Identification of Staphylococcus aureus genes expressed during growth in milk: a useful model for selection of genes important in bovine mastitis?

Aart Lammers, Ellard Kruijt, Corine van de Kuijt, Piet J. M. Nuijten† and Hilde E. Smith

Microbiology (2000), 146, 981–987
Printed in Great Britain

Staphylococcus aureus is a major cause of bovine mastitis. Since gene expression of many bacteria is known to be regulated by the environment, milk may play an important role in the regulation of the early steps in the pathogenesis of bovine mastitis by S. aureus. To get insight into the response of S. aureus to the milk environment, a Tn917-lacZ mutant library was generated and screened for genes specifically expressed during growth in milk. Twenty-eight mutants were identified and analysed. Four groups of genes were found, involved in cell-wall synthesis, nucleotide synthesis, transcriptional regulation and carbohydrate metabolism. A fifth group contained genes with hypothetical or unknown functions. Many of the genes identified belonged to biosynthetic pathways of S. aureus and other bacterial species which have also been shown to play a role in vivo as determined in murine infection models. Therefore, growth on milk may be an attractive model for the identification of genes preferentially expressed during bovine mastitis.

Keywords: gene expression, mastitis, Tn917-lacZ, Staphylococcus aureus

INTRODUCTION

Staphylococcus aureus is the most important causative agent of bovine mastitis, causing considerable economic losses in the dairy industry. The majority of the infections are subclinical, but the number of clinical cases is increasing. S. aureus infections are mainly treated with antibiotics, but such treatment is often unsuccessful. Therefore, new anti-staphylococcal therapies based on novel approaches are required. More knowledge about S. aureus gene expression during infection of the mammary gland will be helpful for that purpose.

It has been shown that bacteria, including S. aureus, respond to the complex in vivo environment by altering their gene expression (Finlay & Falkow, 1997; Lowe et al., 1998). When S. aureus enters the mammary gland through the teat canal the bacteria are confronted with changing environmental conditions. Within a few hours of intramammary infusion of less than 100 S. aureus cells, large numbers of bacteria can be detected in the milk (Sutra & Poutrel, 1994). This suggests that S. aureus can easily adapt to, survive in and replicate in the bovine mammary gland. The ability of S. aureus to replicate rapidly in the mammary gland is considered to be important for establishing an infection. Because it is generally believed that replication of S. aureus takes place in close contact with milk, several investigators have studied growth of S. aureus in milk or milk whey in vitro. Densities of 10⁶ c.f.u. ml⁻¹ can be reached easily (Fang et al., 1993). S. aureus cells grown in milk or milk whey in vitro become resistant to phagocytosis (Sutra et al., 1990; Sandgren et al., 1991) and show increased virulence in a mouse model (Mamo et al., 1991), suggesting that a different set of genes becomes expressed during growth in milk. However, no infor-
mation is available on gene expression during growth in milk.

In order to identify genes that are specifically expressed during growth in milk, we generated a mutant library of *S. aureus* containing Tn917-lacZ insertions (Cheung et al., 1992). The transposon Tn917-lacZ contains a promoterless lacZ gene as a reporter gene, so that β-galactosidase (β-gal) expression is dependent on transcriptional fusions between *S. aureus* chromosomal promoters and the lacZ gene. The *S. aureus* transposon library was screened during growth on bovine milk and mutants were selected which expressed β-gal in milk but not in nutrient-rich growth media. In this way we have identified 28 *S. aureus* genes. Many of the genes identified belong to the same biosynthetic pathways as genes which were identified by *in vivo* approaches in various murine infection models (Mei et al., 1997; Coulter et al., 1998; Lowe et al., 1998).

METHODS

Bacterial strains, growth conditions and plasmid. *S. aureus* strain RN4220 was obtained from J. M. Patti (Centre for Extracellular Matrix Biology, Houston, TX, USA). *Escherichia coli* strains DH5α (Clontech) and XL2blue (Stratagene) were used for plasmid transformations and preparation of plasmid. *S. aureus* and *E. coli* strains were grown in Luria–Bertani (LB) medium (Sambrook et al., 1989) and on LB agar. When required, erythromycin (Erm, 10 µg ml⁻¹), tetracycline (Tet, 10 µg ml⁻¹) and ampicillin (50 µg ml⁻¹) were added to the media.

