prpC mutant of *Salmonella enterica* serovar Typhimurium and high sequence similarity. (ii) For the translational product of acnM the function of a 2-methyl-cis-aconitic acid hydratase (94726 Da) is proposed. This protein and also the ORF5 translational product are essential for growth on propionic acid, as revealed by the propionic-acid-negative phenotype of Tn5-insertion mutants, and are required for the conversion of 2-methylcitric acid into 2-methylisocitric acid as shown by the accumulation of the latter, which could be purified as its calcium salt from the supernatants of these mutants. In contrast, inactivation of prpD did not block the ability of the cell to use propionic acid as carbon and energy source, as shown by the propionic acid phenotype of a null-allele mutant. It is therefore unlikely that prpD from *R. eutropha* encodes a 2-methyl-cis-aconitic acid dehydratase as proposed recently for the homologous prpD gene from *S. enterica*. (iii) The translational product of prpB encodes 2-methylisocitric acid lyase (32314 Da) as revealed by measurement of the respective enzyme activity and by demonstrating accumulation of methylisocitric acid in the supernatant of a prpB null-allele mutant. (iv) The expression of prpC and probably also of the other enzymes is regulated and is induced during cultivation on propionic acid or levulinic acid. The putative translational product of prpR (70895 Da) exhibited high similarities to PrpR of *Escherichia coli* and *S. enterica*, and might represent a transcriptional activator of the sigma-54 family involved in the regulation of the other prp genes. Since the prp locus of *R. eutropha* was very different from those of *E. coli* and *S. enterica*, an extensive comparison of prp loci available from databases and literature was done, revealing two different classes of prp loci.

Keywords: propionyl-CoA, *Ralstonia eutropha*, 2-methylcitric acid cycle, propionic acid catabolism, methylcitric acid synthase

Abbreviation: DIG, digoxigenin.

The GenBank accession numbers for the nucleotide sequences of the prp gene cluster are AF325554 and AF331923.
INTRODUCTION

The Gram-negative bacterium Ralstonia eutropha HF39 grows on propionate and on several other substrates as sole carbon and energy source, which are catabolized via propionyl-CoA. In prokaryotes different strategies are used for the catabolism of this short-chain fatty acid, e.g. the acrylate pathway, the methylmalonyl-CoA pathway or the malonic semialdehyde-CoA pathway (Vagelos, 1959). In addition, the cyclic 2-methylcitric acid pathway has been identified as a new strategy for the breakdown of propionate in the yeast Saccharomyces cerevisiae and in filamentous fungi (Miyakoshi et al., 1987; Pronk et al., 1994) as well as in the Gram-negative bacteria Salmonella enterica serovar Typhimurium and Escherichia coli (Horswill & Escalante-Semerena, 1997; Textor et al., 1997). In the enterobacteria the genes encoding the enzymes of this cycle are organized in a cluster (prpBCDE) (Horswill & Escalante-Semerena, 1997; Blattner et al., 1997). The prpE gene product catalyses the activation of propionate to propionyl-CoA (Horswill & Escalante-Semerena, 1999a). Propionyl-CoA and oxaloacetate are then condensed to 2-methylcitric acid in a Claissen ester condensation which is catalysed by the methylcitric acid synthase encoded by prpC and which is the first characteristic step of this pathway. 2-Methylcitric acid is then dehydrated to 2-methyl-cis-aconitic acid and subsequently hydrated to 2-methylisocitric acid. This latter hydration is catalysed by a 2-methylisocitric acid dehydratase in Yarrowia lipolytica (Aoki et al., 1995). 2-Methylisocitric acid is cleaved into pyruvate plus succinate by the activity of the prpB gene product, which shows similarities to isocitric acid lyases (Horswill & Escalante-Semerena, 1999b). prpR is a potential transcriptional activator of the prp genes and exhibits homologies to members of the RpoN (σ^45) activator family.

During the investigation of Tn5-induced mutants of R. eutropha HF39 with defects in the catabolism of levulinic acid (4-oxopentanoic acid) (Valentin et al., 1992; Gorenflo et al., 1998), we identified a gene cluster, the gene products of which constitute the methylcitric acid cycle in this bacterium. In this study, we present molecular and biochemical data of the methylcitric acid pathway in R. eutropha HF39 and compare the organization of its methylcitric acid cycle genes with those of other bacteria.

METHODS

Strains, media and growth conditions. Bacterial strains and plasmids used in this study are listed in Table 1. Cells of E. coli were cultivated at 37 °C in Luria–Bertani (LB) medium (Sambrook et al., 1989). Cells of R. eutropha HF39 were grown at 30 °C either in nutrient broth (NB) medium (0.8% w/v) or in mineral salts medium (MM) (Schlegel et al., 1961) supplemented with filter-sterilized carbon sources as indicated in the text. Solid media contained 1.5% (w/v) purified agar. For the selection of Tn5-insertion or null-allele mutants obtained by homologous recombination of R. eutropha HF39, kanamycin (160 μg ml⁻¹) and streptomycin (500 μg ml⁻¹) were added to the medium. Cells of S. enterica were also grown at 37 °C either in LB medium or in no-carbon E (NCE) medium (Horswill & Escalante-Semerena, 1997) supplemented with 0.5% (w/v) sodium propionate.

Isolation and manipulation of DNA. Chromosomal DNA of Tn5-induced mutants of R. eutropha HF39 was isolated by the method of Marmur (1961). Plasmid DNA was isolated by the method of Birnboim & Doly (1979). DNA restriction fragments were purified with the Nucleotrap-Kit (Machery-Nagel) as described by the manufacturer. Restriction enzymes, ligases and other DNA-manipulating enzymes were used according to the manufacturers’ instructions.

