Erwinia carotovora has two KdgR-like proteins belonging to the IclR family of transcriptional regulators: identification and characterization of the RexZ activator and the KdgR repressor of pathogenesis

Nicholas R. Thomson,¹ William Nasser,² Simon McGowan,¹ Mohammed Sebaihia¹ and George P. C. Salmond¹

Author for correspondence: George P. C. Salmond. Tel: +44 1223 333650. Fax: +44 1223 333345. e-mail: GPCS@mole.bio.cam.ac.uk

A novel *Erwinia carotovora* subsp. *carotovora* mutant designated RexZ, (regulator of exoenzymes) showed reduced production of the degradative exoenzymes. The *rexZ* gene product shows similarity to the KdgR regulatory protein from *Erwinia chrysanthemi*, described as the major repressor of the pectin catabolism pathway genes in the latter species. *In vitro* DNA–protein interaction experiments demonstrated that the synthesis of the RexZ protein is controlled by the cAMP–CRP (cAMP-receptor protein) complex. Western blot analysis also revealed the presence of a second KdgR homologue (distinct from RexZ) which, like RexZ, was present in all species of the genus *Erwinia* tested. The corresponding KdgR proteins from both *E. carotovora* subsp. *carotovora* and *E. carotovora* subsp. *atroseptica* share a high level of sequence identity with the KdgR homologues from *E. chrysanthemi* and *Escherichia coli*. Although the *E. carotovora* subsp. *carotovora rexZ* regulatory region displayed specific interactions with both the purified *E. chrysanthemi* KdgR repressor and the partially purified *E. carotovora* subsp. *carotovora* KdgR, *in vivo* quantification revealed that the cellular level of RexZ protein was unaffected by the presence of pectic compounds. This study shows that the complex regulatory network governing virulence in the erwinias involves two totally distinct, but highly conserved, members of the IclR class of DNA binding proteins: RexZ and KdgR.

Keywords: phytopathogenicity, soft-rot, exoenzyme, transcriptional regulation

INTRODUCTION

The phytopathogenicity of several *Erwinia* species is correlated with the ability to produce and secrete plant cell wall degrading enzymes such as pectinases, cellulases (Cel) and proteases (Prt) (Collmer & Keen, 1986; Barras et al., 1994). The crucial role of these enzymes, particularly the pectate lyases (Pel), in the virulence of soft-rot *Erwinia* has been confirmed by the isolation of mutants exhibiting reduced virulence that are defective for production or secretion of these enzymes (Boccara et al., 1988; Hinton et al., 1989; Pirhonen et al., 1991). Exoenzyme production by soft-rot *Erwinia* species responds to several environmental conditions (Hugouvieux-Cotte-Pattat et al., 1996): presence of pectin-degradative products or plant extract, anaerobiosis, temperature, nitrogen starvation, osmolarity, catabolite repression, iron availability and growth phase.

In *Erwinia chrysanthemi* 3937, attention has been focused on the pectin degradation pathway, and the different steps of this metabolic pathway have been...
characterized. The degradation of the pectic compounds is initiated by extracellular pectinases, including two pectin methylesterases (encoded by \textit{pemA} and \textit{pemB}) (Laurent et al., 1993; Shevchik et al., 1996), five major isoenzymes of pectate lyases (encoded by \textit{pelA}, \textit{pelB}, \textit{pelC}, \textit{pelD} and \textit{pelE}) and a set of secondary pectate lyases (Hugouvieux-Cotte-Pattat et al., 1996) which generate unsaturated digalacturonate. These latter compounds are transported into the bacterium, where they are catalyzed by the products of the genes \textit{ogl}, \textit{kduI}, \textit{kduD}, \textit{kdgK} and \textit{kdgA} (Condemine et al., 1986; Hugouvieux-Cotte-Pattat & Robert-Baudouy, 1987; Reverchon & Robert-Baudouy, 1987). It has been demonstrated that the full expression of the pectin catabolism genes in \textit{E. chrysanthemi} 3937 requires the presence of the cAMP-CRP (cAMP–receptor protein) complex (Reverchon et al., 1997; Nasser et al., 1997) and that the KdgR repressor essentially mediates the induction of this catabolic pathway in response to pectic compounds (Reverchon et al., 1991). In vitro experiments showed that the specific binding of the KdgR repressor to the operators of genes it regulates is inhibited in the presence of the pectin catabolic product 2-keto-3-deoxygluconate (KDG). Thus, it was proposed that KDG is the real intracellular inducer of the pectinolytic genes (Nasser et al., 1991, 1994). In addition to \textit{kdgR}, two other loci that negatively regulate the expression of the pectinase genes, \textit{pecS}–\textit{pecM} and \textit{pecT}, have also been characterized in \textit{E. chrysanthemi}. However, the signal to which they respond remains unknown (Reverchon et al., 1994; Praillet et al., 1996; Surgey et al., 1996; Castillo & Reverchon, 1997).

In the related soft-rot species, \textit{Erwinia carotovora} subsp. \textit{carotovora}, analysis of regulatory mutants has allowed the identification of several loci involved in the regulation of exoenzyme genes: \textit{expl/carI/hslI}, \textit{hor}, \textit{aepA}, \textit{aepH} (\textit{rsmb}), \textit{rmsA} and \textit{hexA}. The gene \textit{expl/carI/hslI}, a homologue of the \textit{Vibrio fischeri luxI} gene, directs the production of an autoinducer molecule identical to the one synthesized by LuxI and called N-(3-oxohexanoyl)-L-homoserine lactone (OHL). Jones et al., 1993; Pirhonen et al., 1993; Salmund et al., 1995; Chatterjee et al., 1995). OHL regulates the synthesis of Pel, polygalacturonase (Peh), Cel and Prt and the production of the antibiotic carbanepen in \textit{E. carotovora} subsp. \textit{carotovora} (Jones et al., 1993; Pirhonen et al., 1993). Similarly, the \textit{Hor} protein has also been found to regulate exoenzyme and antibiotic production in \textit{E. carotovora} (Thomson et al., 1997). Mutations in the genes \textit{aepA} and \textit{aepH} (\textit{rsmb}) have been shown to affect extracellular enzyme synthesis (Murata et al., 1991; Liu et al., 1993). AepA activates the transcription of \textit{pelI}, which encodes the major Pel in \textit{E. carotovora} subsp. \textit{carotovora} strain 71 (Liu et al., 1993; Murata et al., 1994), and the RNA transcript of \textit{aepH} (\textit{rsmb}) activates the synthesis of Pel, Peh, Cel and Prt by way of its interaction with RsmA (Liu et al., 1998). The negative regulatory gene, \textit{rmsA}, when carried on a multicopy plasmid has been shown to suppress the production of the depolymerizing enzymes, the synthesis of OHL and the extent of plant pathogenicity in several soft-rotting \textit{Erwinia} spp. (Cui et al., 1995). Although the number of regulatory inputs governing exoenzyme production is extensive, few regulators common to both \textit{E. chrysanthemi} and \textit{E. carotovora} have been described to date. Even where a common regulator has been reported, such as HexA (\textit{E. carotovora}/PecT (\textit{E. chrysanthemi}), its regulatory effects are not the same in both species (Harris et al., 1998).