Two types of growth media were used for screening the *S. aureus* Tn917-lacZ transposon library. LB agar plates contained LB with 1.5% (w/v) agarose (Boehringer Mannheim), 0.5% (w/v) glucose, 250 µg X-Gal ml⁻¹ and 10 µg Erm ml⁻¹. Milk agar plates contained fresh bovine milk, 1.5% (w/v) agarose, 0.5% (w/v) glucose, 0.5% (w/v) casein enzymic hydrolysate (Casamino acids, Sigma), 250 µg X-Gal ml⁻¹ and 10 µg Erm ml⁻¹. Prior to the preparation of the plates, the milk was incubated for 1 h at 80 °C. Nine volumes of the milk were mixed with one volume of a 1.5% (w/v) agarose solution. To this solution glucose, Casamino acids, X-Gal and Erm were added. Glucose was added to the media to prevent endogenous β-gal expression by *S. aureus*. The Casamino acids were added to prevent selection of genes involved in biosynthesis of amino acids.

Plasmid pLTV1 (Camilli et al., 1990) was obtained from P. Youngman (University of Georgia).

Preparation of milk whey. Fresh bovine milk was centrifuged for 30 min at 13000 g. After removal of the fat layer, 40 µg ml⁻¹ rennin (Rademaker BV, The Netherlands) was added and the solution was incubated for 2 h at 37 °C and centrifuged twice for 30 min at 13000 g. The supernatant was subsequently sterilized through a 0.45 µm Millipore filter and stored at −20 °C.

Generation of the *S. aureus* Tn917-lacZ library. Plasmid pLTV1 was transformed to *S. aureus* strain RN4220 by electroporation (Schenk & Laddaga, 1992). Transformed cells were selected at 30 °C on LB agar plates containing Tet (10 µg ml⁻¹). Subsequently, the colonies were suspended in 10 ml LB with 2 µg Erm ml⁻¹ to a density of 10¹⁶ bacteria ml⁻¹ and incubated for 6 h at 43 °C in a shaking waterbath. Then, the suspension was transferred to 100 ml LB containing 5 µg Erm ml⁻¹ and incubated overnight at 43 °C in a shaking waterbath. One hundred millilitres of the overnight culture was diluted fivefold in LB containing 5 µg Erm ml⁻¹ and incubated for 6 h at 43 °C in a shaking waterbath. From this culture 10 ml was diluted 80-fold in LB containing 5 µg Erm ml⁻¹ and incubated overnight in a shaking waterbath of 43 °C. Aliquots of this culture were stored at −70 °C.

Screening of the *S. aureus* library. The *S. aureus* library was plated on milk agar plates and individual colonies were plated on LB or milk agarose plates. Colonies that were white on LB and blue (pale to dark blue) on plates containing milk were selected. All selected mutants were rescreened and characterized further.

Cloning and sequencing of *S. aureus* DNA sequences upstream of Tn917-lacZ insertions. Cloning of DNA located upstream of the transposon insertion was essentially done as described by Camilli et al. (1990). Chromosomal DNA of *S. aureus* RN4220 mutants was cut with EcoRI, ligated and used to transform *E. coli* DH5α or XL2blue cells. Plasmid DNA for sequencing was isolated using the Wizard plus SV miniprep DNA purification system (Promega). DNA sequences were determined by a 373A DNA Sequencing System (Applied Biosystems). Samples were prepared by use of an ABI/PRISM dye termination cycle sequencing ready reaction kit (Perkin-Elmer). Sequence data were assembled and analysed using the BLASTX program (Altschul et al., 1990). The primer used in the sequencing reactions was 5′-CACATAGAGAGTCTACCGG-3′ and corresponded to position 84–104 in the Tn917 sequence.

Southern blotting and hybridization. Chromosomal DNA of *S. aureus* was isolated essentially as described by Sambrook et al. (1989). To lyse the *S. aureus* cells, lysozyme was replaced by lysostaphin (10 µg ml⁻¹; Sigma). Southern blot analysis of transposon insertions in the *S. aureus* chromosome was performed using the pLTV1 plasmid as a probe. Labelling of the probe and hybridization of the blots was essentially done as previously described (Smith et al., 1995).