Transfer of DNA. Competent cells of E. coli were prepared and transformed by the CaCl₂ procedure as described by Hanahan (1983). The transduction of genomic DNA of R. eutropha ligated into the cosmid pHC79 to E. coli S17-1 was done after in vitro packaging in λ-phages as described by Hohn & Murray (1977). The packaging extracts were prepared by the method of Scalenghe et al. (1981). Electrocompetent cells of S. enterica were prepared and regenerated by the method of Taghavi et al. (1994) and transformed under the following conditions: 2400 V, 25 μF and 200 Ω.

Tn5 mutagenesis. Tn5-induced mutants of R. eutropha HF39 impaired in growth on levulinic acid were created by the suicide plasmid technique employing pSUP5011 (Simon et al., 1983a), which was transferred from E. coli S17-1 to the recipient by conjugation (Friedrich et al., 1981).

Genotypic characterization of the Tn5-insertion mutants of R. eutropha HF39. Genomic DNA of the Tn5-insertion mutants was digested with EcoRI, and the genomic EcoRI fragments were ligated to the cosmids pHC79. After in vitro packaging in λ-phages the recombinant cosmids were transduced into E. coli S17-1. Recombinant E. coli clones were selected by their kanamycin resistance conferred by Tn5::mob. The hybrid cosmids were isolated, digested with SalI and ligated into the plasmid pBR325. The recombinant plasmids were transformed into E. coli XL-1 Blue, and clones resistant to kanamycin plus chloramphenicol were selected. The hybrid plasmid of the resulting clones harbouring a SalI fragment which included part of Tn5 plus genomic DNA adjacent to the Tn5 insertion. These recombinant plasmids were sequenced using the oligonucleotide 5'GGTTAGGAG-GTCAATGGG-3′, which binds specifically to the IS50L element of Tn5::mob.

DNA sequencing. The primer-hopping strategy (Strauss et al., 1986) was applied to determine the DNA sequence of both strands of DNA. Sequencing was done by using the SequiTherm EXCEL TM II long-read cycle sequencing kit (Epitech Centre Technologies) and IRD 800-labelled oligonucleotides (MWG-Biotech). Sequencing was performed in a LI-COR 4000L automatic sequencing apparatus (MWG-Biotech).

The nucleotide sequences of the prp gene cluster were deposited in the GenBank database under the accession numbers AF325554 and AF331925.

Sequence data analysis. Sequence data were compared with sequences deposited in the GenBank and Prosite databases using the programs BlastSearch 2.0.10 (Altschul et al., 1997) and BGET (Bairoch et al., 1997).

PCR amplifications. All PCR amplifications of DNA encoded on plasmids or genomic DNA were carried out as described by Sambrook et al. (1989). VENT®-DNA polymerase from New England Biolabs was used in all PCR amplifications, which
were carried out in an Omnigene HBT3/CM DNA Thermal Cycler (Hybaid).

DNA-DNA hybridization. Southern hybridizations were done by the method of Oelmüller et al. (1990) at 68 °C. Colony hybridizations were done by the method of Grunstein & Hogness (1975) at 68 °C.

Cloning of prpB, prpC and acnM and heterologous expression in E. coli. Oligonucleotides were constructed to amplify prpB (prpBUP, 5'-AAATCTAGAGGCTTGGCACAACCCTT G-CAGTATTG-3'; prpBRP, 5'-GTGTGTGGTGCAAGGCCGC- GCCTGAGCTTTTCGAC-3'), prpC (prpCUP, 5'-GAAATCAGAAAACCCCTTGCAGG-3'; prpCRP, 5'-TAAT TGGTGACGAACTACCCCCCTTGTCC-3') and acnM (acnMUP, 5'-AAGGTCTCGACGATCGACG-3'; acnMRP, 5'-AATCTAGACGACGGCCTTCTGGCAGG-3') from genomic DNA of *R. eutropha* HF39 (restriction sites are underlined). The 984 bp DNA fragment resulting from prpBUP and prpBRP was cloned into pBluescript SK−, resulting in pSK/prpB. prpCUP contained an EcoRI recognition sequence and prpCRP a SalI recognition sequence to enable forced cloning of prpC downstream of and collagen to the lacZ promoter with EcoRI plus SalI restricted pBluescript SK− DNA, resulting in pSK/prpC. acnMUP contained a SacI recognition sequence and acnMRP a XbaI recognition sequence to enable forced cloning of acnM downstream of and collagen to the lacZ promoter with SacI plus XbaI restricted pBluescript SK− DNA; the resulting hybrid plasmid was referred to as pSK/acnM.

Cells of E. coli harbouring pSK/prpB, pSK/MCSII, pSK/acnM or pBluescript SK− were grown at 30 °C for 16 h in 50 ml LB medium containing 75 µg ml−1 ampicillin plus 0.5 mM IPTG. The cells were harvested (10 min, 4500 r.p.m. at 4 °C), washed with 100 mM Tris/HCl (pH 8.0), resuspended in 5 ml 100 mM Tris/HCl and disrupted by twofold passage through a French press.

Inactivation of the prpB gene of *R. eutropha* HF39 by insertion of the omega element ΩKm. For inactivation of prpB by insertion of ΩKm, the 820 bp EcoRI fragment (EE0′21) was used, which contained the incomplete prpB gene (Fig. 1, A). This fragment was ligated to EcoRI-digested vector pSKSym, and *E. coli* XL-1 Blue was transformed with the ligation mixture. Transformants harbouring the hybrid plasmid pSymprpB were obtained. Plasmid pSymprpB was then digested with EcoRV and ligated with ΩKm, which was recovered by Smal digestion of plasmid pSKsymΩKm (Overhage et al., 1999). The hybrid plasmid thus obtained was designated pSymprpBΩKm. The disrupted prpB gene was isolated from pSymprpBΩKm by EcoRI digestion and ligated with EcoRI-digested pSUP202 DNA. *E. coli* S17-1 was transformed with the ligation mixture, and transformants harbouring the hybrid plasmid pSUPprpBΩKm, which conferred resistance to tetracycline and kanamycin, were obtained. Subsequently, pSUPprpBΩKm was transferred to *R. eutropha* HF39 by conjugation, and the transconjugants were selected on NB agar plates containing 160 µg kanamycin ml−1. The transconjugants were tested for tetracycline resistance (encoded by a vector-borne gene) to distinguish between the