In this paper, we describe the identification, cloning and characterization of an \textit{E. carotovora} regulatory gene, \textit{rexZ}, the product of which displays homology with the \textit{E. chrysanthemi} KdgR repressor protein. However, unlike KdgR, RexZ acts as an activator of exoenzyme production and therefore virulence. We describe the construction of an \textit{E. carotovora} \textit{rexZ} mutant by reverse genetics and the analysis of the \textit{E. carotovora} \textit{rexZ} mutant phenotype with respect to synthesis of depolymerizing enzymes. In addition, the modulation of RexZ protein synthesis, in \textit{E. carotovora}, was also investigated. This study also shows that \textit{E. carotovora} contains a homologue of the \textit{E. chrysanthemi} KdgR in addition to the novel RexZ protein; both are members of the IdR class of DNA-binding proteins. Furthermore, sequence analysis of KdgR homologues, isolated from \textit{E. carotovora} subsp. \textit{carotovora} and \textit{E. carotovora} subsp. \textit{atroseptica}, showed that the N-terminus of these proteins is different from that previously reported for the \textit{E. chrysanthemi} KdgR protein, but agreed well with the \textit{Escherichia coli} KdgR protein sequence. Finally, the functional interchangeability of the \textit{E. carotovora} subsp. \textit{carotovora} and \textit{E. chrysanthemi} KdgR virulence repressors was investigated.

METHODS

Bacterial strains, plasmids and culture conditions. Bacterial strains and plasmids are described in Table 1. \textit{Erwinia} spp. and \textit{Escherichia coli} were grown at 30 °C and 37 °C respectively, in LB medium or M63 minimal medium (Miller, 1972) supplemented with a carbon source (0.2%, except PGA and pectin, 0.4%) and, when required, with amino acids (40 μg ml⁻¹). Antibiotics were used at the following final concentrations: streptomycin (Sm) and ampicillin (Ap), 100 μg ml⁻¹; kanamycin (Km) and chloramphenicol (Cm), 50 μg ml⁻¹; tetracycline (Tc), 20 μg ml⁻¹.

Exoenzyme liquid and plate assays. Pectinase and cellulase activities were detected using plate assays as described by Andro et al. (1984). Protease activity was determined using the plate assay of Hankin & Anagnostakis (1975). Samples of overnight culture to be tested were spotted onto the appropriate enzyme assay plate and incubated at 30 °C for 24 h. Liquid enzyme assays of cellulase and protease activity were performed as described previously (Hinton & Salmond, 1987). Total specific activity, expressed as ΔA₄₅₀ mg⁻¹ min⁻¹ ml⁻¹ and ΔA₄₉₆ mg⁻¹ min⁻¹ ml⁻¹, for cellulase and protease respectively, was determined. Liquid assays of pectate lyase activity were performed on tolenuized cell extracts as described previously (Moran et al., 1968).

Recombinant DNA techniques. All molecular biological techniques have been described previously (Ausubel et al., 1987), unless otherwise stated. Nucleotide sequence analysis of \textit{rexZ}...
was performed by the chain-termination method (Sanger et al., 1977) on random sonicated templates cloned into the M13 vector mp18 or mp19. PCR (using Taq DNA polymerase, NEB; annealing temperature 43 °C) was used to amplify the \textit{E. carotovora} subsp. \textit{carotovora} SCR1193 rexZ gene, using primers EK1 (CGGGATCCCGTATTTATGGATCTTATAGT) and EK2 (GGTCTAGAAGCAGATGGAGTATTGG), from chromosomal DNA. PCR (using Taq DNA polymerase, NEB; annealing temperature 42 °C) was also used to amplify an \textit{E. carotovora} chromosomal DNA. PCR (using NEB; annealing temperature 43 °C) was used to amplify the eck1 (ATGGTAGATATTTAGC) and eck2 (GGTCTAGAAGCAGATGGAGTATTGG), from chromosomal DNA. PCR (using Taq DNA polymerase, NEB; annealing temperature 42 °C) was also used to amplify an \textit{E. carotovora} chromosomal DNA. PCR (using NEB; annealing temperature 43 °C) was used to amplify the eck1 (ATGGTAGATATTTAGC) and eck2 (GGTCTAGAAGCAGATGGAGTATTGG), from chromosomal DNA. PCR (using Taq DNA polymerase, NEB; annealing temperature 42 °C) was also used to amplify an \textit{E. carotovora} chromosomal DNA.

The \textit{E. carotovora} subsp. \textit{carotovora} SCR1193 mini-library was constructed in pACYC184 (Chang & Cohen, 1978). Chromosomal DNA was prepared and digested with EcoRV, before being size-fractionated by agarose gel electrophoresis. Size-fractionated DNA of between 4 kb and 7.5 kb was recovered from the agarose gel using a GeneClean Kit (BIO 101) and ligated into pACYC184, also digested with EcoRV. The ligated products were used to transform \textit{Escherichia coli} DH1 by electroporation. Transformants were selected on nutrient media supplemented with Cm. The kdgR gene homologue of \textit{E. carotovora} subsp. \textit{carotovora} SCR1193 was sequenced using universal forward and reverse M13 primers (Pharmacia). Additional primers were designed to complete the sequencing: KD1 (GCTCAGGATTGATAGG), KD2 (CAGGTATCTAGTCTTTGTC) and KD3 (GGGATCCCTGTTGACTATTTACC). The kdgR gene homologues from \textit{E. carotovora} subsp. \textit{carotovora} strains F14 and F148, and \textit{E. carotovora} subsp. \textit{atroseptica} strain SCR127, were sequenced using the plbluescript primes T3 and T7 (Stratagene). The nucleotide sequence of the kdgR homologues reported in this study was generated on an Applied Biosystems automated sequencing machine using \textit{Tag FS} (Perkin-Elmer). Nucleotide sequence data were analysed using the \textsc{molly} program (SoftGen, Berlin) or \textsc{blast}, searching the GenBank/EMBL and SWISS-PROT databases.

Marker-exchange mutagenesis of the rexZ gene. A 2 kb BamHI fragment of pM011, carrying \textit{rexZ}, was cloned in pKNG101 (Kaniga et al., 1991) also digested with BamHI, to yield pSMG38. The rexZ gene was insertional inactivated by the cloning of a 1266 bp NlaIV fragment of pACYC177 (Chang & Cohen, 1978), encoding resistance to kanamycin, into pSMG38 at the unique Scal site. The resulting plasmid, pSMG39, was used to marker-exchange \textit{E. carotovora} subsp. \textit{carotovora} ATTN10 as previously described (Kaniga et al., 1991).

Purification of the \textit{E. carotovora} subsp. \textit{carotovora} KdgR protein for N-terminal sequencing. Using the \textit{pUC19} -48 reverse oligonucleotide primer (NEB) and primer KD6 (CAGCAATCGATGTTTGATGGATGAGGAGGATGTTG) the \textit{E. carotovora} subsp. \textit{carotovora} kdgR gene was amplified by PCR from plasmid pREP4. Primer KD6 was designed such that six codons encoding histidine residues were incorporated into the 3' end of the kdgR ORF. The resultant amplified PCR product was digested with \textit{HindIII} and ligated into pUC19, digested with the same enzyme, and used to transform \textit{Escherichia coli} DH1. Transformants were selected on nutrient media supplemented with Ap. The KdgR-His tagged protein was purified from cultures grown to early stationary phase using Ni-NTA resin (Qiagen) as described in the manufacturer's instructions. Purified protein, after SDS-PAGE, was blotted on to PVDF membrane (Boehringer Mannheim) and visualized using Ponceau-S stain (Sigma). N-terminal sequencing was performed on an Applied Biosystems automated peptide sequencer.