Phage transduction. The transposons of the selected mutants were transferred to the *S. aureus* strain 8325-4 background using the transducing phage φ85 as described by Novick (1991). The transductants were selected for Erm resistance. To discriminate the original RN4220 mutant from the transduced 8325-4 mutant, the haemolytic phenotype was determined on agar plates containing 5% washed bovine red blood cells. Three individual transductants of each mutant were tested for expression of the lacZ gene on LB and milk plates.

Growth analysis of transduced mutants. The growth rate of the selected mutants was determined by measuring the increase in the OD₅₇₀. Overnight cultures in LB or milk whey were diluted 1:50 in LB or milk whey in microtitre plates. The microtitre plates were incubated at 37 °C and the OD₅₇₀ was measured as a function of time in a microplate reader. The growth rate of mutants that were impaired in their ability to grow was redetermined using 100 µl cultures in Erlenmeyer flasks.

β-Gal expression in liquid milk whey. β-Gal assays were performed using the chemiluminescent β-Gal Reporter Gene Assay (Boehringer Mannheim). Briefly, 1 ml aliquots of *S. aureus* cells grown in milk whey or LB were sampled as a function of time, centrifuged for 10 min at 3000 g and washed once in ice cold PBS (0.01 M, pH 7.2). The pellets were frozen at −20 °C for later analysis. The frozen cell samples were thawed and lysed in 200 µl lysis buffer containing 20 µg...
lysostaphin ml⁻¹ for 30 min at 37 °C. Samples of 50 μl were tested in the chemiluminescent assay in triplicate. The reaction time was carried out for 60 min at room temperature in white 96-well microtitre plates (Greiner). Chemiluminescent signals were detected in a Victor 1420 multilabelcounter (Wallac Oy). β-Gal activity was expressed as counts per second (c.p.s.) per OD₆₀₀ unit.

RESULTS AND DISCUSSION

Construction of the transposon library

The objective of our study was the screening of a mutant Staphylococcus aureus library for expression of lacZ under the control of S. aureus promoters. To construct such a library, we selected an S. aureus strain which is able to persist and replicate in the udder and which is able to express lacZ in a way that results in blue colonies on X-Gal plates. S. aureus strain RN4220 induced an inflammatory response and the bacteria persisted and replicated in the mammary gland for at least several days (data not shown). Therefore, strain RN4220 was used for the construction of the Tn917-lacZ library. To determine the transposition frequency the library was plated on plates containing Erm or Tet. Over 99% of the cells were Erm resistant and Tet sensitive, indicating the insertion of the transposon into the chromosome and the loss of pLTV1. Southern blotting and hybridization experiments showed that 14 out 18 mutants analysed had insertions at unique positions (results not shown). Four mutants showed identical hybridization patterns, indicating the presence of at least one hot spot. As well as hot spots, hot-spot regions have also been found by Tn917 insertions in Gram-positive bacteria (Youngman, 1987; Camilli et al., 1990). The presence of these hot-spot regions in S. aureus cannot be excluded, but broad coverage of the genome by Tn917 insertions has been reported (Coulter et al., 1998). Based on our data, the Tn917 library seemed to contain enough variation to allow the identification of various differentially expressed S. aureus genes during growth in milk.

Identification of milk-induced genes

An appropriate dilution of the transposon library was plated on milk agarose plates containing X-Gal. About 150 blue colonies were selected and plated on LB and milk agarose plates. Transposon mutants showing increased levels of β-gal expression on plates containing milk were selected and rescreened on the two different growth media. Finally, 28 mutants were selected and characterized further. The colour of the selected colonies on milk plates containing X-Gal varied from pale blue to dark blue, indicating that the different mutants had various levels of β-gal expression. β-Gal activities on milk plates and milk whey plates were comparable (results not shown).

S. aureus strain RN4220 is chemically mutagenized. To exclude the possibility that secondary mutations elsewhere on the genome of this strain had an effect on β-gal expression, bacteriophage φ85 was used to transduce the Tn917-lacZ insertions into S. aureus strain 8325-4. The transductants were subsequently tested for their β-gal activity (Table 1). No major differences were observed between the β-gal activity of the 8325-4 transductants (designated SMI01T to SMI43T) and the original RN4220 mutants (designated SMI01 to SMI43; results not shown). This strongly indicates that the genes selected in strain RN4420 are induced by environmental conditions and are not the result of secondary mutations in the genome of this strain.

