Gene replacement in cyanobacteria mediated by a dominant streptomycin-sensitive rps12 gene that allows selection of mutants free from drug resistance markers

Masayoshi Matsuoka, Kazutaka Takahama and Takahira Ogawa

INTRODUCTION

Cyanobacteria occupy particular niches in the hydrosphere and adapt to varying environments. They carry out oxygenic photosynthesis similar to that operating in green plant chloroplasts, while the simple genomic organization and ease of genetic manipulation of these micro-organisms attract in-depth biochemical and genetic studies of as yet unsolved biological processes. Recently, cyanobacteria have been revealed as one of the best experimental models to investigate the structure and function relationships of membranous pigment–protein complexes called photosystem I and photosystem II (for reviews, see Nixon & Diner, 1994; and Pakrasi, 1995). To genetically analyse these multisubunit complexes, a versatile method is needed to replace any chromosomal genes with in-vitro-constructed mutant genes without limitation of the number of manipulatable targets.

Some cyanobacterial strains, such as Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803, are naturally transformable with externally added DNAs, and both integrative and replicative transformation systems are...
available in these strains (Chauvat et al., 1986; Kuhlemeier et al., 1983; Williams, 1988). However, due to the fact that homologous recombination mediated by recA function is essential for cell viability in cyanobacteria (Murphy et al., 1990), recombinant plasmids containing any sequences homologous with their host chromosome are not stably maintained in cyanobacterial cells. Consequently, these homologous sequences are integrated with the aid of dominant drug resistance markers into non-essential sites of the chromosome conventionally termed platforms (Geerts et al., 1995) or neutral sites (Bustos & Golden, 1992). Although this method works well, one of the drawbacks is that the dominant drug resistance marker, once integrated, cannot be eliminated from the genome, and thus a subsequent genetic manipulation in the same strain is limited by the availability of other drug resistance markers.

Another difficulty in manipulating cyanobacterial genes arises from their polyploidy; i.e. the multiple copies of genomic DNA in some strains (Binder & Chisholm, 1990). It is therefore of great importance to have a selection scheme that allows one to obtain mutants carrying homogeneous mutant genes on every copy of genomic DNA. Such homogenote (or homoallelic) mutants are only available for genes that are not essential for growth; otherwise heterogenotes containing the mutant as well as wild-type genes are formed (e.g. Ghassemian & Straus, 1996; Murphy et al., 1990). In this regard, a dominant drug-sensitive marker should be easier to eliminate from the chromosome after its integration since even a single copy of the marker would reduce the ability of the polyploid host to survive in the presence of the drug.

It is well known that the rpsL gene encoding an S12 subunit protein of the 30S ribosome in Escherichia coli gives rise to strA mutations conferring the streptomycin-resistant (Str^r) phenotype (Funatsu & Wittmann, 1972; Timms et al., 1992). When the mutant and wild-type alleles coexist in a cell, the resulting merodiploid shows a streptomycin-sensitive (Str^s) phenotype; i.e. the strA mutation is recessive (Lederberg, 1951). The cloned rpsL gene thus behaves as a dominant Str^r marker and has been utilized in a variety of genetic methods, including enforced cloning of foreign DNAs (Dean, 1981; Hashimoto-Gotoh et al., 1993), a detection system for specific mutations (Gondo et al., 1996) and a gene replacement system in a recD mutant (Russell & Dahlquist, 1989). These methods depend upon the logic that only when the rpsL gene is inactivated in an rpsL/rpsL (strA) merodiploid strain can the cells grow in the presence of streptomycin.

In this work, we have developed a methodology capable of introducing multiple gene replacements into the obligate photoautotrophic cyanobacterium Synechococcus sp. PCC 7942 based on the same strategy as the rpsL system in E. coli. For this purpose, the photosystem II psbAI gene encoding the D1 protein was chosen as a target, since the presence of three psbA genes in this strain permitted us to inactivate only the psbAI gene without affecting photoautotrophic growth (Golden et al., 1986). We first demonstrated that an rps12 gene encoding an S12 ribosomal protein acts as a dominant Str^r marker in this cyanobacterium. We then applied the cloned rps12 gene to systematically modify the psbAI ORF without leaving any externally incorporated drug resistance markers in the final mutants. This method is thus well suited for the construction of multiple gene replacements in cyanobacteria in order to analyse complex biological processes such as photosystems I and II.

METHODS

Strains and plasmids. Synechococcus sp. PCC 7942 R2-SPc, which had been cured of an indigenous plasmid, pUH24, and a shuttle vector plasmid, pUC303, carrying a streptomycin-resistant (Sm^r) gene and a chloramphenicol-resistant (Cm^r) gene (Kuhlemeier et al., 1983) were obtained from Dr Y. Inoue, RIKEN, Japan. A plasmid, pEXE1, carrying the S′ and 3′ non-coding sequences of the psbAI gene from Synechococcus sp. PCC 7942, was constructed previously (Sakai et al., 1997). Plasmids pUC18, carrying an ampicillin-resistant (Ap^r) gene, and pUC4K, carrying a kanamycin-resistant (Km^r) gene, were purchased from Pharmacia. A plasmid, pGFPuv, carrying the gfp gene (UV version), encoding a green fluorescent protein was obtained from Clontech Laboratories. E. coli strain JM109 was used for routine cloning. E. coli GM33 (dam⁻) was used for the preparation of plasmids without dam methylation. Plasmids and cyanobacterial strains constructed in this work are described in Table 1.