Table 1. Bacterial strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant characteristics</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. eutropha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF39</td>
<td>Sm′ mutant of the wild-type H16, autotrophic, prototrophic</td>
<td>Srivastava et al. (1982)</td>
</tr>
<tr>
<td>HF49</td>
<td>HF39 with Tn5-insertion mutation in rpoN</td>
<td>Hogrefe et al. (1984)</td>
</tr>
<tr>
<td>SK7286, SK7290, P2, VGI7 and VG3</td>
<td>Levulinate-leaky Tn5-insertion mutants of HF39</td>
<td>This study</td>
</tr>
<tr>
<td>SK7287, SK4507, 3-27 and 3-39</td>
<td>Levulinate-negative Tn5-insertion mutants of HF39</td>
<td>This study</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL-1 Blue</td>
<td>recA1 endA1 gyrA96 thi bsdR17 (r6, mcr) supE44 relA1 Δ lac [F′ proAB lacF′ZAM15 Tn10(tet)]</td>
<td>Bullock (1987)</td>
</tr>
<tr>
<td>S17-1</td>
<td>recA; harbours the tra genes of plasmid RP4 in the chromosome; proA thi-1</td>
<td>Simon et al. (1983a)</td>
</tr>
<tr>
<td>BHB2688</td>
<td>N205, recA′ (imm4′, cts887, b2, red3, Eam4, Sam7/i)</td>
<td>Hohn & Murray (1977)</td>
</tr>
<tr>
<td>BHB2690</td>
<td>N205, recA′ (imm4′, cts887, b2, red3, Dam15, Sam7/i)</td>
<td>Hohn & Murray (1977)</td>
</tr>
<tr>
<td>S. enterica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JE3907</td>
<td>metE205, ara-9, zai-6386::Tn10d(Tc′) prpC167</td>
<td>Horswill & Escalante-Semerena (1997)</td>
</tr>
<tr>
<td>JE4176</td>
<td>prpC′ in pBAD30; bla′ (Ap′)</td>
<td>Horswill & Escalante-Semerena (1997)</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pHC79</td>
<td>Cosmid Tc′ Ap′</td>
<td>Hohn & Collins (1980)</td>
</tr>
<tr>
<td>pBR325</td>
<td>Ap′ Tc′ Cm′</td>
<td>Bolivar (1978)</td>
</tr>
<tr>
<td>pBluescript SK−</td>
<td>Ap′ lacPOZ; T7 and T3 promoter</td>
<td>Stratagene</td>
</tr>
<tr>
<td>pBCSK+</td>
<td>Cm′ lacPOZ; T7 and T3 promoter</td>
<td>Stratagene</td>
</tr>
<tr>
<td>pSKsymΩKm</td>
<td>ΩKm in pSKSym</td>
<td>Overhage et al. (1999)</td>
</tr>
<tr>
<td>pSUP202</td>
<td>Ap′ Tc′ Cm′</td>
<td>Simon et al. (1983b)</td>
</tr>
</tbody>
</table>
integration of the whole hybrid plasmid into the chromosome by a single cross-over (heterogenotypes) and the exchange of the functional prpB gene with the disrupted gene by a double cross-over (homogenotypes), which resulted in a tetracycline-sensitive phenotype. To confirm the disruption of the prpB gene in the tetracycline-sensitive mutant HF39°prpBΩKm, a PCR was performed using the primer prpBUP and prpBPR, which resulted in a single PCR product with the expected size of 1.9 kb. The sequence of the PCR product was determined, revealing the sequence of prpBΩKm.

Inactivation of the prpD gene of R. eutropha HF39 by insertion of the omega element ΩKm. For inactivation, prpD was amplified from genomic DNA using oligonucleotides prpDUP (5’-AACCTGACAGCGTCTGACGCTGAG-3’) and prpDRP (5’-AACCTGACAGCTGAAGTTTCCCAGGCGTAATCCT-3’); the 1511 bp PCR product was digested with PstI, ligated to PstI-linearized vector pBCSK’ and E. coli XL-1 Blue was transformed with the ligation mixture. Transformants harbouring the hybrid plasmid pBCSK/prpD were obtained. Plasmid pBCSK/prpD was then digested with SmaI, resulting in a deletion of a 416 bp fragment of prpD, and ligated with ΩKm, which was recovered from SmaI digestion of plasmid pSKsymΩKm (Overhage et al., 1999). The hybrid plasmid thus obtained was designated pBCSK/prpDΩKm. The disrupted prpD gene was isolated from pBCSK/prpDΩKm by PstI digestion and ligated with PstI-digested pSUP202 DNA. E. coli S17-1 was transformed with the ligation mixture, and transformants harbouring the hybrid plasmid pSUP/prpDΩKm, which conferred resistance to tetracycline and kanamycin, were obtained. Subsequently, pSUP/prpDΩKm was transferred to R. eutropha HF39 by conjugation. The transconjugants were selected on NB containing 160 µg kanamycin ml⁻¹ and were then tested for tetracycline resistance. PCR was performed with genomic DNA of tetracycline-sensitive and -resistant transconjugants using primers which bind to the DNA of tetracycline-sensitive and -resistant transconjugants.

Determination of the enzyme activity of 2-methylcitrate synthase, 2-methylisocitrate lyase and 2-methyl-cis-aconitic acid hydratase. Activity of 2-methylcitrate synthase (EC 4.1.3.31) was measured by the method of S erre (1966). The cuvette (d = 1 cm) contained, in a total volume of 1 ml, 2 mM oxaloacetate, 250 µM propionyl-CoA and 2 mM 5,5'-dithiobis-(2-nitrobenzoate) (DTNB) in 10 mM Tris/HCl (pH 7-4). After addition of the crude extract, the increase of the absorbance at 412 nm (ε = 13,6 cm⁻² mol⁻¹) was measured with an Ultrospec 2000 photometer (Pharmacia).