Preparation of \textit{E. carotovora} subsp. \textit{carotovora} cell extract for gel retardation assays. Cells from a 1 litre culture of \textit{E. carotovora} subsp. \textit{carotovora} SCR1193 were pelleted, washed and resuspended in 50 ml extraction buffer (10 mM HEPES/NaOH pH 7.9, 4 mM Tris/HCl pH 7.9, 1 mM EDTA, 5% glycerol, 1 mM PMSF, 1 mM DTT). Crude protein extract was obtained by disrupting bacteria at 138 MPa in a French press (AMINCO). Crude extract was then centrifuged to remove cell debris and the supernatant was submitted to fractionated precipitation with ammonium sulphate using: 0–20, 20–40, 40–70 and 70–100% saturation. The precipitated protein fractions were resuspended in a small volume of extraction buffer and dialysed against the same buffer to remove any residual ammonium sulphate. The 20–40% ammonium sulphate saturation protein fraction was identified, by Western blot analysis, as containing KdgR. This fraction constituted the partially purified KdgR fraction used for band-shift assays.

Preparation of operator fragments for binding studies. The regulatory regions of \textit{rexZ} and the \textit{E. chrysanthemi} pelle genes were cloned into pBluescript (Table 1) and end-labelled as previously described (Nasser et al., 1997). These labelled fragments were further purified with the Qiagen quick extraction kit.

Gel retardation assays and footprinting with DNase I. These assays were performed as previously described (Nasser et al., 1997). Gel retardation assays were conducted using various amounts of either crude protein extract (2–20 µg) or purified CRP or KdgR protein.

Production of RexZ in \textit{Escherichia coli} and generation of RexZ-specific antibodies. The rexZ ORF was amplified by PCR using primers which introduced a unique \textit{NdeI} restriction site at the ATG initiation codon and an EcoRI site after the stop codon. By cloning the 798 bp amplified \textit{NdeI–EcoRI} fragment into the pT7-7 vector, to yield pWS2, the rexZ ATG start codon was fused to the T7 promoter. Expression of rexZ was performed using the methods described by Tabor & Richardson (1985). Crude protein extract was obtained by disrupting bacteria at 138 MPa in a French pressure cell (AMINCO). Cell debris and insoluble material was recovered by centrifugation at 20000 g for 20 min. The expressed RexZ protein contained within the resultant pellet was further purified by preparative SDS-PAGE. Gel fragments containing RexZ were excised, crushed, suspended in phosphate-buffered saline (10 mM NaHPO₄, 1.76 mM KCl, 138 mM NaCl, 27 mM KCl) and injected subcutaneously into a New Zealand White rabbit. KdgR-specific antibodies were also generated, in a similar manner, using purified KdgR protein (Nasser et al., 1992). The anti-RexZ and anti-KdgR antibodies were purified from rabbit antisera, as previously described (Praillet et al., 1992; Sakakibara et al., 1991). The recovered antisera reacted specifically with either RexZ or KdgR protein.

Immunoblotting. After separation on a 12% SDS-PAGE gel, proteins were electrotransferred onto a Hybond-C membrane using a 1017 Macrophor system (Pharmacia LKB). The membranes were washed and challenged with anti-RexZ or anti-KdgR antibodies diluted to 1/200 and 1/500, respectively.
Table 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype or description*</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>Δ(lac–proAB) thi his5 supE [F' proAB<sup>+</sup> lacPlacZΔM15]</td>
<td>Stratagene</td>
</tr>
<tr>
<td>NM522</td>
<td>K38</td>
<td>Russel & Model (1984)</td>
</tr>
<tr>
<td></td>
<td>DH1</td>
<td>Hanahan (1983)</td>
</tr>
<tr>
<td></td>
<td>CC118</td>
<td>Herrero et al. (1990)</td>
</tr>
<tr>
<td></td>
<td>CC118(Apir)</td>
<td>Herrero et al. (1990)</td>
</tr>
<tr>
<td></td>
<td>E. chrysanthemi</td>
<td>3937</td>
</tr>
<tr>
<td></td>
<td>A903</td>
<td>Condemine & Robert-Baudouy (1987)</td>
</tr>
<tr>
<td></td>
<td>EC16</td>
<td>A. Chatterjee, Univ. of Missouri</td>
</tr>
<tr>
<td></td>
<td>E. carotovora subsp. carotovora</td>
<td>SCRI193</td>
</tr>
<tr>
<td></td>
<td>ATTn10</td>
<td>McGowan et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>SM2</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>PNP22</td>
<td>McGowan et al. (1995)</td>
</tr>
<tr>
<td></td>
<td>F14</td>
<td>General lab stock</td>
</tr>
<tr>
<td></td>
<td>F148</td>
<td>General lab stock</td>
</tr>
<tr>
<td></td>
<td>E. carotovora subsp. atroseptica</td>
<td>SCRI31</td>
</tr>
<tr>
<td></td>
<td>SCRI27</td>
<td>M. Perombelon, Scottish Crop Research Institute</td>
</tr>
<tr>
<td></td>
<td>E. amylovora</td>
<td>SCRI449</td>
</tr>
<tr>
<td></td>
<td>E. herbicola</td>
<td>SCRI424</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pUC19</td>
<td>Cloning vector, Ap'<sup>+</sup> lacZ<sup>+</sup></td>
<td>Yanisch-Perron et al. (1985)</td>
</tr>
<tr>
<td>cWU142</td>
<td>pSF6 harbouring the carbapenem biosynthetic cluster, kdu<sub>L</sub>, kdg<sub>T</sub> and rexZ</td>
<td>McGowan et al. (1995)</td>
</tr>
<tr>
<td>pMO11</td>
<td>pUC19 derivative harbouring rexZ of E. carotovora</td>
<td>McGowan et al. (1997)</td>
</tr>
<tr>
<td>pBluescript</td>
<td>Ap'<sup>+</sup> lacZ<sup>+</sup></td>
<td>Stratagene</td>
</tr>
<tr>
<td>pSR1175</td>
<td>pBluescript harbouring the pelE regulatory region of E. chrysanthemi 3937</td>
<td>Nasser et al. (1994)</td>
</tr>
<tr>
<td>pWS1</td>
<td>pBluescript harbouring the rexZ regulatory region of E. carotovora subsp. carotovora ATTn10</td>
<td>This work</td>
</tr>
<tr>
<td>pACYC177</td>
<td>Cloning vector, Ap'<sup>+</sup> Kn<sup>+</sup></td>
<td>Chang & Cohen (1978)</td>
</tr>
<tr>
<td>pKNG101</td>
<td>sacB marker-exchange vector, Str<sup>+</sup></td>
<td>Kaniga et al. (1991)</td>
</tr>
<tr>
<td>pSMG38</td>
<td>pKNG101 derivative harbouring rexZ of E. carotovora</td>
<td>This work</td>
</tr>
<tr>
<td>pSMG39</td>
<td>pKNG101 derivative harbouring rexZ::kan insertion</td>
<td>This work</td>
</tr>
<tr>
<td>pT7-7</td>
<td>Ap</td>
<td>Tabor & Richardson (1985)</td>
</tr>
<tr>
<td>pWS2</td>
<td>pT7-7 harbouring the coding region of rexZ</td>
<td>This work</td>
</tr>
<tr>
<td>pULB113</td>
<td>RP4::Mu3A</td>
<td>Van Gijssegem & Toussaint (1982)</td>
</tr>
<tr>
<td>pROU2</td>
<td>pULB113 derivative harbouring kduD, kdgR and ogl genes of E. chrysanthemi 3937</td>
<td>Reverchon & Robert-Baudouy (1987)</td>
</tr>
</tbody>
</table>
Table 1 (cont.)