Culture conditions. Cells of Synechococcus sp. strain PCC 7942 R2-SPc and its derivatives (Table 1) were grown photoautotrophically in liquid BG-11 medium in an incubator equipped with fluorescent lamps under continuous illumination of 44 × 10^{−4} μmol m^{−2} s^{−1} at 28 °C. E. coli cells were grown in LB medium at 37 °C. Appropriate antibiotics were added at concentrations of 50 μg kanamycin ml^{−1}, 10 μg streptomycin ml^{−1}, 50 μg ampicillin ml^{−1} or 10 μg chloramphenicol ml^{−1}. For plating the cells, media were solidified with 1.5% agar.

PCR and DNA manipulations. Standard methods (Sambrook et al., 1989) were applied for digestion of DNA by restriction enzymes and cloning of DNA fragments into plasmids. PCR and inverse PCR were performed as described by Saiki et al. (1987) and Triglia et al. (1988), respectively, with the GeneAmp PCR system 2400 (Perkin Elmer-Applied Biosystems) and the oligonucleotide primers listed in Table 2. AmpliTaq GOLD (Perkin Elmer-Applied Biosystems) was used for most of the amplifications of DNA fragments. PCR fragments to be cloned into plasmids were amplified with Vent DNA polymerase (New England BioLabs), purified with Wizard PCR Preps (Promega) and cloned into pUC18 (SureClamp Ligation Kit; Pharmacia). Nucleotide sequences were determined with a 310 Genetic Analyzer and reagents for BigDye Terminator Cycle Sequencing (Perkin Elmer-Applied Biosystems), as recommended by the supplier.

Sequencing of the rps12 gene region. Two degenerate PCR primers (nos 1 and 2) were used to amplify a part (361 bp) of the rps12 ORF. Both the fragments amplified from PCC 7942 R2-SPc (wild-type) and TEV1002-1 (a spontaneous Str^r mutant) strains were cloned into pUC18, and the nucleotide sequences were determined. Fragments containing sequences outside the rps12 ORF were obtained by inverse PCR using primers 3, 4, 5 and 6 after cutting the chromosomal DNA with...
Table 1. Plasmids and cyanobacterial strains used in this study

<table>
<thead>
<tr>
<th>Plasmid or strain</th>
<th>Description or genotype*</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pEXE1</td>
<td>A 1.8 kb fragment upstream of the psbAI ORF and a 0.5 kb fragment downstream of the psbAI ORF were PCR-amplified and cloned into the BamHI site of pUC19. The two fragments were joined with a NotI site which was adjacent to a BanIII site at the 5' terminus of the psbAI ORF; Ap', psbAI::efeORF</td>
<td>Sakai et al. (1997)</td>
</tr>
<tr>
<td>pEXE2</td>
<td>A 1.0 kb efe gene ORF encoding Pseudomonas syringae ethylene-forming enzyme was PCR-amplified and cloned into the BanIII/NotI sites of pEXE1 to produce a precise replacement of psbAI ORF with the efe ORF. Ap', psbAI::efeORF</td>
<td>Sakai et al. (1997)</td>
</tr>
<tr>
<td>pIEK2</td>
<td>A 1.25 kb fragment from pUC4K containing the kan gene was cut out with HincII, ligated with NotI linkers and cloned into the NotI site of pEXE2. The transcriptional direction of the kan gene was the same as that of the efe gene. Ap' Km, psbAI::efeORF-kan</td>
<td>Our laboratory stock (unpublished)</td>
</tr>
<tr>
<td>pEXR10</td>
<td>A 579 bp fragment containing the rps12 gene with its promoter sequence was amplified by PCR using primers 9 and 10 with a 5' BanIII extension and cloned into the BanIII site of pEXE1. The transcriptional direction of the rps12 gene was the same as that of the psbAI promoter on the pEXE1 vector. Ap', psbAI::rps12</td>
<td>This study</td>
</tr>
<tr>
<td>pEXR11</td>
<td>A 1.25 kb kan gene fragment from pIEK2 was cloned into the NotI site of pEXR10. The transcriptional direction of the kan gene was opposite to that of the rps12 gene. Ap' Km, psbAI::*rps12-nak</td>
<td>This study</td>
</tr>
<tr>
<td>pEXR12</td>
<td>A 1.25 kb kan gene fragment from pIEK2 was cloned into the NotI site of pEXR10. The transcriptional direction of the kan gene was the same as that of the rps12 gene. Ap' Km, psbAI::*rps12-kan</td>
<td>This study</td>
</tr>
<tr>
<td>pEXR20</td>
<td>A 375 bp ORF for the rps12 gene was PCR-amplified with BanIII and NotI linkers at the 5' and 3' termini, respectively, using primers 11 and 12. The fragment was cloned into the BanIII/NotI sites of pEXE1 to produce a precise replacement of the psbAI ORF with the rps12 ORF. Ap', psbAI::*rps12ORF</td>
<td>This study</td>
</tr>
<tr>
<td>pEXR21</td>
<td>A 1.25 kb kan gene fragment from pIEK2 was inserted into the NotI site of pEXR20. The transcriptional direction of the kan gene was the same as that of the rps12 gene. Ap' Km, psbAI::*rps12ORF-kan</td>
<td>This study</td>
</tr>
<tr>
<td>pEXGFP</td>
<td>A 717 bp gfp gene ORF fragment was PCR-amplified from pGFPuv using primers 15 and 16 and was cloned into the BanIII/NotI sites of pEXE1 to produce a precise replacement of the psbAI ORF by the gfp ORF. Ap', psbAI::gfpORF</td>
<td>This study</td>
</tr>
<tr>
<td>pEXGFPK</td>
<td>A 1.25 kb kan gene fragment from pIEK2 was inserted into the NotI site of pEXGFP. The transcriptional direction of the kan gene was opposite to that of the gfp gene. Ap' Km, psbAI::gfpORF-nak</td>
<td>This study</td>
</tr>
<tr>
<td>pUC3032</td>
<td>A 1.45 kb SacI–SalI fragment containing 5' and 3' non-coding regions of the psbAI gene from pEXE1 was isolated and ligated with a 81 kb SacI–XbaI fragment from pUC303. The resulting 9.5 kb plasmid, pUC3032, contains the psbAIORF gene in place of the plasmid-encoded Sm' gene on pUC303. Cm', repAB psbAIORF</td>
<td>This study</td>
</tr>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEV1002</td>
<td>Synechococcus sp. PCC 7942 R2-SPc whose psbAI gene ORF was replaced with the kan gene in the opposite orientation. The kan gene was flanked on both sides by χ and RS, which represent the E. coli chi site and the recognition site for site-specific endonuclease I-TevI, respectively. psbAI::χRS-nak-RSχ</td>
<td>Our laboratory stock (unpublished)</td>
</tr>
<tr>
<td>TEV1002-1</td>
<td>A spontaneous Str' mutant of TEV1002. psbAI::χRS-nak-RSχ rps12-R43</td>
<td>This study</td>
</tr>
<tr>
<td>GRPS1</td>
<td>A derivative of Synechococcus sp. PCC 7942 R2-SPc which received a PCR-generated rps12-R43 gene fragment from TEV1002-1 and exhibited streptomycin resistance. rps12-R43</td>
<td>This study</td>
</tr>
<tr>
<td>GRPS11</td>
<td>A derivative of GRPS1 in which the psbAI gene was replaced by the sequence from pEXR11. rps12-R43 psbAI::rps12-nak</td>
<td>This study</td>
</tr>
<tr>
<td>GRPS12</td>
<td>A derivative of GRPS1 in which the psbAI gene was replaced by the sequence from pEXR12. rps12-R43 psbAI::rps12-nak</td>
<td>This study</td>
</tr>
<tr>
<td>GRPS21</td>
<td>A derivative of GRPS1 in which the psbAI gene was replaced by the sequence from pEXR21. rps12-R43 psbAI::rps12ORF-nak</td>
<td>This study</td>
</tr>
<tr>
<td>GLC1</td>
<td>A Km' transformant of PCC 7942 R2-SPc which received a copy of psbAI::gfpORF-nak from pEXGFPK. psbAI::gfpORF-nak</td>
<td>This study</td>
</tr>
</tbody>
</table>