In the primary selection, glucose was added to prevent expression of endogenous S. aureus genes encoding β-gal (Oskouian & Stewart, 1990). Moreover, Casamino acids were added to prevent the selection of genes involved in amino acid biosynthesis. However, since both glucose and Casamino acids may affect the bacterial gene expression (Ohlsen et al., 1997; Chan & Foster, 1998), we subsequently determined the β-gal activity of the selected mutants on LB and milk plates without glucose and Casamino acids. No effects of glucose and Casamino acids on β-gal expression were observed (results not shown). This indicates that the expression of the genes selected in this study was not regulated by glucose or Casamino acids.

β-Gal activities in liquid milk whey and LB

We next tested whether the differences in β-gal expression observed on plates could also be measured after growth in liquid media. For this purpose, we measured β-gal activities in liquid milk whey and LB. The majority of the mutants (23/28) showed enhanced β-gal activities after growth in milk whey compared to growth in LB (Table 1). In five mutants the differences between β-gal expression were more pronounced after growth on plates than after growth in liquid media. This may be due to the type of growth medium (solid vs liquid) or the growth phases in which the β-gal activity was determined (colonies vs exponential-phase cultures).

Growth rate of the selected mutants in milk whey

To investigate whether the transposon insertions affected the ability to grow in milk whey, overnight cultures of the mutant strains in LB or milk whey were diluted in LB medium and milk whey and incubated in microtitre plates at 37 °C. The OD₆₀₀ was measured as a function of time. All 28 mutants showed the same growth rate in LB medium. However, three mutants showed a reduced growth rate in milk whey. This was confirmed by culturing in Erlenmeyer flasks (Fig. 1a). Sequence analysis (see below) showed that these mutants were impaired in their purine biosynthetic pathway. The addition of 1-0 mM adenine to milk whey partly restored the growth rate of the mutants SMI05T (identical to SM132T) and SMI06T (Fig. 1a) and reduced the expression of β-gal (15- and 25-fold, respectively; Fig. 1b). Similar results were obtained by Klasfeld et al. (1994) for Listeria monocytogenes, in which insertional inactivation of pur genes also inhibited growth in a defined
Table 1. Milk-expressed *S. aureus* genes