Activity of 2-methylisocitrate lyase was assayed in a total volume of 0.5 ml containing 66.7 mM potassium phosphate buffer (pH 6.9), 3.3 mM phenylhydrazine, 2.5 mM cysteine, 5 mM MgCl₂ and cell extract. The reaction was started by addition of 1.25 mM tripotassium methylisocitrate, which was obtained by alkaline cleavage of the methylisocitric acid lactone (Brock et al., 2001; W. Buckel, personal communication). The increase of the absorbance at 324 nm was measured. The molar absorption coefficient of pyruvate phenylhydrazone was 12 mM⁻¹ cm⁻¹ (Lutnick et al., 2000).

Activity of the putative 2-methyl-cis-aconitic acid hydratase was measured in a quartz cuvette (d = 1 cm) in 1 ml 100 mM Tris/HCl buffer (pH 8.0) containing 0.1 mM cis-aconitic acid or 1.5 mM tricalcium salt of 2-methylcitric acid plus crude extract. After addition of the substrate, the decrease (cis-aconitic acid; ε = 4.1 cm⁻² mol⁻¹) or the increase (tricalcium salt of 2-methylcitric acid; ε = 4.5 cm⁻² mol⁻¹) of the absorbance at 240 nm were measured.

One unit of enzyme activity was defined as the conversion of 1 µmol substrate min⁻¹. The amount of soluble protein was determined by the method of Bradford (1976), using crystalline bovine serum albumin as standard.

Preparation of the tricalcium salt of 2-methylcitric acid. Cells of the Tn5-mutant VG17 of R. eutropha HF39 were grown for 24 h at 30 °C in 1 l MM containing 1% (w/v) disodium succinate plus 160 µg kanamycin ml⁻¹. The cells were harvested (20 min, 4000 r.p.m.), washed with sterile saline and transferred to 500 ml fresh MM containing 0.2% (w/v) sodium propionate. After incubation for 24 h at 30 °C, 0.6% (w/v) disodium succinate and 0.4% (w/v) sodium propionate were added. After further incubation for 48 h at 30 °C, the cells were sedimented by centrifugation, and the supernatant was lyophilized. The supernatant was resuspended in 0.1 vol. double-distilled water, and 2-methylcitric acid was extracted by the method of Brock et al. (2000). To purify this extract, 2 vols double-distilled water was added, and the solution was neutralized with CaOH₂. Addition of 1 vol. acetone or 2-propanol resulted in the precipitation of a slightly yellowish powder, which could be purified to a white powder by repeating this precipitation step. GC/MS analysis (see below) of the white powder identified this substance as 2-methylcitric acid.

Analysis of the supernatant of resting cells. Cells of the Tn5-insertion mutants VG17, P2 and SK7287, the null-allele mutants HF39°prpBΩKm and HF39°prpDΩKm, and R. eutropha HF39 were grown in 50 ml MM containing 0.5% (w/v) disodium succinate as carbon source for 24 h at 30 °C. The cells were harvested, washed twice with sterile saline and
transferred to fresh MM containing 0.1% (w/v) sodium propionate. After 24 h incubation at 30 °C 0.1% (w/v) sodium propionate and 0.25% (w/v) disodium succinate were added. Aliquots of 1 ml were withdrawn at different times and centrifuged for 5 min at 13,000 r.p.m. The clear supernatants were lyophilized, subsequently esterified and used for GC/MS analysis.

GC/MS analysis. The white powder and cell-free lyophilized supernatants were subjected to methanolysis in the presence of sulfuric acid (5 h at 100 °C), and the resulting methyl esters of the organic acids were characterized by coupled gas chromatography/mass spectrometry (GC/MS) using an HP 6890 gas chromatograph equipped with a model 5973 mass selective detector (Hewlett Packard).

Electrophoretic methods. Proteins were separated under denaturing conditions in polyacrylamide gels, which were stained with Coomassie brilliant blue R as described by Osborn & Weber (1969).

RESULTS AND DISCUSSION

Phenotypic characterization of levulinate-negative and -leaky mutants

Transposon mutagenesis of *R. eutropha* HF39 was performed to obtain mutants affected in the metabolism of levulinate. Several Tn5-induced null-allele mutants of *R. eutropha* HF39 exhibiting the phenotypes levulinate-negative (18) or levulinate-leaky (7) were isolated which grew like the wild-type with gluconate, octanoate or citrate as sole carbon source. Some of them were studied in detail. On MM agar plates containing levulinate, 4-hydroxyvalerate, valerate or propionate as sole carbon and energy source, the mutants SK4507, 3-29, 3-27 and SK7287 exhibited no growth, whereas the mutants VG17, P2, SK7286, SK7290 and VG3 grew much more slowly than the wild-type.

Molecular characterization of Tn5-induced mutants defective in the catabolism of levulinic acid

The insertion of Tn5 into the genomes of these mutants was confirmed by Southern hybridization using EcoRI-digested DNA isolated from the mutants and the central digoxigenin (DIG)-labelled 5.1 kbp HindIII fragment of Tn5 as probe.

To map the insertions of Tn5 in seven of these mutants, SalI restriction fragments conferring kanamycin resistance were cloned. Sequencing of these SalI fragments, employing an oligonucleotide hybridizing to the terminal IS50L region of Tn5, revealed strong homologies to structural genes involved in the catabolism of propionate. In the mutants SK7286 and SK7290 Tn5 mapped at an identical position, and the amino acid sequence of the putative translational product revealed 78.0% similarity to the preC gene products of *S. enterica* serovar Typhimurium and *E. coli* (Horswill & Escalante-Semerena, 1997; Textor et al., 1997), which encodes a 2-methylcitrate synthase. The sequence of the Tn5 insertion locus in the mutants VG17 and P2 revealed strong similarities to aconitate hydratase genes (Prodromou et al., 1992) and genes encoding iron-responsive element binding proteins (Yu et al., 1992). The Tn5-insertion locus in the mutant SK7287 mapped 38 bp downstream of the SalI recognition sequence and showed no similarities to other genes. However, the insertion had probably occurred in proximity to those in VG17 and P2 as indicated by the identical sizes of the Tn5-containing EcoRI and SalI fragments. In the mutants VG3, 3-29, 3-27 and SK4507, Tn5 mapped in a gene whose putative translational product showed strong similarities to the *prpR* gene product of *S. enterica* and *E. coli* (Horswill & Escalante-Semerena, 1997; Textor et al., 1997).