*nak represents a *kan* gene inserted in the opposite transcriptional direction to that of the upstream gene.
Table 2. Sequences of oligodeoxynucleotides used for PCR primers

<table>
<thead>
<tr>
<th>No.</th>
<th>Mer</th>
<th>Base sequence*</th>
<th>Target sequence†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>ATGCAACTTCCAGCARTYTNACHG</td>
<td>rps12 N terminus (sense)</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>GTTTGTTGCTGATTATTGNGCNGC</td>
<td>rps12 C terminus (antisense)</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>GGTCAAGACCTCTACCGGTTGTC</td>
<td>rps12 C terminus (sense)</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>TGGTTGTTGACCGGATGTCGA</td>
<td>rps12 N terminus (antisense)</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>GCAGTTGACCTGTGGCTTCCAG</td>
<td>rps12 3’ non-coding (sense)</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>TTGGCGCTTGGGCGAATACGC</td>
<td>rps12 N terminus (sense)</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>GCTTTTTCAGAGAGCAGGCCAAC</td>
<td>rps12 5’ non-coding (antisense)</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>TGGCAAGAGGCAAGTTGCTGCC</td>
<td>rps12 3’ non-coding (antisense)</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>CCCATCGGTGCCAGCCGTTACCTGGGC</td>
<td>rps12 5’ non-coding (sense)</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>CCCATCGTGCCAGACAGCTAAGGCTGCA</td>
<td>rps12 3’ non-coding (antisense)</td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>CCCATCGATGGCTCAATACCGAGCTTGATCC</td>
<td>rps12 N terminus (sense)</td>
</tr>
<tr>
<td>12</td>
<td>32</td>
<td>TTTGCGGCCGCCTAGCCCTGGACGGCCTTCGC</td>
<td>rps12 C terminus (sense)</td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>GAGCAGTTGACCTTGCTCGTTCCAG</td>
<td>psbAI 5’ non-coding (sense)</td>
</tr>
<tr>
<td>14</td>
<td>25</td>
<td>GGGCAATGCTTGGTTCTGACATGCTC</td>
<td>psbAI 3’ non-coding (antisense)</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>CCCATCGATATGCTAAGAAGAAGAAGCTTACCTGGAG</td>
<td>gfp N terminus (sense)</td>
</tr>
<tr>
<td>16</td>
<td>38</td>
<td>TTTGCGGCCGCCTATTGTAGACGCTACCATGGCCTAG</td>
<td>gfp C terminus (antisense)</td>
</tr>
</tbody>
</table>

*N = A, C, G or T; R = A or G; Y = C or T; H = A, C or T; restriction sites used for cloning are denoted by solid underlining (BamHI) or dotted underlining (MluI).
†Sense and antisense denote the coding and non-coding strands, respectively.

PvuII and PstI to generate 1-4 and 3-5 kb DNA fragments, respectively, and religation. Inverse PCR fragments were directly sequenced using the same primers. A 491 bp PCR fragment containing the rps12 gene with 35 bp 5’ and 81 bp 3' non-coding regions was prepared by using primers 7 and 8, whereas a 375 bp PCR fragment containing only the rps12 ORF was amplified with primers 11 and 12.