<table>
<thead>
<tr>
<th>Gene class</th>
<th>Mutant*</th>
<th>Similar to†</th>
<th>Percentage identity (positives)</th>
<th>β-Gal activity on:</th>
<th>Ratio of β-gal activity‡</th>
<th>Presumed function, SWISS-PROT TREMBL numbers and PROSITE motifs</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Peptidoglycan/lysine biosynthesis</td>
<td>SMI01T, SMI08T</td>
<td>lysA (Bsu)</td>
<td>41 (59)</td>
<td>– +</td>
<td>2</td>
<td>Lysine biosynthesis/peptidoglycan biosynthesis</td>
</tr>
<tr>
<td></td>
<td>SMI09T</td>
<td>asd (Bsu)</td>
<td>50 (69)</td>
<td>– +</td>
<td>7</td>
<td>Lysine biosynthesis/peptidoglycan biosynthesis</td>
</tr>
<tr>
<td></td>
<td>SMI12T</td>
<td>asd (Bsu)</td>
<td>53 (71)</td>
<td>– +</td>
<td>12</td>
<td>Lysine biosynthesis/peptidoglycan biosynthesis</td>
</tr>
<tr>
<td></td>
<td>SMI13T</td>
<td>lysC (Mtu)</td>
<td>43 (59)</td>
<td>– + +</td>
<td>54</td>
<td>Lysine biosynthesis/peptidoglycan biosynthesis</td>
</tr>
<tr>
<td></td>
<td>SMI29T</td>
<td>dapA (Mja)</td>
<td>35 (51)</td>
<td>– +</td>
<td>9</td>
<td>Lysine biosynthesis/peptidoglycan biosynthesis</td>
</tr>
<tr>
<td>II. DNA biosynthesis</td>
<td>SMI12T</td>
<td>fenB (Sau)</td>
<td>98 (98)</td>
<td>+ + +</td>
<td>1</td>
<td>Peptidoglycan cross-linking</td>
</tr>
<tr>
<td></td>
<td>SMI18T</td>
<td>murZ (Bsu)</td>
<td>43 (59)</td>
<td>+ / – +</td>
<td>2</td>
<td>Peptidoglycan biosynthesis</td>
</tr>
<tr>
<td></td>
<td>SMI05T, SMI32T</td>
<td>purH (Bce)</td>
<td>60 (80)</td>
<td>– + +</td>
<td>1250</td>
<td>Purine biosynthesis</td>
</tr>
<tr>
<td></td>
<td>SMI06T</td>
<td>yexA (Bsu)</td>
<td>33 (64)</td>
<td>– + +</td>
<td>1117</td>
<td>Purine biosynthesis, P12049</td>
</tr>
<tr>
<td></td>
<td>SMI20T</td>
<td>purD (Hpy)</td>
<td>38 (59)</td>
<td>– + +</td>
<td>196</td>
<td>Purine biosynthesis</td>
</tr>
<tr>
<td></td>
<td>SMI07T</td>
<td>pyrP (Bca)</td>
<td>56 (66)</td>
<td>– + +</td>
<td>18</td>
<td>Uracil permease</td>
</tr>
<tr>
<td>III. Transcriptional regulators</td>
<td>SMI02T</td>
<td>phoR (Bsu)</td>
<td>51 (72)</td>
<td>– + +</td>
<td>1</td>
<td>Histidine phosphokinase, regulation gene expression under phosphate-limiting conditions</td>
</tr>
<tr>
<td>IV. Carbohydrate metabolism</td>
<td>SMI15T</td>
<td>F45e1.3 (Cel)</td>
<td>32 (54)</td>
<td>– +</td>
<td>3</td>
<td>Carbon metabolism, U28732</td>
</tr>
<tr>
<td>V. Hypothetical genes</td>
<td>SMI44T, SMI46T</td>
<td>Staphopain gene (Sau)</td>
<td>47 (66)</td>
<td>– + +</td>
<td>1680</td>
<td>Hypothetical thiol-induced protease P81297, PS00639</td>
</tr>
<tr>
<td></td>
<td>SMI019T</td>
<td>ykd (Bsu)</td>
<td>46 (72)</td>
<td>+ +</td>
<td>16</td>
<td>Unknown, hypothetical 23.6 kDa protein, P94357</td>
</tr>
<tr>
<td></td>
<td>SMI04T</td>
<td>None</td>
<td>– +</td>
<td>5</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI016T</td>
<td>None</td>
<td>– +</td>
<td>1</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI017T</td>
<td>None</td>
<td>– +</td>
<td>2</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI035T</td>
<td>None</td>
<td>– +</td>
<td>16</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI040T</td>
<td>None</td>
<td>– +</td>
<td>10</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI024T</td>
<td>None</td>
<td>+ / – +</td>
<td>1</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI025T</td>
<td>None</td>
<td>+ +</td>
<td>1</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI027T</td>
<td>None</td>
<td>– +</td>
<td>14</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMI043T</td>
<td>None</td>
<td>– +</td>
<td>90</td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

* Sequence analysis was done with cloned DNA from the initial RN4220 mutants. β-Gal activity was determined with transductants of strain 8325-4.
† *Bsu*, *Bacillus subtilis*; *Mtu*, *Mycobacterium tuberculosis*; *Mja*, *Methanococcus janaschii*; *Sep*, *Staphylococcus epidermidis*; *Bce*, *Bacillus cereus*; *Hpy*, *Helicobacter pylori*; *Bca*, *Bacillus caldolyticus*; *Ech*, *Erwinia chrysanthemi*; *Cel*, *Caenorhabditis elegans*; *Sau*, *Staphylococcus aureus*.
‡ Induction is expressed as the ratio of β-gal activity of bacteria cultured to OD₆₀₀ 0.5 in milk whey to that of bacteria cultured to OD₆₀₀ 0.5 in LB medium. The cells of strains SMI05T, SMI06T and SMI32T were harvested at an OD₆₀₀ of approximately 0.15.