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype or description</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pREP1</td>
<td>pACYC184 harbouring the E. carotovora subsp. carotovora SCR193 kdgR</td>
<td>This work</td>
</tr>
<tr>
<td>pREP4</td>
<td>pUC19 harbouring a 2.1 kb EcoRV-SphI subclone of pREP1</td>
<td>This work</td>
</tr>
<tr>
<td>pREP27</td>
<td>pBluescript harbouring the E. carotovora subsp. atroseptica SCR127 kdgR</td>
<td>This work</td>
</tr>
<tr>
<td>pREP14</td>
<td>pBluescript harbouring the E. carotovora subsp. carotovora F14 kdgR</td>
<td>This work</td>
</tr>
<tr>
<td>pREP148</td>
<td>pBluescript harbouring the E. carotovora subsp. carotovora F148 kdgR</td>
<td>This work</td>
</tr>
</tbody>
</table>

*Genotype symbols are according to Bachmann (Basham & Bateman, 1975). ImrT indicates that the transport system encoded by ImrT, which mediates entry of lactose, melibiose and raffinose into the cells, is constitutively expressed. lacZ′ indicates that 3′ end of this gene is truncated.

in T-TBS containing 1% gelatin as previously described (Prallet et al., 1996). Membranes were developed using the ECL kit (Amersham), according to the manufacturer’s instructions.

RESULTS

Sequence analysis

During analysis of the E. carotovora subsp. carotovora strain ATTN10 genes responsible for production of the ß-lactam antibiotic carbapenem, a partial ORF was identified downstream from these car genes and transcribed on the opposite strand (McGowan et al., 1996). This ORF potentially encoded the C-terminus of a protein with homology to the KduI protein of E. chrysanthemi. It was decided to extend the sequence in the region, in order to identify the 5′ end of this gene, on the cosmid cWU142.

Following restriction mapping of cWU142, to identify EcoRI fragments contiguous with the 3′ end of the carbapenem biosynthetic cluster, two fragments were cloned in pUC19 (Yanisch-Perron et al., 1983). These fragments were either cloned directly in M13mp18 or were sonicated and the resulting fragments ligated into M13mp19. Analysis of the resulting subclones by the dideoxynucleotide chain-termination method (Sanger et al., 1977) generated 3080 bp of DNA sequence. Part of this sequence has already been reported (McGowan et al., 1996) and therefore the novel sequence reported here will be lodged with GenBank under the already existing accession number, U17224.

Upon translation of the DNA sequence generated, several ORFs were identified. The previously recognized partial ORF was completed. It was predicted to encode a protein of 276 amino acids, with a molecular mass of 31071 Da, which presents high homology with the 5-keto-4-deoxyuronate isomerase (KduI) of E. chrysanthemi (65% aa identity) and with two proteins of Escherichia coli and Bacillus subtilis (66% and 47% aa identity, respectively). Accordingly we have designated this gene kduI. Two other ORFs were identified. Based on homologies with previously described genes, one of these ORFs was designated kdgT. kdgT is predicted to encode a protein of 318 amino acids with a molecular mass of 32581 Da which shares 54% and 74% aa identity with the 2-keto-3-deoxygluconate transporter of B. subtilis and Escherichia coli, respectively. The predicted E. carotovora subsp. carotovora KdgT protein also displayed high homology with 318 out of 398 residues of the E. chrysanthemi KdgT protein. The N-terminus of the E. chrysanthemi KdgT protein is significantly longer than all those of the known KdgT homologues (data not shown). In the absence of experimental data therefore, it is possible that the previously assigned translational start site of the E. chrysanthemi kdgT ORF is incorrect and that its true start site lies at a position analogous to that in the other previously reported kdgT homologues.

The third ORF whose predicted product has homology with the KdgR protein of E. chrysanthemi was originally referred to as unpublished data in a previous paper (Salmond et al., 1994). However, on completion of the sequence and the analysis of an allelic exchange mutant defective in this ORF it was renamed rexZ (regulator of exoenzymes) due to its unexpected phenotype (see following section).

The rexZ gene is predicted to encode a protein of 262 amino acids with a molecular mass of 29516 Da. Using oligonucleotide primers (Eck1 and Eck2) complementary to the terminal 5′ and 3′ sequences, respectively, of the E. carotovora subsp. carotovora strain ATTN10 rexZ gene, we also amplified the rexZ gene from the Car− E. carotovora subsp. carotovora strain SCR1193 for comparison. The E. carotovora subsp. carotovora SCR1193 rexZ was almost identical to that of strain ATTN10 (Fig. 1). Database searches revealed that the E. carotovora RexZ protein presents some homology with proteins from E. chrysanthemi, B. subtilis and Es-
FIG. 1. Alignment of the predicted amino acid sequences of the RexZ and KdgR homologues characterized in this study from the following strains: *E. carotovora* subsp. *carotovora* strains Ann10 (AT1224, accession number U17224), SCR1193 (193, accession numbers AF135394 and AF135397), F14 (14; accession number AF135395) and F148 (148, accession number AF135396); *E. carotovora* subsp. *atroseptica* strain SCR127 (27; accession number AF135397). The above sequences are...
the major repressor of genes involved in pectinolysis, a family of DNA-binding proteins (Fig. 1).

E. chrysanthemi, KdgR, the helix-turn-helix, DNA-binding motif in the N-terminus of proteins and a conserved region in the C-terminus that correspond to be involved in protein-DNA interactions (Harrison et al., 1990). The homologous E. chrysanthemi KdgR protein is the major repressor of genes involved in pectinolysis, KdgR. As previously reported for E. chrysanthemi KdgR, the E. carotovora RexZ possesses a possible helix-turn-helix, DNA-binding motif in the N-terminus and a conserved region in the C-terminus that corresponds to the signature pattern for the IclR family of proteins: [GA]X₃[DS]-X₇-E-X₅-[CSA]-[LIVM]-[GSA]-X₅-[LIVM]-[FYH]-[DN] (RexZ; Smith et al., 1994). The putative helix-turn-helix and IclR family signature motifs are located in RexZ between residues 33-52 (FTETICTDLSIPIKSVHILLE) and 192-213 (GWAIDDGEDIEEICCMAAPIFN), respectively. Since the helix-turn-helix motifs are known to be involved in protein-DNA interactions (Harrison & Aggarwal, 1990), it was reasonable to assume that RexZ is a DNA-binding protein.