Electroporation. Cyanobacterial cells were grown in BG-11 medium supplemented with appropriate antibiotics to a density of 10⁶ cells ml⁻¹. The cells in 1 ml culture were collected by centrifugation in 1-5 ml sterile centrifuge tubes at 13000 g for 5 min at 4°C, and the supernatant was discarded. The cells were suspended in 1 ml SH buffer (272 mM sucrose, 8 mM HEPES, pH 7.4), centrifuged, and the supernatant was removed. The cells were washed as above with 0.2 ml SH buffer, suspended in 20 µl 2 × SH buffer and cooled on ice. A 20 µl aliquot of cell suspension was transferred to a cuvette of 0.1 cm path length (Bio-Rad), and necessary DNA solutions and sterile water was added to a final liquid volume of 40 µl. The cuvette was capped and cooled on ice with a small ice cube. After electroporation at 900 V, 129 Ω, 50 µF, using an Electro Cell Maniplator (model 600M; BTX). Immediately after electroporation, 1 ml BG-11 medium was added into the cuvette, and the cells were suspended with a pipette, transferred into a sterile centrifuge tube and kept for 10 min on ice. The cells were then collected by centrifugation at 13000 g for 1 min at 4°C, and the supernatant was discarded. The cells were again washed with 1 ml of BG-11 medium, resuspended in 1 ml BG-11 medium and transferred into an empty sterile glass test tube with a cotton plug. The tube was shaken on a reciprocal shaker at 100 r.p.m. in an illuminated incubator at 28 °C overnight. Finally, the cells were spread onto BG-11 agar plates and incubated at 28 °C under light for up to 2 weeks.

Curing of plasmids. For curing of plasmids from cyanobacterial transformants, cells were cultivated photoautotrophically in BG-11 medium in the absence of the antibiotic to which the resistance had been conferred by the plasmid. When the OD₂₅₀ of the culture exceeded 1.0, a portion of the culture was transferred into a tube containing fresh BG-11 medium, and the cultivation was repeated until cells had been propagated for 32 generations. The culture was then diluted and spread on BG-11 medium. The colonies formed were then replicated with nylon membrane (Hybond N⁺; Amersham Pharmacia) onto BG-11 medium containing appropriate antibiotics. Cured strains that no longer grew in the presence of antibiotics made up 15–20% of the population after 32 generations.

Fluorescence microscopic observation. Cellular fluorescence was observed with a fluorescence microscope (Olympus OPTICAL model BX50 microscope; BX-FLA reflected light illuminator equipped with a mercury burner). Excitation was done at 360–370 nm, while 510–550 nm emission was observed through an absorption filter.

Southern blot analysis. Five to ten micrograms of chromosomal DNA were digested with restriction enzymes, electrophoresed on agarose gels and transferred onto a nylon membrane (Hybond N⁺) by vacuum suction (VacuGene XL; Amersham Pharmacia). DNA probes were prepared by labelling with digoxigenin using a PCR Dig Labeling Mix (Roche Diagnostics). Hybridization of the membrane with a probe was carried out in a buffer containing 5 x SSC (75 mM sodium citrate, pH 7.0, and 0.75 M NaCl) at 62–65 °C overnight. The hybridized membrane was treated with anti-digoxigenin–alkaline phosphatase Fab fragments (Roche Diagnostics) and luminescent substrate (Lumi-Phos 530; Wako Pure Chemical Industries) as recommended by the manufacturer, and exposed to X-ray film (XAR; Kodak).

RESULTS
Isolation and characterization of a streptomycin-resistant mutant
As a prerequisite for streptomycin selection of gene replacements, a well-defined Str⁴ mutant is essential. Although the spontaneous frequency for occurrence of
Table 3. Transformation of Synechococcus sp. GRPS1 with psbAI gene disruption plasmids

<table>
<thead>
<tr>
<th>Plasmids (gene on fragment)*</th>
<th>Amount of DNA used (µg)</th>
<th>Number of Km(^r) transformants</th>
<th>Ratio of Str(^s)/Str(^r) phenotypes†</th>
<th>Spontaneous gene conversion frequency‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>pEXR11/BamHI (psbAI::rps12-nak)</td>
<td>6</td>
<td>475</td>
<td>3/1</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1110</td>
<td>1/3</td>
<td>4·4 \times 10^{-3} (GRPS11)</td>
</tr>
<tr>
<td>pEXR12/BamHI (psbAI::rps12-kan)</td>
<td>6</td>
<td>321</td>
<td>3/1</td>
<td>ND (GRPS12)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>26</td>
<td>4/0</td>
<td>2·5 \times 10^{-3}</td>
</tr>
<tr>
<td>pEXR21/BamHI (psbAI::rps12ORF-kan)</td>
<td>8</td>
<td>60</td>
<td>4/0</td>
<td>1·7 \times 10^{-3} (GRPS21)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>1/0</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>72</td>
<td>4/0</td>
<td>1·1 \times 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>80</td>
<td>4/0</td>
<td>5·4 \times 10^{-3}</td>
</tr>
</tbody>
</table>

*Plasmids were cut by BamHI and used for electroporation without further purifying the fragments.
† Streptomycin sensitivity/resistance is represented as the ratio of colony numbers tested; for example, a ratio of 3/1 indicates that three transformants were Str\(^s\) while one was Str\(^r\).
‡ Selected Km\(^s\) Str\(^r\) transformants (including GRPS11, 12 and 21 as indicated in parentheses) were grown in BG-11 medium, and cells were plated onto BG-11 media containing either kanamycin or streptomycin to calculate the fraction of spontaneous gene conversion to produce Str\(^r\) progeny. Values represent single measurements. ND, Not determined.