medium. However, in that study the addition of adenine had a more pronounced effect on the growth rate and the β-gal activity. Mutant SMI20T, mutagenized in the *purD* gene, showed no reduced growth rate in milk whey, but the addition of adenine reduced the β-gal activity eightfold (Fig. 1b). As a control the effect of adenine on the β-gal activity of mutant SMI07T was determined (Fig. 1b). This mutant, mutagenized in the *pyrP* gene encoding a pyrimidine transporter, showed no decreased β-gal expression after addition of adenine.
The first class, of eight mutants, comprised insertions in genes with homology to genes involved in lysine and/or peptidoglycan synthesis. Lysine is present in proteins as well as in the tetrapeptide cross-bridges of the cell wall peptidoglycan of *S. aureus* (Seligman & Pincus, 1987). *lysA* encodes diaminopimelate decarboxylase and is involved in the conversion of diaminopimelate to lysine (Wehrmann et al., 1998). *S. aureus asd* and *lysA* genes were also identified after using STM in murine infection models (Mei et al., 1997; Coulter et al., 1998). This means that mutations in genes of this pathway cause attenuation in vivo. Mutant SMI12T contained a transposon insertion in the *femB* gene of *S. aureus* (Berger-Bachi et al., 1992). The *femB* gene is involved in formation of the peptidoglycan pentaglycine cross-bridges (Ehler et al., 1997). *femB* was also identified by STM, and *femB* knockout mutants were strongly attenuated in murine infection models (Mei et al., 1997; Coulter et al., 1998). Mutant SMI18 contained a transposon insertion in a gene that shares homology to *murZ* of *Bacillus subtilis*, which is also involved in peptidoglycan synthesis (Marquardt et al., 1992). After using IVET an *S. aureus* gene homologous to *murC* of *B. subtilis* was identified; this gene was induced in a murine infection model (Lowe et al., 1998). The *murC* gene is also involved in peptidoglycan biosynthesis. Both IVET and STM studies showed that *S. aureus* genes involved in peptidoglycan synthesis play a role in vivo as determined in murine infection models. By selecting for *S. aureus* genes specifically expressed on milk, genes that may be involved in peptidoglycan biosynthesis were selected with a relatively high frequency (6/25). This suggests that enhanced expression of genes involved in peptidoglycan biosynthesis is required for growth or persistence of *S. aureus* in milk. Moreover, after growth of *S. aureus* in milk whey, the bacteria were very difficult to lyse by using lysostaphin (data not shown). Because lysostaphin acts on the peptidoglycan structure, this observation suggests that the peptidoglycan layer was thicker or the composition was changed. It has been reported that milk-whey-grown *S. aureus* strains were enhanced in virulence (Mamo et al., 1991). However, it has not been investigated whether this enhanced virulence was due to changes in the peptidoglycan layer.

I. The first class, of eight mutants, comprised insertions in genes with homology to genes involved in lysine and/or peptidoglycan synthesis. Lysine is present in proteins as well as in the tetrapeptide cross-bridges of the cell wall peptidoglycan of *S. aureus* (Seligman & Pincus, 1987). *lysA* encodes diaminopimelate decarboxylase and is involved in the conversion of diaminopimelate to lysine (Wehrmann et al., 1998). *S. aureus asd* and *lysA* genes were also identified after using STM in murine infection models (Mei et al., 1997; Coulter et al., 1998). This means that mutations in genes of this pathway cause attenuation in vivo. Mutant SMI12T contained a transposon insertion in the *femB* gene of *S. aureus* (Berger-Bachi et al., 1992). The *femB* gene is involved in formation of the peptidoglycan pentaglycine cross-bridges (Ehler et al., 1997). *femB* was also identified by STM, and *femB* knockout mutants were strongly attenuated in murine infection models (Mei et al., 1997; Coulter et al., 1998). Mutant SMI18 contained a transposon insertion in a gene that shares homology to *murZ* of *Bacillus subtilis*, which is also involved in peptidoglycan synthesis (Marquardt et al., 1992). After using IVET an *S. aureus* gene homologous to *murC* of *B. subtilis* was identified; this gene was induced in a murine infection model (Lowe et al., 1998). The *murC* gene is also involved in peptidoglycan biosynthesis. Both IVET and STM studies showed that *S. aureus* genes involved in peptidoglycan synthesis play a role in vivo as determined in murine infection models. By selecting for *S. aureus* genes specifically expressed on milk, genes that may be involved in peptidoglycan biosynthesis were selected with a relatively high frequency (6/25). This suggests that enhanced expression of genes involved in peptidoglycan biosynthesis is required for growth or persistence of *S. aureus* in milk. Moreover, after growth of *S. aureus* in milk whey, the bacteria were very difficult to lyse by using lysostaphin (data not shown). Because lysostaphin acts on the peptidoglycan structure, this observation suggests that the peptidoglycan layer was thicker or the composition was changed. It has been reported that milk-whey-grown *S. aureus* strains were enhanced in virulence (Mamo et al., 1991). However, it has not been investigated whether this enhanced virulence was due to changes in the peptidoglycan layer.