Construction and characterization of an E. carotovora rexZ null mutant strain

In contrast with the homologies between the KduI and KdgT proteins from E. chrysanthemi and E. carotovora, which are high, the homology between the E. carotovora RexZ protein and the E. chrysanthemi KdgR repressor is low (26% identity; Fig. 1). Given this low homology, and the wide spectrum of physiological roles that other members of the IclR protein family perform (Reverchon et al., 1991; Smith & Chater, 1988; Sunnarborg et al., 1990), we considered it imperative to determine the phenotype of a rexZ null mutant. Southern blot analysis of subclones of the carbapenem biosynthetic cosmid cWU142 (McGowan et al., 1995) indicated that plasmid pMO11 (McGowan et al., 1997) carried rexZ (data not shown). The 2.8 kb of chromosomal DNA insert carried by pMO11 was cloned in pKNG101 and used to mutate the chromosomal rexZ gene by marker exchange (see Methods). Southern blot analysis of the chromosomal DNA of several of the resulting exconjugants was carried out to confirm that marker exchange of the wild-type gene had taken place with fidelity (data not shown). The rexZ::kan marker-exchange mutant strain SM2 was used for all further analysis.

Comparison of the production of virulence-associated factors in the E. carotovora rexZ mutant strain SM2 and in the wild-type strain allowed us to assess the function of rexZ. Plate assays revealed that pectate lyase, cellulase and protease activity was reduced in the mutant compared to the parental strain (Fig. 2). These results suggest that the E. carotovora RexZ protein acts as an activator of exoenzyme synthesis. The more sensitive liquid enzyme assays revealed that the production of cellulase and protease was reduced by 86% and 63%, respectively, in a RexZ- mutant when compared to the wild-type E. carotovora strain ATTN10 (data not shown). Liquid enzyme assays also showed that the pectate lyase activity was reduced fourfold in the mutant either in the absence or in the presence of PGA (Table 2) when compared to the wild-type strain ATTN10. This unexpected result demonstrated that, although RexZ and the KdgR proteins share sequence

aligned with the other members of the IclR family of regulatory proteins from the following species: Escherichia coli (ECO) - KdgR (transcriptional regulator of kdgK and kdgT; accession number P76268), Yjhl (hypothesis protein; accession number P39360), Yagi (hypothetical protein; accession number P77300), YlaX (hypothetical protein; accession number P77732), IclR (repressor of the acetate operon; accession number P16528), Yiaj (hypothetical protein; accession number P37671), YbbU (hypothetical protein; accession number P77734), MhpR (activator of the 3-hydroxyphenylpropionate degradation pathway; accession number P77569); Erwinia chrysanthemi (ECH) - KdgR (regulator of pectinolysis; accession number X62072), Pir (regulator of virulence; accession number A8017637); Bacillus subtilis (BAS) - YcO (hypothesis protein; accession number P42968); Salmonella typhimurium (STY) - IclR (repressor of the acetate operon; accession number P17430); Haemophilus influenzae (HIN) - Yiaj (hypothetical protein; accession number P44996); Streptomyces griseus (SGR) - GlyR (regulator of the glycerol operon; accession number P22866); and Streptomyces coelicolor (SCO) - GlyR (regulator of the glycerol operon; accession number P15360). Black shading has been used to indicate positions at which at least 15 out of the 21 residues are either identical or similar, as assigned by GeneDoc (version 2.2).

Fig. 2. Phenotypic analysis of the Erwinia carotovora RexZ- marker-exchange mutant. Cultures of the wild-type Erwinia carotovora strain ATTN10 (WT) and Erwinia carotovora rexZ::kan strain SM2 (rexZ) were spotted onto assay plates for the production of cellulase (a), protease (b) and pectate lyase (c). The production of exoenzymes on these assay plates is indicated by the presence of a halo.
Enzyme assays were performed on cells grown to early stationary phase. Pectate lyase specific activity is expressed as \(\mu \text{mol products liberated min}^{-1} (\text{mg bacterial dry weight})^{-1} \).

Table 2. Pectate lyase activity under various growth conditions and in different genetic backgrounds of *E. chrysanthemi* (Ech) and *E. carotovora* subs. carotovora (Ecc)

<table>
<thead>
<tr>
<th>Inducer</th>
<th>Plasmid</th>
<th>Specific pectate lyase activity in strain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ecc ATTn10 (wild-type) Ecc SM2 (RexZ<sup>*</sup>) Ecc 3937 (wild-type) Ecc A903 (KdgR<sup>-</sup>)</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>0.15 0.04 0.11 1.80</td>
</tr>
<tr>
<td>PGA</td>
<td>−</td>
<td>0.04 0.01 0.05 0.30</td>
</tr>
<tr>
<td>PGA</td>
<td>pROU2<sup>*</sup></td>
<td>1.90 0.34 1.60 2.50</td>
</tr>
<tr>
<td>PGA</td>
<td>pROU2<sup>*</sup></td>
<td>0.76 0.18 0.70 0.85</td>
</tr>
</tbody>
</table>

pROU2 is a pULB113 derivative harbouring *kdgR* of *E. chrysanthemi*.

Identity, they are not functional homologues and that, unlike the *E. chrysanthemi* KdgR, the activity of RexZ is not modulated by pectinolytic intermediates (Table 2; Reverchon et al., 1989; Nasser et al., 1991). Further investigations of the action of RexZ on exoenzyme gene expression were therefore warranted.

Overproduction and purification of RexZ

To investigate whether RexZ indeed interacts with the regulatory regions of the exoenzyme genes, as suggested by the presence of a helix–turn–helix motif in its sequence, we overproduced RexZ using the T7 RNA polymerase system (Tabor & Richardson, 1985). Under the standard conditions, the overproduced RexZ protein precipitated and formed inclusion bodies. Various approaches (chemical treatment, changes in the conditions of growth or induction) used to try to resolubilize the overproduced RexZ protein were unsuccessful. However, the unusual solubility properties of RexZ were exploited to purify the protein on a preparative SDS-PAGE gel. Purified protein was used for the generation of specific anti-RexZ antibodies.

The regulation of expression of rexZ by KdgR and CRP

Previous studies have shown that the major regulators of genes involved in pectinolysis in *E. chrysanthemi* are CRP and KdgR (Reverchon et al., 1997; Nasser et al., 1997). Interestingly, computer searches looking for consensus sequences recognized by regulatory proteins characterized in *E. carotovora* or *E. chrysanthemi* revealed the presence of potential binding sites for CRP and KdgR in the promoter region of the *rexZ* gene (Fig. 3a). To establish the precise location of any potential cAMP–CRP and KdgR binding sites in the regulatory region of the *rexZ* gene, DNase I protection experiments were conducted. A single protected region with an average length of approximately 36 and 47 bp was obtained in the presence of cAMP–CRP and KdgR at either subsaturating or saturating concentrations, respectively. These protected regions encompass the predicted CRP-binding site and the KdgR box (Fig. 3a, b). The cAMP–CRP-binding site is centred at position −41.5 with respect to the putative transcription start site of *rexZ*, which is typical for class II CRP-dependent promoters (Fig. 3a). This result suggests that the cAMP–CRP complex could act directly as an activator of the *rexZ* promoter. However, the KdgR-protected region covers the nucleotides between −67 and −110; this makes it unlikely that the binding of KdgR would interfere with the expression of the *rexZ* promoter, and therefore suggests that the *rexZ* promoter is independent of KdgR repressor control. In the absence of a direct effect on *rexZ* expression it was formally possible that, because the binding sites of KdgR and CRP are close together (Fig. 3a), KdgR may affect *rexZ* expression by interfering with the ability of cAMP–CRP to bind DNA and therefore activate gene expression.