Cloning and sequencing of native genomic fragments

A DIG-labelled Tn5::mob-harbouring EcoRI restriction fragment cloned from mutant VG17 was used to identify the native 3.7 kbp EcoRI fragment referred to as VG17E3-7 in a genomic library in *E. coli* S17-1 prepared from EcoRI-digested DNA in the cosmid pHC79 (Fig. 1, A). It was subsequently ligated to linearized pBluescriptSK- and transferred to *E. coli* XL-1 Blue. Another gene library was prepared from HindIII-digested genomic DNA of strain HF39 and cosmid pHC79 in *E. coli* S17-1. Colony hybridization with DIG-labelled EE3-7 DNA identified a clone which harboured a 8.5 kbp HindIII fragment (HH8-5) containing a 3.2 kbp HindIII–EcoRI fragment as part of the native 3.7 kbp EcoRI fragment (Fig. 1, A). With DIG-labelled EE10-1 Tn5::mob-containing DNA of the mutant SK4507, an 8.4 kbp HindIII fragment was identified. When it was digested with EcoRI, five fragments, of 2.8, 2.6, 0.82, 0.372 and 0.218 kbp, were obtained. With the DIG-labelled *prpC* gene as a probe a 2.9 kbp HindIII restriction fragment (HH2-9) was identified in the hybrid plasmid of the positive *E. coli* clone (Fig. 1, A). The restriction fragments shown in Fig. 1(A) were cloned into the vectors pBluescript SK- and pBCKSK- and fully sequenced. Six ORFs were identified, five of which showed similarities to structural genes (Fig. 1, B).

Function of the putative gene product of ORF1

The deduced amino acid sequence of this 1962 bp ORF, which started with an ATG at position 1962 (see Fig. 1, B), showed 40–43% identity to the *prpR* gene product of *E. coli* and *S. enterica* serovar Typhimurium and to various other transcriptional activators belonging to the σ^44- (rpoN) family (Palacios & Escalante-Semerena, 2000). The *prpR* gene product is probably a transcriptional activator of the *prpBCAOD* operon in *R. eutropha* HF39 and belongs to the σ^44 family of transcriptional activators. A feature of σ^44-dependent transcription, in addition to a −24/−12 promoter sequence, is its dependency on an activator protein. Most of these activator proteins bind to conservative sequences with a twofold rotational symmetry, which are designated upstream activator sequences (UAS) and are located 80–120 bp upstream of the σ^44-dependent promoter.
(Kustu et al., 1989). At 83 bp upstream of the putative \(\sigma^{34}\)-dependent promoter of the \(prpBCAOD\) operon in \(R. eutropha\) HF39 a putative UAS was identified (TGT-N\(_{14}\)-ACA), which strongly resembled the UAS of \(nifA\) (TGT-N\(_{16}\)-ACA) of bacteria (Alvarez-Morales et al., 1986) and the putative UAS of \(acoD\) of \(R. eutropha\) (TGT-N\(_{15}\)-ACA) (Priefert & Steinbüchsel, 1992). A second putative UAS was located 102 bp upstream of the putative \(\sigma^{34}\)-dependent promoter (TGTATTNCAA-N\(_9\)-TTTGAATTCAA). This imperfect palindromic sequence overlapped with the putative \(\sigma^{34}\)-dependent promoter of the \(prpR\) gene. The binding of an activator protein to this putative UAS could repress the \(\sigma^{34}\)-dependent transcription of \(prpR\). The propionate-negative phenotype of the \(prpR\) mutant HF149 of \(R. eutropha\) (not shown in detail) provided further evidence for \(\sigma^{34}\)-dependent transcription of \(prp\) genes.

Function of the putative gene product of ORF2

The amino acid sequence deduced from the 909 bp nucleotide sequence of ORF2 exhibited identities of 76.7% and 75.9% and similarities of 87.7% and 86.2% to the \(prpB\) gene products of \(E. coli\) (Textor et al., 1997) and \(S. enterica\) (Horswill & Escalante-Semerena, 1997), respectively. Furthermore, the \(prpB\) gene product also showed significant identities to carboxyphosphonooxalylpyruvate phosphonomutases (32–40%) and isocitrate lyases (25–31%) of several organisms. The function of the \(prpB\) gene product as a 2-methylisocitric acid lyase was suggested for \(E. coli\) (Textor et al., 1997).

From the amino acid alignment (see Fig. II, included as supplementary data with the on-line version of this paper at http://mic.sgmjournals.org) and from the tentative ribosome-binding site, which preceded the ATG at position 2243, it was concluded that this codon is probably the putative translational start codon of \(prpB\) of \(R. eutropha\). \(PrpB\) consisted of 302 amino acids with a calculated molecular mass of 32,314 Da and a pI of 5.15. Thirty-six nucleotides upstream of the 5′-terminal region of \(prpB\) a consensus \(\sigma^{34}\) promoter sequence was identified as in \(S. enterica\) serovar Typhimurium LT2 (Palacios & Escalante-Semerena, 2000).

\(prpB\) was heterologously expressed in \(E. coli\) XL-1 Blue (pSK\(^{-}\)/\(prpB\)), and a protein of approximately 32±1 kDa was synthesized from the recombinant \(E. coli\) strain, which corresponded well with the molecular mass calculated for the \(prpB\) gene product (see Fig. IIIA, included as supplementary data with the on-line version of this paper at http://mic.sgmjournals.org).