Fig. 1. Chromosomal status of rps12 merodiploids. Chromosomal DNAs from selected Km\(^s\) transformants exhibiting Str\(^r\) and Str\(^s\) phenotypes were analysed by Southern hybridization using the rps12 ORF probe. Hybridization was performed in 5x SSC at 62 °C. Lanes 2-11 contained 5 µg chromosomal DNAs digested with HindIII. Samples in lanes 3-8 were from Str\(^r\) transformants, whereas those in lanes 9-11 were from Str\(^s\) transformants. Lanes: 1 and 12, digoxigenin-labelled, HindIII-cut λ DNA marker; 2, GRPS1; 3, 4, 5, 9 and 10, transformants of GRPS1 obtained with pEXR11 carrying psbAI::rps12-nak insertion; 6, 7, 8 and 11, transformants obtained with pEXR12 carrying a psbAI::rps12-kan insertion. Since HindIII cuts the kan gene nearly symmetrically, a slight mobility difference between rps12-nak and rps12-kan fragments was not evident here. Sizes of hybridizing bands are indicated on the right.

Str\(^r\) mutants in Synechococcus sp. PCC 7942 R2-SPc was less than 10^-8, we found by chance a spontaneous Str\(^r\) mutant from strain TEV1002 carrying the kan gene conferring kanamycin resistance at the psbAI locus (Table 1). The Km\(^r\) Str\(^r\) mutant strain was designated TEV1002-1, and its rps12 gene encoding the S12 ribosomal protein was compared with the wild-type rps12 gene as described in Methods. A contiguous 1428 bp nucleotide sequence including the rps12 gene and a part of the rps7 gene downstream of the rps12 gene was determined, and found to be identical to the sequence (GenBank accession X17442) reported by Meng et al. (1989) in Synechococcus sp. PCC 6301, formerly called Anacystis nidulans. This result was not unexpected since PCC 7942 and PCC 6301 are nearly identical strains (Golden et al., 1989).

Within the regions sequenced, the only difference between the wild-type and the mutant rps12 genes is a single base transition from A to G at position 128 of the ORF. The point mutation occurred at the second position of the 43rd codon, resulting in a replacement of a lysine (AAA) with an arginine (AGA) codon. Accordingly, the mutant allele was designated rps12-R43. We verified that the mutation in the rps12-R43 gene is the sole change determining the Str\(^r\) phenotype of the mutant by transforming Synechococcus sp. PCC 7942 R2-SPc to streptomycin resistance with a PCR-generated 375 bp DNA fragment of the rps12-R43 ORF. An Str\(^r\) transformant was obtained and was found by sequencing of its rps12 gene to have the same point mutation as the rps12-R43 allele. This strain was named GRPS1, and it was used as the standard rps12-R43 mutant. Using an rps12 probe, a single band was detected in genomic Southern hybridization with several restriction digests, indicating a single-copy rps12 gene (data not shown).
The results presented in Table 3 show that Km
r
purpose, pEXE1, carrying the
psbAI
locus in the
psbAI
at frequencies of 1–
formants showed that they were in fact merodiploids,
into the
rather than a single-point insertion of the whole plasmid
prior to transformation of strain GRPS1 to facilitate
These plasmids were linearized by
plasmids pEXR11, pEXR12 and pEXR21 (Table 1).

2082

Merodiploid analysis for the recessiveness of
rps12-R43 allele
We tested the dominance/recessiveness of the
rps12-R43 allele by constructing merodiploid strains in which a wild-type
rps12 gene was inserted into a non-essential
psbAI locus in the
rps12-R43 background. For this purpose, pEXE1, carrying the
psbAI 5’ and 3’ flanking non-coding sequences with a precise deletion of the D1 protein
coding sequence, was used to clone the wild-type
rps12 gene with its own promoter or the
rps12 ORF fragment followed by the
kan gene, generating the gene disruption plasmids pEXR11, pEXR12 and pEXR21 (Table 1).
These plasmids were linearized by BamHI digestion prior to transformation of strain GRPS1 to facilitate
recombination between homologous sequences (Fig. 1). We concluded that the Str
rps12-R43 allele spontaneously. This premise was confirmed by the
direct sequencing of PCR fragments of the
rps12-R43 and
psbAI::rps12-kan alleles; bottom, template plasmid carrying a
gfp gene within the
psbAI 5’ and 3’ flanking sequences.

(c) Chromosomal state in a
rps12-R43 recombinant after gene replacement at the
psbAI locus. (d) Chromosomal state in a
rps12-Km merodiploid strain after gene conversion of the
rps12 gene inserted at the
psbAI locus into the
rps12-R43 allele.

Gene replacement in
rps12 merodiploids triggered by
non-replicating template plasmids
Since
rps12-R43/rps12 merodiploids exhibit a Strwild-type
phenotype due to the presence of the dominant wild-
type
rps12 gene inserted at the
psbAI locus (Fig. 1b), removal of the wild-type
rps12 gene from the merodiploids should restore the Strwild-type
rps12 gene inserted at the
psbAI locus (Fig. 1b). Gene replacement at the
psbAI locus was initiated by introducing appropriate template
DNAs bearing terminal regions of homology with
psbAI 5’ and 3’ flanking sequences, thus inducing homologous
recombination via double crossing-over (Fig. 1b, bottom). In principle, such a recombinant with a successful
gene replacement can be detected by their Strwild-type
phenotype as well as kanamycin-sensitive (Km
r
) phenotype because of the simultaneous elimination of the
kan gene (Fig. 1c). On the other hand, spontaneous gene conversion of the