To determine whether CRP and KdgR could indeed interact with the regulatory region of *rexZ* in a cooperative, independent or antagonistic way, we performed gel retardation assays using the *E. chrysanthemi* purified CRP and KdgR proteins. Typical results of band shifts obtained in the presence of the KdgR or CRP protein and the *rexZ* regulatory region are shown in Fig. 4(a). Two clearly separate bands, corresponding to free DNA and a DNA–protein complex, were observed when the *rexZ* operator was incubated with either CRP or KdgR, suggesting the existence of a unique CRP-binding site and a unique KdgR box in the *rexZ* regulatory region. The mutual influence of CRP and KdgR on the ability to bind the *rexZ* regulatory region was estimated by using control reactions containing only one of these two proteins. The addition of a subsaturating quantity of KdgR and CRP to a solution containing the *rexZ* promoter fragment resulted in three protein–DNA complexes: two corresponding to the KdgR–DNA and cAMP–CRP–DNA individual complexes and one corresponding to cAMP–CRP–KdgR–DNA complex. At a saturating concentration of
CRP and KdgR proteins, only a ternary complex was observed (Fig. 4a). Simultaneous binding of both regulators did not modify their respective affinity for the rexZ operator (data not shown). DNase I footprinting experiments revealed that the KdgR and cAMP–CRP binding sites partially overlap on the rexZ promoter-operator region (Fig. 3a, b). This finding suggests that CRP and KdgR are likely to bind to different sides of the DNA helix so that it is possible for them to bind simultaneously on the same stretch of DNA. A similar situation was previously reported for the E. chrysanthemi pelC gene (Nasser et al., 1997).

To obtain additional evidence for the possible role of cAMP–CRP as a regulator of rexZ expression in vivo, quantitative analysis of the RexZ protein was performed.
in *E. carotovora* cells grown in the presence or absence of glucose, using anti-RexZ antibodies. This experiment revealed a significant reduction in the amount of RexZ in cells grown in the presence of glucose (Fig. 5a). However, immunoblotting experiments performed using cell extracts from cultures grown in the presence or absence of PGA or galacturonate did not show any significant variation in the quantity of the RexZ protein (Fig. 5a). These data, combined with the *in vitro* binding of cAMP–CRP to the rexZ promoter region, suggest that, although cAMP–CRP acts directly to control rexZ expression, KdgR is not a repressor of the expression of this gene since its binding on the regulatory region does not interfere either with RNA polymerase or with the capacity of cAMP–CRP to bind in this region.

Involvement of Car1 in the synthesis of the RexZ protein

In *E. carotovora* subsp. *carotovora*, degradative exoenzyme synthesis is regulated by quorum sensing, via the production of OHHL, which is directed by Cad/ExpI/HslI (Jones et al., 1993; Pirhonen et al., 1993; Chatterjee et al., 1995). In an attempt to determine whether RexZ production is controlled by OHHL, we performed Western blot experiments with protein extracts from *E. carotovora* PNP22 (Car1−). No differences were noted in the quantity of RexZ in the parent strain and the carl mutant (Fig. 5a). Thus, it is unlikely that RexZ synthesis is regulated by OHHL. These data may also suggest that RexZ and CarI are involved in two distinct activation mechanisms of exoenzyme synthesis.

Occurrence of RexZ and KdgR in Erwinia spp.

Immunoblotting experiments conducted with antibodies raised against the *E. chrysanthemi* KdgR or *E. carotovora* subsp. *carotovora* RexZ proteins were used to detect these proteins in cell extracts of different strains: *E. carotovora* subsp. *carotovora* strains SCR1193 and ATTn10, *E. carotovora* subsp. *atroseptica* strain SCR131, *E. chrysanthemi* strains EC16, 3937 and A903, *E. amylovora* strain SCR1449, and *E. herbicola* strain SCR1429. Using anti-KdgR antibodies, a band corresponding to approximately 35 kDa was detected for all the *E. chrysanthemi* strains (with the exception of the *E. chrysanthemi* kdgR mutant strain A903), in addition to *E. herbicola* and *E. amylovora* (Fig. 5b). A smaller band was observed for *E. carotovora* subsp. *carotovora* strain ATTn10 and strain SM2 (rexZ; data not shown) as well as *E. carotovora* subsp. *atroseptica*. These data showed that the anti-KdgR and anti-RexZ antibodies were specific, having no significant cross-reactivity. Moreover, this result confirmed that the KdgR and RexZ proteins are distinct and that *E. carotovora* also contains another KdgR homologue, in addition to RexZ. Immunoblotting with anti-RexZ antibodies (Fig. 5c) gave rise to a signal for all strains except for the *E. carotovora* rexZ mutant strain SM2. The detected proteins all have a molecular mass of approximately 30 kDa (Fig. 5c). These data showed that the RexZ protein is well conserved in pectinolytic *Erwinia* species. The presence of a possible homologue of RexZ in *E. chrysanthemi* is especially interesting because the majority of the proteins that are known to control exoenzyme production in this genetic background are negative regulators.

The bands corresponding to the RexZ proteins of the non-pectinolytic *Erwinia* strains (*E. amylovora* and *E. herbicola*) were of lower intensity. This may indicate that RexZ is less abundant in non-pectinolytic species, or perhaps these species contain a more distantly related protein.

Isolation and analysis of the *E. carotovora* subsp. *carotovora* kdgR homologue

Immunoblotting with anti-KdgR (*E. chrysanthemi*) and anti-RexZ antibodies revealed that, in addition to RexZ,
E. carotovora possessed another KdgR homologue. To isolate the corresponding kdgR gene we first used PCR to amplify a 915 bp kdgR-specific gene probe from chromosomal DNA of E. chrysanthemi 3937. This ‘DIG-11-dUTP’-labelled gene probe was used in a Southern blot to probe the chromosomal DNA of E. carotovora subsp. carotovora, which had been digested with various restriction enzymes. The results indicated that the E. carotovora subsp. carotovora kdgR homologue was located on a 6 kb EcoRV DNA fragment (data not shown). Based on this result, an E. carotovora subsp. carotovora chromosomal DNA mini-library was constructed in pACYC184 (Chang & Cohen, 1978) and probed with the kdgR-specific gene probe. Of the 300 library clones screened one, pREP1, was identified by Southern blotting to carry the putative kdgR gene. Restriction analysis of pREP1 revealed that it carried two simultaneously cloned 6 kb chromosomally derived DNA inserts. Subclones of pREP1 were made in pUC19 and probed with the kdgR gene probe in a Southern blot. The putative E. carotovora subsp. carotovora kdgR gene was mapped to a 2.1 kb EcoRV–SphI fragment carried on a subclone denoted pREP4. The insert of pREP4 was sequenced and a total of 2173 bp of nucleotide sequence was generated (accession number AF135787).