Inactivation of the \(prpB\) gene of \(R. eutropha\) HF39 by insertion of the omega element \(\Omega\)Km. Since no Tn5 insertion mapped in \(prpB\), the phenotype of a mutant with defective \(prpB\) was unknown. For inactivation of \(prpB\), pSUP\(prpB\)Km was transferred to \(R. eutropha\) HF39 by conjugation and the null-allele mutants were selected as described in Methods. The homogenate HF39\(prpB\)Km could not grow on MM agar plates containing sodium propionate as a sole carbon source.

Determination of 2-methylisocitrate lyase activity. The activity of 2-methylisocitrate lyase was measured in crude extracts of propionate-induced [0·140 U (mg protein\(^{-1}\)] and uninduced [0·0024 U (mg protein\(^{-1}\)] of \(R. eutropha\) HF39 and propionate-induced cells of HF39\(prpB\)Km [no activity measurable]. The results revealed that the formation of 2-methylisocitrate lyase is induced by propionic acid in \(R. eutropha\) HF39.
Furthermore, 2-methylisocitrate lyase activity of 0.191 U (mg protein)$^{-1}$ was determined in the recombinant E. coli (pSK /prpB) in comparison to only 0.0036 U (mg protein)$^{-1}$ in an E. coli strain harbouring only pBluescript SK$^+$.

Physiological investigation of the prpB null-allele mutant.

To get a hint of the physiological function of the prpB translational product in the methylcitric acid cycle of R. eutropha, three-stage growth experiments were carried out as described in Methods with the null-allele mutant HF39ΔprpB Km and strain R. eutropha HF39 as control. In the mutant HF39ΔprpB Km six components accumulated in the supernatant (Fig. 2b). The mass spectrum of the compound with a retention time of 35-35 min in the gas chromatogram revealed an identity of 92.8% to the trimethyl ester of 2-methylisocitric acid (NIST database). Comparison of the peak at 36-00 min with the mass spectrum of the trimethyl ester of isocitric acid (NIST database) revealed that nearly all key fragments showed a 14-15 higher m/z (Fig. 2c), which corresponds to the mass of the additional methyl group in 2-methylisocitric acid (not contained in the database). This suggests that this component of the supernatant is 2-methylisocitric acid. The component with a retention time of 39-91 min showed an identical mass spectrum as the component with a retention time of 36-00 min, except that two fragments with m/z 146 and m/z 189 were missing. Esterification of the trisodium salt of isocitric acid and GC/MS analysis revealed a retention time for the methyl ester of this substance of 40-85 min and the key fragments had an m/z which was 14-15 lower than the m/z of the peaks in the 39-91 min peak mass spectrum. The lactone of 2-methylisocitric acid and isocitric acid might be formed as a side product of esterification, as described for esterification of these substances in the supernatant of *Yarrowia lipolytica* R-2 (Tabuchi & Serizawa, 1975), whereas the dimethyl ester of the lactone of 2-methylisocitric acid gave a single sharp peak with a later retention time than the trimethyl ester of 2-methylisocitric acid (Tabuchi & Serizawa, 1975). These properties of the dimethyl ester of the methylisocitric acid lactone correspond well with the properties of the dimethyl ester of the putative 2-methylisocitric acid lactone in the supernatant of the mutant HF39ΔprpB Km. Furthermore, 2-methylisocitric acid and 2-methylisocitrate lactone, which was a gift from W. Buckel (Phillips-Universität Marburg, Germany), were used as GC/MS standards and they revealed identical retention times and mass spectra as the substances with retention times of 36-00 and 39-91 min in the supernatant of HF39ΔprpB Km. In the supernatant of Y. lipolytica R-2, which produced 2-methylisocitric acid from odd-carbon n-alkanes, citric acid, 2-methylcitric acid and 2-methyl-cis-aconitic acid were additionally identified (Tabuchi & Serizawa, 1975). The disruption of prpB caused the accumulation of 2-methylisocitric acid and probably as a consequence of the equilibrium 2-methylisocitric acid was accumulated. This result provides clear evidence that the prpB gene product is involved in the cleavage of 2-methylisocitric acid into succinate and pyruvate in the methylcitric acid cycle of R. eutropha HF39 (Fig. 3) as shown for the translational product of ICL2 in *Sacch. cerevisiae* (Luttik et al., 2000).

Function of the putative gene product of ORF3

The deduced amino acid sequence of ORF3 (1155 bp), which started with an ATG at position 3249 (see Fig. I, included as supplementary data with the online version of this paper at http://mic.sgmjournals.org), showed 78% similarity to the prpC gene products of *E. coli* and *S. enterica* (see Fig. IV, included as supplementary data with the online version of this paper at http://mic.sgmjournals.org) encoding the methylcitrate synthase.

Determination of 2-methylcitrate synthase activity and expression of prpC in E. coli. In crude extracts, *R. eutropha* HF39 exhibited significantly higher specific activity of 2-methylcitrate synthase [0.354 U (mg protein)$^{-1}$] than SK7286 [0.01 U (mg protein)$^{-1}$]. In addition, the specific
2-methylcitrate synthase activity of HF39 was approximately twofold higher in cells cultivated on propionate [0.354 U (mg protein)$^{-1}$] than in those cultivated on levulinate [0.145 U (mg protein)$^{-1}$].

The Tn5-containing $SalI$ fragment of mutant SK7286 was subcloned in pBluescript SK$^-$ and sequenced. Analysis of the nucleotide sequence made it possible to design oligonucleotides for the amplification of prpC from genomic DNA of R. eutropha by PCR. prpC was cloned into pBluescript SK$^-$, resulting in pSK$^-$/MCSII. The recombinant E. coli strain harbouring pSK$^-$/MCSII synthesized a protein of approximately 42 ± 1 kDa, which corresponded well with the calculated molecular mass of 42720 Da for the prpC gene product. Crude extracts of E. coli (pSK$^-$/MCSII) exhibited a 2-methylcitrate synthase specific activity of 2.86 U (mg protein)$^{-1}$, if propionyl-CoA was used as substrate, whereas with acetyl-CoA the specific activity was only approximately 10% of this value. Crude extracts of an E. coli strain harbouring only pBluescript SK$^-$ exhibited no 2-methylcitrate synthase activity using propionyl-CoA as substrate and 0.009 U (mg protein)$^{-1}$ with acetyl-CoA as substrate.