II. The genes of the second group of mutants, SMI05, SMI06, SMI07, SMI20 and SMI32, showed identity to genes involved in nucleic acid biosynthesis. SMI05 and SMI06, SMI07, SMI20 and SMI32, showed identity to genes in the same biochemical pathway cause attenuation in vivo. Mutant SMI12T contained a transposon insertion in the *femB* gene of *S. aureus* (Berger-Bachi et al., 1992). The *femB* gene is involved in formation of the peptidoglycan pentaglycine cross-bridges (Ehler et al., 1997). *femB* was also identified by STM, and *femB* knockout mutants were strongly attenuated in murine infection models (Mei et al., 1997; Coulter et al., 1998). Mutant SMI18 contained a transposon insertion in a gene that shares homology to *murZ* of *Bacillus subtilis*, which is also involved in peptidoglycan synthesis (Marquardt et al., 1992). After using IVET an *S. aureus* gene homologous to *murC* of *B. subtilis* was identified; this gene was induced in a murine infection model (Lowe et al., 1998). The *murC* gene is also involved in peptidoglycan biosynthesis. Both IVET and STM studies showed that *S. aureus* genes involved in peptidoglycan synthesis play a role in vivo as determined in murine infection models. By selecting for *S. aureus* genes specifically expressed on milk, genes that may be involved in peptidoglycan biosynthesis were selected with a relatively high frequency (6/25). This suggests that enhanced expression of genes involved in peptidoglycan biosynthesis is required for growth or persistence of *S. aureus* in milk. Moreover, after growth of *S. aureus* in milk whey, the bacteria were very difficult to lyse by using lysostaphin (data not shown). Because lysostaphin acts on the peptidoglycan structure, this observation suggests that the peptidoglycan layer was thicker or the composition was changed. It has been reported that milk-whey-grown *S. aureus* strains were enhanced in virulence (Mamo et al., 1991). However, it has not been investigated whether this enhanced virulence was due to changes in the peptidoglycan layer.

Cloning and sequence analysis of flanking chromosomal DNA regions

Southern blotting experiments of EcoRI-digested chromosomal DNAs of the selected mutants, probed with the pLT1 vector, showed that all mutant strains contained a single transposon insertion (data not shown). Chromosomal DNA regions flanking the lacZ-proximal end of the transposon were cloned in E. coli. Chromosomal DNA regions flanking the lacZ-proximal end of the transposon were cloned in *E. coli*. The plasmids were isolated and the upstream flanking chromosomal DNAs of the selected mutants, probed with *lacZ* in Southern blotting experiments of EcoRI-digested chromosomal DNA of the selected mutants, probed with *lacZ*. Chromosomal DNA regions flanking the lacZ-proximal end of the transposon were cloned in *E. coli*.