The predicted translation of this sequence revealed one complete and one partial ORF. The first partial ORF, denoted ogl, was predicted to encode the C-terminal 153 amino acids of a protein which shared a high level of homology with Ogl from E. chrysanthemi and E. carotovora subsp. atroseptica. Following restriction mapping of pREP4, the contiguous SphI–EcoRV fragment was identified and sequenced, completing the sequence of the E. carotovora subsp. carotovora ogl ORF (accession number AF135787). The ogl ORF was predicted to encode a 44426 Da protein of 388 amino acids. Database searches showed that the predicted product of this gene shared 99% and 87% sequence identity with the E. carotovora subsp. atroseptica and E. chrysanthemi Ogl proteins, respectively.

The second ORF on pREP4, denoted kdgR (based on sequence homology), was predicted to encode a 29700 Da protein of 263 amino acids. Homology searches showed that the predicted product of this ORF shared a high level of homology with Escherichia coli KdgR (88% identity) and also with 263 amino acids out of the 305 amino acids that constitute the E. chrysanthemi KdgR protein (95% identity; Fig. 1). The predicted E. carotovora subsp. carotovora KdgR lacked the N-terminal 42 amino acids present in the KdgR protein from the related species, E. chrysanthemi. To further characterize KdgR homologues from sub-species of E. carotovora, additional kdgR genes were isolated by PCR amplification, using primers KD1, KD3 and KD5. The purified PCR-amplified products from E. carotovora subsp. atroseptica strain SCR127, and from E. carotovora subsp. carotovora strains F14 and F148, were cloned into pBluescript (Stratagene) cut with SmaI, generating pREP27, pREP14 and pREP148, respectively. Sequence analysis of these putative kdgR clones revealed that they each carried a single ORF, the predicted products of which shared high homology with the previously described KdgR proteins (Fig. 1). The predicted KdgR proteins of these strains of Erwinia spp. also lack the N-terminal 42 amino acids displayed by the homologous E. chrysanthemi protein.

N-terminal sequence analysis of the E. carotovora subsp. carotovora SCR193 KdgR protein

To definitively identify the translational start site of the E. carotovora subsp. carotovora SCR193 KdgR protein, a recombinant protein was purified by virtue of six histidine residues (6-His tag) which had been added on to the C-terminus of the protein (see Methods). The construct carried a total of 1557 bp of PCR-amplified E. carotovora subsp. carotovora insert DNA, including 677 bp of DNA upstream of the putative E. carotovora kdgR ORF, assumed to include the kdgR promoter region. A protein of approximately 30 kDa was observed, which was consistent with the predicted size of the E. carotovora KdgR. The resultant N-terminal amino acid sequence generated from this clone agreed with that previously predicted from the nucleotide sequence of kdgR (Fig. 1). The E. carotovora KdgR protein is therefore analogous to the KdgR protein predicted for Escherichia coli and all the other KdgR homologues identified in this study. It is obvious from these data that although the gene order of ogl and kdgR is retained and the ogl genes themselves are highly conserved between the Erwinia spp., there are significant differences between the N-terminal regions of the predicted KdgR proteins of the two E. carotovora subspecies compared to that previously reported for E. chrysanthemi.

Functional interchangeability of the E. chrysanthemi and E. carotovora subsp. carotovora KdgR proteins

Functional interchangeability has been demonstrated for the Escherichia coli and E. chrysanthemi KdgR proteins, where the E. coli homologue was shown to be able to repress pelD transcription (James & Hugouvieux-Cotte-Pattat, 1996). To test whether the KdgR proteins of E. carotovora and E. chrysanthemi were interchange-able, we performed band-shift experiments by using protein extracts from E. carotovora subsp. carotovora and the regulatory regions of both the E. carotovora rexZ gene and the E. chrysanthemi pelE gene, encoding a major pectate lyase. Partially purified KdgR protein from E. carotovora subsp. carotovora SCR1193, obtained after fractionated precipitation with ammonium sulphate, was used in gel retardation assays. One major DNA–protein complex was observed when KdgR was incubated with either the pelE or rexZ operator regions (Fig. 4b). The addition of KdgR-specific antibodies or KDG (the actual inducer of the pectinolysis genes) to the reaction mix, prior to the incubation of
KdgR with the DNA operator regions, inhibited the formation of both complexes (Fig. 4b). Thus the E. carotovora KdgR protein appears to be able to bind to a DNA fragment containing a KdgR-box. Consequently, it is reasonable to assume that the E. chrysanthemi and E. carotovora KdgR proteins are interchangeable. This was confirmed by the fact that the introduction of an R-prime plasmid (pROU2) containing the E. chrysanthemi wild-type kdgR gene (Reverchon et al., 1991) in E. carotovora decreased the pectate lyase activity by two- to fivefold in both ATTn10 and SM2 strains (Table 2).

DISCUSSION

This study was initiated by the fortuitous discovery that E. carotovora possessed a gene, rexZ, encoding a homologue of the major repressor of pectinolyis (KdgR) in E. chrysanthemi. Because sequence identity between the two proteins was limited, we thought it prudent to further investigate the relationship between the E. chrysanthemi kdgR and E. carotovora rexZ gene products. In order to determine whether RexZ was a functional homologue of KdgR, we constructed a rexZ null mutant. The E. carotovora RexZ mutant exhibited a reduced level of pectate lyase, cellulase and protease production and therefore RexZ, in contrast to KdgR, was likely to be an activator rather than a repressor of exoenzyme production. In addition, functional studies revealed that, unlike in the E. chrysanthemi kdgR mutant (where the KdgR phenotype can be phenotypically suppressed by the presence of PGA), the activity of RexZ protein is not modulated by pectic compounds (Table 2). This was unexpected and confirmed that the E. carotovora RexZ regulatory protein is not a functional homologue of the E. chrysanthemi KdgR repressor, but acts in an antagonistic fashion as a novel activator of virulence in E. carotovora.

Sequence analysis of the rexZ promoter region revealed the presence of consensus binding sites for KdgR and CRP. In an attempt to determine the relative position that RexZ occupies in the already complex regulatory network that governs exoenzyme production in E. carotovora, we looked at the involvement of CRP, KdgR and the bacterial pheromone, OHHL, on the expression of rexZ. It was evident from the in vitro DNA-binding assays that cAMP–CRP bound strongly to the rexZ promoter region, indicating that RexZ is catabolite repressed. Additional supporting evidence for this notion came from in vivo quantification of the RexZ protein in the presence and absence of glucose. Therefore, in E. carotovora, there appears to be a hierarchical regulatory cascade controlling degradative exoenzyme synthesis which involves a global cellular regulator (CRP) and a virulence-associated regulator (RexZ). A similar system of control was recently reported in *Pseudomonas aeruginosa*, where Vfr, a CRP homologue, controls the expression of the LasR activator which is involved in quorum sensing and expression of virulence factor genes (protease and exotoxin A) (Albus et al., 1997). Such a cascade can allow a rapid up- and down-regulation of the genes controlling the virulence functions in these bacteria in response to change in environmental conditions.