Fig. 2. Schematic representation of gene replacement utilizing the dominant
rps12 gene. Chromosomal and plasmid
DNAs are shown by wavy and ellipsoidal lines, respectively. Individual genes or ORFs are represented by rectangular boxes, whereas the
psbAI 5’ and 3’ flanking non-coding sequences are represented by hatched boxes. Possible routes for recombination between homologous sequences are shown by dotted lines. Only relevant restriction sites are shown.
(a) Top, Chromosomal state in a
rps12 strain carrying the
rps12-R43 allele; bottom, plasmid used to disrupt the
psbAI gene by
rps12 and
kan genes. (b) Top, Chromosomal state in a
rps12-Km merodiploid strain carrying the
rps12-R43 and
psbAI::rps12-kan alleles; bottom, template plasmid carrying a
gfp gene within the
psbAI 5’ and 3’ flanking sequences.
(c) Chromosomal state in a
rps12-Km recombinant after gene replacement at the
psbAI locus. (d) Chromosomal state in a
rps12-Km merodiploid strain after gene conversion of the
rps12 gene inserted at the
psbAI locus into the
rps12-R43 allele.
Table 4. Gene replacement in *rps12* merodiploids by transformation with template plasmids

<table>
<thead>
<tr>
<th>Plasmid (amount used)*</th>
<th>Recipient strain</th>
<th>Number of Str' colonies</th>
<th>Number of Km' colonies</th>
<th>Frequency of Str' clones per Km' population†</th>
<th>Number of Km' transformants per Str' clone tested‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>pEXGFP (1 μg)</td>
<td>GRPS11</td>
<td>1.54 × 10⁴</td>
<td>1.36 × 10⁸</td>
<td>1.1 × 10⁻⁴</td>
<td>3/96</td>
</tr>
<tr>
<td>pEXGFP (2 μg)/EcoRI+SphI</td>
<td></td>
<td>1.38 × 10⁴</td>
<td>1.20 × 10⁸</td>
<td>1.2 × 10⁻⁴</td>
<td>0/96</td>
</tr>
<tr>
<td>pEXE1 (1 μg)</td>
<td></td>
<td>2.40 × 10⁴</td>
<td>1.85 × 10⁸</td>
<td>1.3 × 10⁻⁴</td>
<td>0/96</td>
</tr>
<tr>
<td>pEXE1 (2 μg)/BamHI</td>
<td></td>
<td>2.40 × 10⁴</td>
<td>2.59 × 10⁸</td>
<td>9.3 × 10⁻⁵</td>
<td>0/96</td>
</tr>
<tr>
<td>pEXGFP (1 μg)</td>
<td>GRPS21</td>
<td>1.56 × 10³</td>
<td>7.32 × 10⁸</td>
<td>2.1 × 10⁻⁵</td>
<td>3 (1)/96</td>
</tr>
<tr>
<td>pEXGFP (2 μg)/EcoRI+SphI</td>
<td></td>
<td>1.30 × 10³</td>
<td>5.26 × 10⁷</td>
<td>2.5 × 10⁻⁵</td>
<td>0/96</td>
</tr>
<tr>
<td>pEXE1 (1 μg)</td>
<td></td>
<td>4.97 × 10³</td>
<td>2.23 × 10⁸</td>
<td>2.2 × 10⁻⁵</td>
<td>1 (0)/96</td>
</tr>
<tr>
<td>pEXE1 (2 μg)/BamHI</td>
<td></td>
<td>3.42 × 10³</td>
<td>1.97 × 10⁸</td>
<td>1.7 × 10⁻⁵</td>
<td>0/96</td>
</tr>
<tr>
<td>pUC3032 (0.5 μg)</td>
<td>GRPS11</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3/100</td>
</tr>
<tr>
<td></td>
<td>GRPS21</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>16/100</td>
</tr>
</tbody>
</table>

* Plasmids were used as closed circular molecules or digested with restriction enzyme(s) prior to electroporation.
† Numbers represent single measurements.
‡ Km' phenotypes of 96 and 100 randomly picked Str' colonies were tested in liquid and solid BG-11 medium containing kanamycin, respectively. In the case of transformation of GRPS21, two and one Str' Km' recombinants obtained by using pEXGFP and pEXE1, respectively, were heterogenotes segregating Km' cells in subcultures and were therefore subtracted, as shown by the numbers in parentheses.
NA, Not applicable because transformants were selected by Cm' phenotype, and then Str' clones from a plasmid-bearing transformant were recovered.

rps12 gene at the *psbAI* locus into the *rps12-R43* allele will lead to Str' merodiploid cells that are still Km' (Fig. 2d). Thus, products of true gene replacement can be distinguished from those of gene conversion by their kanamycin phenotype among the Str' population.

At first, we employed plasmids unable to replicate in cyanobacteria as template DNAs to replace the *psbAI* gene with foreign sequences. One of the template plasmids, pEXGFP, was used to precisely replace the *psbAI* ORF with the *gfp* ORF encoding a green fluorescent protein (GFPuv), whereas pEXE1 bearing the *psbAIΔ*gene was employed to introduce a precise deletion of the *psbAI* ORF. Two Str' merodiploid strains, GRPS11 and GRPS21 (Tables 1 and 3), were selected and electroporated with pEXGFP or pEXE1. The results of four independent experiments showed that the frequencies of Str' Km' recombinants were low, reaching a maximum of only 3/96 using 1 μg intact plasmid (Table 4, last column). No Str' Km' recombinant was detected among 96 Str' colonies using 2 μg linearized plasmid.

The seven Str' Km' recombinant clones obtained above were analysed for their chromosomal structure at the *psbAI* locus by PCR using primers that amplify DNA segments from outside the *psbAI* ORF (Fig. 3). Six Str' Km' recombinants obtained by using pEXGFP (Fig. 3, lanes 4–9) gave rise to 1.3 kb DNA bands corresponding to the *psbAIΔ*gene, while a 0.6 kb band corresponding to the deletion of *psbAI* ORF was amplified from one Str' Km' recombinant obtained by using pEXE1 (Fig. 3, lane 10). These PCR fragment sizes are in good agreement with the expected gene replacement products of the *psbAI* loci. When these Str' Km' recombinants with potential gene replacement were analysed further by Southern hybridization, the *rps12* or *rps12* ORF insertions at the *psbAI* locus were eliminated in seven recombinants and replaced by *gfp* ORF fragments in six recombinants (Fig. 4).