Phenotypic complementation of the Tn10-induced null-allele prpC mutant JE3907 of S. enterica. When pSK$^-$/MCSII was transferred to the Tn10-induced null-allele prpC mutant JE3907 of *S. enterica* by electroporation, phenotypic complementation of this mutant occurred, as revealed by growth of the recombinant strain in no-carbon E medium containing 0.5% (w/v) sodium propionate. However, the growth of the complemented mutant exhibited a lag phase of about 180 h, whereas the lag phase was only 50 h in a recombinant mutant strain JE4176, harbouring prpC of *S. enterica* in pBAD30. In contrast, JE3907 harbouring only the vector did not grow at all, even after a prolonged incubation period.

Function of the putative gene product of ORF4

Downstream and at a distance of 118 bp from ORF3, ORF4 started with an ATG at position 4525, and it was preceded by a putative ribosome-binding site (see Fig. I, included as supplementary data with the online version of this paper at http://mic.sgmjournals.org). The putative translational product of ORF4 has a calculated size of 94726 Da and a pI of 5.36. The comparison of the deduced amino acid sequence of ORF4 with the primary structures of other proteins exhibited the highest similarity, of 85% and 80-3%, to the aconitate hydratases of *Pseudomonas putida* KT2440 and *Neisseria meningitidis* serogroup B (see Fig. V, included as supplementary data).
The methylcitrate cycle in *Ralstonia eutropha*

with the online version of this paper at http://mic.sgmjournals.org), whose genes are located downstream of the *prpC* gene in a cluster (Fig. 4). In contrast, the identity of the gene product of ORF4 to Aco1 of *E. coli* (Prodromou et al., 1992) and to AcoN of *L. pneumophila* (Mengaud & Horwitz, 1993), which catalyse the isomerization step in the citric acid cycle, was only 45%. A dendrogram of the amino acid sequences of several aconitate hydratases revealed that the putative *acnM* translational products form a cluster, which separates them from aconitases acting in the citric acid cycle (Fig. 5). The amino acid sequences of aconitate hydratases include three highly conserved cysteine residues, which represent the ligands for the 4Fe–4S cluster. These three cysteine residues also occurred in the *acnM* gene product of *R. eutropha* (C477, C480 and C491). These similarities of ORF4 to aconitate hydratases gave a hint that the encoded enzyme catalyses a hydration/dehydration reaction (2-methylcitric acid \rightarrow 2-methyl-cis-aconitic acid \rightarrow 2-methylisocitric acid) as part of the methylcitric acid cycle in *R. eutropha* HF39; it was therefore referred to as *acnM*.

A protein of approximately 94±1 kDa was synthesized by the recombinant *E. coli* strain harbouring pSK−/*acnM*, after induction with 1 mM IPTG, which corresponded well with the molecular mass of 94726 Da calculated for the *acnM* translational product (see Fig. IIIB, included as supplementary data with the online version of this paper at http://mic.sgmjournals.org).

The crude extract of *E. coli* (pSK−/*acnM*) was used immediately after preparation, because Fe–S clusters of aconitases are known to be sensitive to oxygen (Kennedy et al., 1983). The enzyme activity in the crude extracts was determined as described in Methods using the tricalcium salt of 2-methylcitric acid or *cis*-aconitic acid (Sigma) as substrate. With tricalcium 2-methylcitrate no enzyme activity was measurable in crude extracts of either strain. A reason for this could be that the tricalcium 2-methylcitrate preparation contained an inhibitor for the *acnM* gene product. As 2-methyl-*cis*-aconitic acid was not available, the analogous substrate *cis*-aconitic acid was used at a concentration of 0–1 mM.

The specific enzyme activity in crude extracts of *E. coli* carrying pSK−/*acnM* was 21.5-fold higher [2.84 U (mg protein)$^{-1}$] than that in crude extracts of *E. coli* harbouring pBluescript SK− [0.132 U (mg protein)$^{-1}$]. This result indicates that the *acnM* gene product might catalyse the hydration of 2-methyl-*cis*-aconitic acid to 2-methylisocitric acid, and it was therefore designated 2-methyl-*cis*-aconitic acid hydratase.

![Fig. 4. Comparison of the *prp* loci of several organisms: *R. eutropha* HF39 (B1); *R. eutropha* CH34 (B2); *N. meningitidis* (B3); *P. putida* KT2440 (B4); *P. aeruginosa* (B5); *V. cholerae* (B6) and *S. enterica* (B8).](image-url)
Based on computer analysis with the program PSORT (Klein et al., 1985) the product of ORF5 may be associated with the membrane, but there are no data available to support this suggestion.

Physiological investigations of null-allele mutants of acnM and ORF5. To analyse the physiological functions of the acnM and ORF5 translational products in the methylcitric acid cycle of *R. eutropha* HF39, three-stage growth experiments were carried out as described in Methods, with the Tn5 mutants VG17, P2 and SK7287 and *R. eutropha* HF39 as control. All the Tn5 mutants converted succinate into fumarate, malate and 2-methylcitrate. After a period of 48 h, fumarate and malate had completely disappeared in the supernatants of the mutants VG17, P2 and SK7287 and were completely converted into 2-methylcitrate (Fig. 2a). These results showed clearly that both the acnM and the ORF5 mutant are impaired in the conversion of 2-methylcitric acid into 2-methylisocitric acid. Polar effects in the mutants VG17, P2 and SK7287 can be excluded, because a defect in the gene located downstream (prpD) caused no accumulation of 2-methylcitric acid. As ORF5 is always localized together with acnM (Fig. 4), it is conceivable that both gene products are required for the conversion of 2-methylcitric acid into 2-methylisocitric acid.