Fig. 1. Effect of adenine on the growth rate (a) and β-gal activity (b) of *S. aureus* strains. (a) Growth rates of strains SMI05T (triangles), SMI06T (diamonds) and 8325-4 (circles) in milk whey without adenine (solid lines and closed symbols) or in milk whey with 1 mM adenine (dashed lines and open symbols). (b) β-gal activity of bacteria cultured for 210 (solid bars) and 330 (open bars) min at 37 °C in milk whey without adenine expressed as a ratio relative to the β-gal activity with adenine.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>SMI05T</th>
<th>SMI06T</th>
<th>SMI07T</th>
<th>SMI20T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>100</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>200</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>300</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>400</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- **Ratio of β-gal activity**
- **Sample:** SMI05, SMI06, SMI07, SMI20
- **Comparison:** SMI05T, SMI06T, SMI07T, SMI20T
- **Condition:** Growth in milk whey with/without adenine
- **Result:** The ratio of β-gal activity decreases with increasing time for all strains.
The third class of mutants had insertions in genes homologous to genes with a transcriptional regulatory function. The gene impaired in strain SM102 had strong similarity at the protein level to phoR of various bacterial species. phoR encodes the sensor protein which is part of a two-component signal transduction system (Seki et al., 1988). Two-component regulatory systems play important roles in the adaptive responses of many bacteria to environmental changes (Finlay & Falkow, 1997). The phoR/phoP operon is upregulated under phosphate-limiting conditions. Under these conditions the production of alkaline phosphatases and phosphate-transport proteins is increased by the transcriptional activator phoP. In E. coli at least 30 genes are regulated by this system (Wanner, 1993). An E. coli mutant containing a transposon insertion in the pst/phoU region is hyperinvasive for epithelial cells (Sinaï & Bavoil, 1993), suggesting that genes of the pho regulon may be involved in pathogenesis. In Bacillus subtilis, phoR/phoP is part of a complex network of signal-transduction systems (Birkey et al., 1998). In addition, the phoH gene of S. pneumoniae, also part of the pho regulon, was identified by STM (Polissi et al., 1998). Therefore, the insertional mutation in strain SM102 may have an important influence on the ability of S. aureus to adapt to the udder environment. Mutant SM133 had an insertion in a gene homologous to comK of B. subtilis, which encodes a transcriptional regulator involved in genetic competence. The signals involved in competence development all converge at the level of comK expression (van Sinderen et al., 1995). Therefore, comK has a central role in the transition from exponential phase to the genetic competence phase of B. subtilis. Further characterization is needed to elucidate if this S. aureus gene also has a central regulatory function.

The gene identified in mutant SM115 showed a strong homology to a hypothetical gene of the nematode Caenorhabditis elegans and to phosphoglycolate phosphatases of various bacterial species. The product of the C. elegans gene also has homology to phosphoglycolate phosphatases of various organisms. Phosphoglycolate phosphatase is a key enzyme of glycolate metabolism in autotrophic organisms (Schaferjohann et al., 1993).

Two mutants, SM144 and SM146, had insertions in a gene which showed homology to an S. aureus gene encoding a protein called staphopain. Staphopain contains a domain with homology to thiol-activated proteases. This domain was also present in the identified sequences of strains SM144 and SM146, suggesting that this gene also encodes a thiol-activated protease. Thiol-activated proteases, or cysteine proteases, are present in both eukaryotic and prokaryotic organisms and some are known to play an important role in virulence. For instance, the speB gene of Streptococcus pyogenes encodes a cysteine protease and is a major virulence factor (Podbielski et al., 1999). Recently, a cysteine proteinase was purified from an S. aureus strain derived from a diseased chicken (Takeuchi et al., 1999). The N-terminal amino acid sequence of this protease was also strongly homologous to the staphopain sequence.

Nine milk-expressed genes had no sequence homology with any sequence in the databases. These mutants had different levels of β-gal expression on milk agarose plates.

Concluding remarks

Growth on milk, which partly mimics the early steps in the pathogenesis of S. aureus mastitis, was used for the identification of specifically expressed S. aureus genes. Several genes that may contribute to persistence and replication in the bovine mammary gland were identified. The significance of this in vitro strategy is further demonstrated by the observation that some of the selected genes were also found after using IVET or STM. Therefore, this in vitro approach is likely to be a fast and simple method for the selection of genes important in the pathogenesis of S. aureus mastitis. In addition, this model may be useful for identification of novel growth-inhibitory compounds for use as therapeutic agents for bovine mastitis.

ACKNOWLEDGEMENTS

We thank Dr A. J. M. Vriesema for critical reading of the manuscript, and Dr T. Foster for kindly providing bacteriophage 85 and S. aureus strain 8325-4.

REFERENCES

Milk-expressed Staphylococcus aureus genes

Received 10 January 2000; accepted 12 January 2000.