Heterogenote formation in the *psbAI* locus

Although the above results of PCR and Southern hybridization showed that the gene replacement was feasible utilizing the *rps12* merodiploid strains and the appropriate template plasmids, a possibility still remained that the *psbAI* locus might be heterogeneous in some of the Str' Km' transformants. Careful inspection of Southern hybridization results disclosed that traces of hybridizing bands were present at 44 or 4.2 kb positions in a few transformants (e.g. Fig. 4a, lanes 10 and 11). Should the *kan* gene remain inserted at a fraction of *psbAI* loci, they would revive some Km' cells. Indeed, three out of seven recombinants described above (Table 4) segregated a small number of growing colonies on BG-11 medium containing kanamycin after prolonged incubation. Consequently, these three recombinants were regarded as heterogenotes at the *psbAI* locus containing both the replaced (*gfp*ORF or *psbAIΔ*gene) and unreplaced (*rps12*ORF-kan) insertions. PCR tests also disclosed the presence of the *kan* gene in their chromosomal DNAs (data not shown). In con-
clclusion, transformation of the rps12 merodiploid strains with non-replicating template plasmids finally resulted in four Str" Km" homogenote recombinants, in which all copies of the psbAI ORF were replaced by the gfp ORF.

Functional expression of the gfp ORF integrated at the psbAI locus

To investigate whether or not the gene replacement at the psbAI locus led to expression of the gfp ORF under the control of the constitutive psbAI promoter, we analysed GFPuv protein in cyanobacterial cells under a fluorescence microscope. GFPuv absorbs ultraviolet light at 360–400 nm, and emits green fluorescence with a maximum at 509 nm (Crameri et al., 1996). Since cyanobacterial chlorophylls also absorb ultraviolet light, and emit red fluorescence with a maximum at 668 nm, only emission in the range 510–550 nm was visualized through an absorption filter. Moreover, the intracellularly emitted light might have been quenched by various absorbing pigment molecules. Nonetheless, the above cyanobacterial recombinants with a psbAI::gfpORF genotype, as well as a control strain GLC1 (Table 1) with a psbAI::gfpORF-nak genotype did emit the dim fluorescence which was absent in the parental GRPS1 strain (data not shown). We also detected the expression of green fluorescent protein by Western blotting of cell-free extracts from the recombinant cyanobacterial strains (data not shown). These data clearly demonstrated that the gfp ORF inserted at the psbAI locus is intact and functional after gene replacement.

Transformation of rps12 merodiploids with replicating template plasmids

The frequency at which gene replacement products are established from rps12 merodiploids depends upon the availability of template DNA within the cyanobacterial cells. When a template plasmid replicates after incorporation into a cell to supply multiple copies of templates, then the probability of homologous recombination between the plasmid DNA and the chromosomal DNA should be elevated as compared with a non-replicating template plasmid which is diluted out during cell propagation. To test the above hypothesis, a pUC303-derived plasmid, pUC3032 (Table 1), carrying the psbAI::gfpORF gene and cyanobacterial replication machinery was constructed. pUC3032 is devoid of the plasmid-borne Sm' gene but carries the Cm' gene and repAB genes necessary for autonomous replication in PCC 7942 or its cognate strains lacking endogenous pUH24 (van der Plas et al., 1992). This plasmid was used to introduce a deletion of the psbAI gene ORF by gene replacement in the rps12 merodiploid strains.

As shown in the last row of Table 4, transformation of strains GRPS11 and GRPS21 using pUC3032 resulted in...
three and sixteen recombinants exhibiting the Cm^r Str^r Km^r phenotype from GRPS11 and GRPS21, respectively, among 100 Str^r clones tested. These recombinants were homogenotes as judged from their inability to grow on BG-11 medium containing kanamycin. The apparent frequencies of Km^r recombinants among Str^r clones (3 and 16%) using a replicating plasmid were improved in comparison with those (less than 3%) using non-replicating plasmids.

Three clones of each Cm^r Str^r Km^r recombinant from GRPS11 and GRPS21 were cured for their pUC3032 (see Methods), and one chloramphenicol-sensitive (Cm^s) strain was recovered from each clone. When these Cm^s Str^r Km^r recombinant strains were analysed by PCR using the same primers as in Fig. 3, DNA fragments of an expected size (0.6 kb) were amplified (data not shown). Southern hybridization of Scal-digested chromosomal DNA from the above six cured strains using a probe specific for the psbAI 5′ and 3′ non-coding sequences detected the same 2-6 kb bands corresponding to a 1-08 kb deletion of the psbAI gene ORF, as compared with a 3.7 kb band in GRPS1 and 4.4-4.2 kb bands in strains GRPS11 and GRPS21, depending on the insertions (rps12-nak or rps12ORF-kan) which they carry at the psbAI locus (Fig. 5). This result provides direct evidence that the psbAIΔORF gene is transferred from a replicating plasmid to the chromosomal psbAI locus with a concomitant loss of rps12 and kan genes at the same locus.

DISCUSSION

Since the elucidation of the lethal effect of streptomycin on 30S ribosomes as causing erroneous protein synthesis (Gorini, 1974), mutational sites in Str^r mutants of various organisms have been assigned to either the 30S ribosomal subunit protein S12 (Funatsu & Wittmann, 1972; Liu et al., 1989; Timms et al., 1992; Finken et al., 1993) or 16S rRNA (Montandon et al., 1985; Melancon et al., 1988; Powers & Noller, 1991; Finken et al., 1993). The same amino acid substitutions as found here have been reported in some Str^r mutant S12 proteins from *E. coli* (Funatsu & Wittmann, 1972; Timms et al., 1992) and *Mycobacterium tuberculosis* (Finken et al., 1993) at Lys-43 as well as Lys-88, both of which are phylogenetically conserved. The small size and well-defined Str^r mutational sites of the rps12 gene imply a universal applicability of rps12-mediated gene replacement in other organisms amenable to transformation.