Function of the putative gene product of ORF6

ORF6 (1455 bp), which started with the ATG at position 8412 (see Fig. 1, included as supplementary data with the online version of this paper at http://mic.sgmjournals.org), encoded a protein with a theoretical molecular mass of 53001 Da and a pI of 6.64. The deduced amino acid sequence showed 78.9 % and 80.2 % similarity to the prpD gene products of *E. coli* (Textor et al., 1997) and *S. enterica* (Horswill & Escalante-Semerena, 1997), respectively (see Fig. VII, included as supplementary data with the online version of this paper at http://mic.sgmjournals.org), and 60-4 % similarity to the ypo2 gene product of *Sacch. cerevisiae*, a hypothetical 57.7 kDa membrane protein in the cit3–hal1 intergenic region (Q12428).

Inactivation of the prpD gene of R. eutropha HF39 by insertion of the omega element ΩKm. Since no Tn5 insertion mapped in ORF6, the phenotype of a mutant with defective ORF6 was unknown. For inactivation of prpD, pSUPprpDΩKm was transferred to *R. eutropha* HF39 by conjugation and the null-allele mutants were selected as described in Methods. The homogenate HF39prpDΩKm was not impaired in growth on MM agar plates containing sodium propionate, sodium valerate or sodium levulinate and kanamycin.

The function of prpD in *S. enterica* as 2-methylcitric acid dehydratase was proposed by Horswill & Escalante-Semerena (1999b); however, analysis of the prpD null alleles showed that a mutation in prpD did not block the ability of *R. eutropha* to use propionate as sole carbon source. This ORF is obviously not required for a functional methylcitric acid cycle, or the function of the prpD gene product can be taken over by another

Function of the putative gene product of ORF5 and identification of the Tn5-insertion locus in the mutant SK7287

The Tn5-insertion locus of the mutant SK7287 has been identified in the 3’-terminal region of the 1191 bp ORF5 (Fig. 1, B; see also Fig. 1, included as supplementary data with the online version of this paper at http://mic.sgmjournals.org), which started with an ATG at position 7195. The deduced amino acid sequence (396 aa) exhibited the highest similarity, of 71-5 %, to a conserved hypothetical 40-9 kDa protein in the prp locus of *N. meningitidis* serogroup B (see Fig. VI, included as supplementary data with the online version of this paper at http://mic.sgmjournals.org). Furthermore, it showed 33 % identity to the hypothetical 39-5 kDa yraM gene product of *Bacillus subtilis* (Parro et al., 1997) and a similarity of 36 % to a hypothetical 37-1 kDa protein in the modC–bioA intergenic region in the genome of *E. coli* (Blattner et al., 1997). The amino acid alignment of the hypothetical 39-5 kDa protein of *B. subtilis* revealed weak similarities (24 %) to the pduG gene product of *S. enterica* (Bobik et al., 1997), which catalyses the reactivation of a diol dehydratase.

Based on computer analysis with the program PSORT (Klein et al., 1985) the product of ORF5 may be
enzyme or a non-enzymic hydration of the methylaconitate occurs.

Physiological investigation of the prpD null-allele mutant.

To get a hint of the physiological functions of the prpD translatable products, three-stage growth experiments were carried out as described in Methods with HF39prpDΔKm and R. eutropha HF39 as control. In the supernatant of HF39prpDΔKm no 2-methylcitric acid or any other organic acid was detectable after a period of 48 h.

Organization of the prp locus in Gram-negative bacteria

Analysis of data from genome sequencing projects of various organisms showed that genes homologous to the prp genes of R. eutropha HF39 are widespread in Gram-negative bacteria. A comparison of these putative prp genes revealed two distinct classes of the organization of the prp clusters (Fig. 4). In the enterobacteria E. coli and S. enterica (Blattner et al., 1997; Horswill & Escalante-Semerena, 1997) these loci consist of the structural genes prpR, prpB, prpC, prpD and prpE, in which prpBCDE are organized in an operon (Fig. 4). In the prp loci of R. eutropha HF39, Pseudomonas putida KT2440, P. aeruginosa, N. meningitidis serogroup B and Burkholderia sacchari IPT101T (data not shown) prpE is missing and in Ralstonia metallidurans CH34, N. meningitidis serogroup B, Vibrio cholerae and B. sacchari IPT101T (data not shown) prpD is missing (Fig. 4). However, the prp loci of these bacteria additionally include acnM and ORF5. The prpE gene product is not required for the functionality of the methylcitric acid cycle during growth of R. eutropha on levulinic acid, as the cycle is inducible during the degradation of levulinic acid. The levulinic acid degradation pathway is not known in detail yet. Furthermore, the function of PrpE can be taken over by the product of the acnE gene of R. eutropha (Priefert & Steinbüchel, 1992). In P. putida KT2440 a second putative aconitase hydratase gene is divergently transcribed from the prp locus. A putative regulator gene, which showed identities to regulators of the gntR family, is localized collinear to the other genes of the prp cluster in the pseudomonads. The prp locus of the enterobacterium V. cholerae is particularly interesting because it represents a mixture of both classes of prp loci: a regulator gene of the Pseudomonas type, acnM, ORF5 and prpE occur in the cluster, but prpD is missing.

ACKNOWLEDGEMENTS

This study was supported by a grant provided by the European Commission (FAIR/CT96-1780). We thank Dr. Escalante-Semerena for the providing S. enterica strains JE 3907 and JE 4176. We are indebted to Dr. H. Luftmann (Institut für Organische Chemie, WWU Münster) for helpful discussion of the GC/MS data. We thank W. Buckel and D. Darley (Phillips-Universität Marburg, Germany) for the gift of methylisocitrate lactone.

REFERENCES

Received 22 January 2001; revised 29 March 2001; accepted 23 April 2001.