Distinct from the cAMP–CRP binding site, KdgR (E. chrysanthemi) bound to a site upstream of the rexZ promoter at a position which would not interfere with the binding of RNA polymerase. However, it was formally possible that, because the binding sites of KdgR and cAMP–CRP overlapped, KdgR could indirectly modulate rexZ expression by antagonistically binding to this region. This was shown not to be the case, as both KdgR and cAMP–CRP could simultaneously occupy their respective binding sites in the rexZ promoter region. Some evidence to support this finding came from in vivo quantification of the RexZ protein, which showed that the amount of RexZ detected remained unchanged in presence of pectic compounds in the growth medium (Fig. 5a). However, we cannot rule out the possibility that KdgR could act as repressor on a secondary rexZ promoter, expression from which would be regulated by different environmental conditions. The cellular amount of RexZ was also shown to be unaffected in E. carotovora strains carrying mutations in the *car1* gene, responsible for the production of the bacterial pheromone OHHL, suggesting that the RexZ activator operates independently of the quorum-sensing system.

Immunoblotting experiments showed that RexZ homologues are widely distributed in the erwinias and revealed that E. carotovora possessed a protein which bound the KdgR-specific antibodies, yet was distinct from RexZ. This observation was consistent with Southern blot experiments revealing different genes for rexZ and kdgR (data not shown). We isolated the kdgR homologues from three strains of *E. carotovora* subsp. *carotovora* and one strain of *E. carotovora* subsp. *atro septica*. Sequence analysis showed that the E. chrysanthemi KdgR protein had an N-terminal extension of 42 amino acids compared with the E. carotovora homologues. However, if the DNA upstream of the E. carotovora subsp. *carotovora* kdgR ORF is artificially translated, in-frame with the predicted ATG start site, then 26 of these predicted amino acids match exactly the corresponding amino acids in the E. chrysanthemi KdgR N-terminus (data not shown). Nevertheless, the E. carotovora subsp. *carotovora* sequence possesses an in-frame stop codon and lacks a suitable translational start site in this region. This result was taken to suggest that the previously designated translational start codon for the E. chrysanthemi KdgR ORF might be incorrect and that the true start codon was at a position corresponding to that of the *Escherichia coli* and E. carotovora subsp. *carotovora* kdgR ORFs. However, immunoblotting experiments suggested that the E. chrysanthemi KdgR protein may well be larger than the E. carotovora protein (Fig. 5b), consistent with the possibility that the KdgR proteins from these related bacteria do differ in the N-terminus, due to the position of their translational start codons.

In light of the possible differences between the KdgR proteins of E. carotovora and E. chrysanthemi and the
obvious difference in function of RexZ, it was important to determine whether this E. carotovora KdgR protein was functionally similar to the E. chrysanthemi homologue. We demonstrated that partially purified E. carotovora KdgR protein was able to bind specifically to sequences carrying the consensus KdgR-box, and that binding was abolished by the addition of KdgR-specific antibodies and pectin compounds. Thus it would appear that the ‘true’ E. carotovora KdgR homologue is very similar to that of E. chrysanthemi in both sequence and function. However, that the E. carotovora KdgR protein exerts its control on target genes by identical mechanisms to those already established for the E. chrysanthemi KdgR protein (Nasser et al., 1997) may require confirmation. Preliminary experiments indicate that the in vitro binding affinities of the E. chrysanthemi KdgR protein for the E. carotovora pelC, pelD and aepH (rsmb) promoter regions are low (data not shown), which is in agreement with the significant degeneration of the ‘KdgR-box’ sequence identified in the regulatory regions of E. carotovora pel genes versus the KdgR consensus defined in the E. chrysanthemi system (Nasser et al., 1994; W. Nasser & G. P. C. Salmond, unpublished result). Given the N-terminal sequence differences of these proteins, these data support the notion that the mechanisms of these closely related proteins may be subtly different. Work is currently in progress to compare directly the activity of the KdgR proteins from E. carotovora and E. chrysanthemi.

We have shown that E. carotovora possesses two previously uncharacterized proteins, both of which belong to the IclR family of transcriptional regulators. These proteins, KdgR and RexZ, represent two new regulatory inputs in the already complex regulatory network that governs virulence in the phytopathogen E. carotovora. The presence of multiple positive regulators controlling exoenzyme production in E. carotovora generally contrasts with the situation in E. chrysanthemi, where only two true activators, represented by the CRP and Pir proteins, had been previously discovered (Reverchon et al., 1997; Nomura et al., 1998). However, this study has revealed that E. chrysanthemi expresses a protein homologue of the positively acting regulatory protein RexZ. It would be interesting to discover whether this, as yet uncharacterized, homologue of RexZ also acts in a similar manner in this background. In E. chrysanthemi, synthesis of exoenzymes, particularly of the pectinases, is fundamentally governed by repression mediated by pecS, pecT and kdgR (Reverchon et al., 1991, 1994; Surgey et al., 1996). Analysis of the distribution of these different regulators in bacteria of the genus Erwinia has revealed the presence of pecT/hexA (Castillo & Reverchon, 1997; Harris et al., 1998), expl/carl (Nasser et al., 1998; Reverchon et al., 1998; Jones et al., 1993; Pirhonen et al., 1993), and rexZ and kdgR homologues (this work) in both E. chrysanthemi and E. carotovora. However, in vivo comparative studies for many of these proteins, such as PecT/HexA and proteins encoded by the quorum-sensing locus, suggest that the mechanism by which they are involved in pel gene expression is different in these two Erwinia species (Nasser et al., 1998; Reverchon et al., 1998; Harris et al., 1998). This is reinforced by the fact that, until this study, all the screening for mutations affecting exoenzyme production, particularly production of Pel, failed to identify a common regulator in both E. chrysanthemi and E. carotovora. However, this work has shown that, not only is the E. carotovora KdgR protein highly similar to that of E. chrysanthemi, it is also functionally interchangeable. Therefore, this represents one of the few regulators of exoenzyme production that is both common to and interchangeable between E. chrysanthemi and E. carotovora.

NOTE ADDED IN PROOF

We have recently sequenced the N-terminus of the E. chrysanthemi KdgR protein and confirmed the true translational start to be the methionine at position 43 of the published sequence (and therefore coincident with the start sites of all other KdgR homologues). The relevant GenBank entry, X62072, will be updated accordingly.

ACKNOWLEDGEMENTS

This work was supported by grants from the BBSRC (no. P06134), CNRS, the DRED and the Actions concertées Coordonnées-Sciences du Vivant 6 from the Ministère de l'Education Nationale, de l'Enseignement Supérieur, de la Recherche et de la Formation Professionnelle. We are indebted to Christiane Nardon, N. Hugouvieux-Cotte-Pattat, G. Condemine, S. Reverchon, A. Castillo and A. Buchet for their help and useful comments.

REFERENCES

Received 8 December 1998; revised 26 March 1999; accepted 6 April 1999.