The dominant nature of the wild-type rps12 gene over the rps12-R43 allele was demonstrated unambiguously by the Str^r phenotype of merodiploid strains bearing the rps12-R43 allele and the rps12 gene inserted at the psbAI locus. The difference in the ability of promoters to express the ectopic rps12 gene, i.e. the natural rps12 promoter or the psbAI promoter, did not influence the apparent Str^r phenotype of the merodiploids, although the psbAI promoter seemed stronger than the rps12 promoter. However, rps12 gene and rps12 ORF sequences have different tendencies to suffer gene conversion. Thus, the spontaneous segregation rate of Str^r progeny was about seven times higher in the GRPS11 merodiploid carrying the rps12 gene than in the GRPS21 merodiploid carrying the rps12 ORF (see Table 4, fifth column). Although its basis is not known exactly, this difference in gene conversion frequencies might arise from a site-specific recombination at a highly iterated palindromic sequence (HIP1), 5′-GGGATCCG-3′, which has been found in many cyanobacteria (Robinson et al., 1995, 1997; Akiyama et al., 1998) and is present once in the promoter region of the 579 bp rps12 gene but absent from the 375 bp rps12 ORF. We therefore postulate that rps12 merodiploids would be a good experimental system to study mechanistic details of intrachromosomal gene conversion in cyanobacteria.

The present study established a novel technique utilizing a dominant Str^r rps12 gene to replace any non-essential chromosomal sequences in cyanobacteria with desired insertions, substitutions or deletions, yet generating the final mutants free from foreign drug resistance markers. Essentially, this method consists of an elimination of the chromosomally integrated rps12 gene via homologous recombination with externally added template DNA. A similar strategy was employed previously to select plasmid-to-chromosome gene replacement in *E. coli recD rpsL (str)* mutants (Russell & Dahlquist, 1989). In *E. coli*, however, a strong exonucleolytic activity conferred by the *recBCD* gene product makes linear DNA fragments impractical for use as template DNA, and, therefore, it is still mandatory to use a recBCD-deficient mutant for efficient gene replacement (Murphy, 1998). Although cyanobacteria do not seem to degrade linear DNA so extensively, linearized template DNAs were much less effective than circular DNAs for gene replacement. Taking it for granted that recA-mediated
homologous recombination requires sufficient length of sequences flanking the sequence to be integrated. We employed template plasmids carrying the psbAI 5’ and 3’ non-coding sequences extending to more than 500 bp. Whether or not a specific sequence such as HIP1 is required for high frequency of recombination is not known, although both psbAI 5’ and 3’ flanking sequences used here contain at least one HIP1 site (unpublished results).

Compared with the haploid genome of E. coli, the polyploid nature of the cyanobacterial genome poses an additional difficulty in isolating homogenote recombinants. Available data indicate that the mean copy number of chromosomes per cell in Synechococcus spp. PCC 6301 and PCC 7942 is four to six, depending on growth rate and temperature (Binder & Chisholm, 1990). Accordingly, several rounds of successive replacements at psbAI loci in a polyploid genome should be necessary to establish homogenote recombinants. Considering the transient maintenance of non-replicating plasmids after incorporation into the cell, it is somewhat surprising that gene replacement was achieved at a frequency up to 3% of the Streptomycin-sensitive progeny using a circular form of a non-replicating plasmid. This frequency corresponds to about 3×10^{-6} per cell, a value not impractical to screen for recombinants among 10^8 cells.

When the template plasmids replicate, gene replacement was induced via three steps: first, transformation with the CmR plasmid; second, induction of recombination to give StrR KmR progeny; and finally, curing of the plasmid. This procedure has an advantage in the availability of multiple copies of template plasmids in all transformant cells, resulting in an increased frequency of gene replacement of up to 16% among survivors. Although the curing of the plasmid is an added labour, most of the shuttle vector plasmids currently available in cyanobacteria are unstable and therefore could be removed relatively easily.

The ease with which gene replacements were screened is an urgent requirement for routine work with mutant constructions. So far, a conditional lethal sacB gene encoding levansucrase can cause death of host cells of Gram-negative bacteria on sucrose-containing media (Gay et al., 1985), and has been utilized as a tool for construction of gene replacement mutants in a plant pathogen, Erwinia chrysanthemi (Ried & Collmer, 1997), and a filamentous cyanobacterium, Anabaena sp. PCC 7120 (Cai & Wolk, 1990). The sacB gene, however, suffers inactivation through spontaneous mutations, leading to false recombinants. In the rps12-mediated gene replacement, segregation of false Streptomycin-sensitive recombinants from the rps12/rps12-R43 merodiploids by gene conversion is unavoidable when using the 100% homologous rps12 gene in the recA- background. However, we expect to suppress the gene conversion frequency in merodiploids by using an rps12 gene homologue such as the E. coli rpsL gene or by using a mutant strain deficient in an as yet unidentified gene conversion system. There is a tenable experimental basis for the heterologous expression of S12 proteins in different hosts (Liu et al., 1989). We are at present exploring the feasibility of employing heterologous rps12 genes to obtain cyanobacterial merodiploids with a stable Streptomycin-resistant phenotype.

ACKNOWLEDGEMENTS

This work was supported by a grant-in-aid for scientific research from the Japan Society for the Promotion of Science (no. 11660330). We are grateful to Dr N. Gunge for his valuable comments on this work. The authors thank M. Yamashita, K. Yamagata and M. Koga for their help in construction of plasmids and strains.

REFERENCES

2086

