Characterization of a haemolytic factor from Candida albicans

Toshihiko Watanabe,1 Mari Takano,1 Mariko Murakami,1 Hironori Tanaka,1 Atsushi Matsuhisa,1 Noriko Nakao,1 Takeshi Mikami,1 Masuko Suzuki2 and Tatsuji Matsumoto1

Author for correspondence: Tatsuji Matsumoto. Tel: +81 22 234 4181. Fax: +81 22 275 2013. e-mail: tmatsu@tohoku-pharm.ac.jp

1 Department of Microbiology, Tohoku College of Pharmacy, 4-1 Komatsushima 4 Chome, Aoba-ku, Sendai 981-8558, Japan
2 Sendai Research Institute for Mycology, 14-34 Toshogu 1 Chome, Aoba-ku, Sendai 981-0908, Japan

The culture supernatant of Candida albicans promoted the disruption of human red blood cells (RBCs). The haemolytic activity was detected in a sugar-rich fraction (about 200 kDa) from Sephacryl S-100 chromatography. As the haemolytic activity was adsorbed by concanavalin A-Sepharose, the haemolytic factor may be a mannanprotein. The activity was inactivated by periodate oxidation, indicating that the sugar moiety of the mannanprotein played an important role in the haemolysis. The structure of the sugar moiety of the mannanprotein was identified as a cell-wall mannan by 1H-NMR analysis, and purified C. albicans mannan promoted the disruption of RBCs. The binding of mannan to RBCs was demonstrated by flow cytometric analysis and was inhibited by the addition of band 3 protein inhibitor, 4,4'-disothiocyanatostilbene-2,2'-disulfonic acid (DIDS). The haemolysis caused by mannan was inhibited by DIDS, SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid) and bis(sulfo succinimidyl) suberate, but not by pyridoxal 5-phosphate. These results indicated that a mannanprotein released from C. albicans bound to the band 3 protein on RBCs, thereby promoting their disruption.

Keywords: Candida albicans, mannan, band 3 protein, haemolysis

INTRODUCTION

The opportunistic pathogen Candida albicans is a serious agent of infection in the immunocompromised host. C. albicans is a dimorphic fungus which can alternate between yeast and hyphal phases, depending on the growth conditions (Blasi et al., 1994). The cell wall of C. albicans contains a mannan which has a linear 1,6-α-linked mannosyl backbone with side chains of 1,2-α-, 1,2-β- and 1,3-α-linked mannose units (Shibata et al., 1995). The antigenicity of Candida species depends on the structure of their mannans, and differences of antigenicity inmannans are used in the classification of Candida species (Ataoglu et al., 1993; Kobayashi et al., 1992). C. albicans possesses a number of factors that could be involved in the invasive process. Adhesins, dimorphism and the secretion of specific hydrolytic enzymes have been suggested as possible virulence factors (Cameron & Douglas, 1996; Colina et al., 1996; Ibrahim et al., 1995).

Adherence to endothelial cells by C. albicans is mediated by a glycoprotein which is known to bind fibronectin; adherence is blocked by a peptide containing an Arg-Gly-Asp sequence (Pendrak & Klotz, 1995; Sawyer et al., 1992). When C. albicans is phagocytosed by endothelial cells, it converts to the hyphal form and damages the endothelial cells (Zink et al., 1996). Hydrolytic enzymes such as proteases and phospholipases are known to promote invasiveness in disseminated candidiasis (Fallon et al., 1997). Numerous pathogenic micro-organisms grow in the host by using haemin or haemoglobin as a source of iron (Henderson & Payne, 1994; Law & Kelly, 1995; Otto et al., 1992). We previously reported that C. albicans secretes a haemolytic factor that causes the release of haemoglobin, which is then used as an iron source by the organisms (Watanabe et al., 1997), but the haemolytic
factor was not identified. In this study, we have characterized the haemolytic factor in the culture supernatant of C. albicans.

METHODS

Reagents. Concanaavalin A (Con A)-Sepharose (Pharmacia), Alamar blue (Alamar Biosciences), DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid; Sigma), SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid; Sigma), BS3 [bis(sulfosuccinimidyl) suberate; Pierce], and PLP (pyridoxal 5-phosphate; Nacalai Tesque) were used in the experiments. Antiserum against factor 1 of the genus Candida (FAB 1) was supplied with Candida Check kits (Iatron). Con A was purchased from Sigma, and Pepstatin A, an aspartyl protease inhibitor, was obtained from Peptide Institute.

Preparation of red blood cells (RBCs). Human RBCs (A type), supplied by the Red Cross Blood Center of Miyagi Prefecture, Japan, were suspended in Ca2+- and Mg2+-free PBS [PBS(−)] and centrifuged at 700 g for 5 min. The supernatant and buffy coat were removed, and the packed RBCs were further washed with PBS(−) by centrifugation. RBCs were then suspended in RPMI 1640 medium and used for the haemolytic activity assay.

Preparation of C. albicans culture supernatants. C. albicans NIH A-207 cells were maintained in Sabouraud’s liquid medium with shaking at 27 °C. The cells were transferred into RPMI 1640 medium (1 × 10⁶ cells ml⁻¹) and incubated at 37 °C for 4 d. The culture supernatant was collected, dialysed and freeze-dried, and then used as the concentrated C. albicans culture supernatant. The growth of C. albicans was measured by using the Alamar blue method (Pfaller et al., 1994).

Haemolytic activity assay. Haemolytic activity was measured according to the method of Manns et al. (1994). Briefly, a sample solution was mixed with RBC (1 × 10⁶ cells ml⁻¹) at a 1:1 ratio and incubated at 37 °C for 12 h. After incubation, the A₅₆₀ in the supernatant was measured to estimate the degree of RBC disruption. The percentage haemolysis was determined by comparing the A₅₆₀ of the test group with that of 100% lysis obtained with water. To confirm the relationship of C. albicans secreted aspartyl protease with haemolysis, pepstatin A (0·1 mg ml⁻¹) was added to the mixture of the C. albicans culture supernatant and RBCs.

Purification of the haemolytic factor. The concentrated C. albicans culture supernatant was gel filtered through a HiPrep 16/60 Sephacryl S-100 column (Pharmacia) at 1 ml min⁻¹ in PBS(−), and fractions of 4 ml were collected. Total protein content was measured using a BCA protein assay kit (Pierce) with BSA as the standard. Total carbohydrate content was determined by the phenol/H₂SO₄ method (Shibata et al., 1989) with D-mannose as the standard. To detect the fraction containing mannan, an aliquot from each fraction was added to a well of a 96-well plastic plate coated with Con A, and the amount of mannan bound to the plate was measured using an ELISA, as described previously (Mikami et al., 1986). FAB 1 and horseradish peroxidase-conjugated anti-rabbit IgG (Seikagaku) were used for the detection of mannan.

Adsorption of the haemolytic factor by Con A-Sepharose. The haemolytic fractions eluted from the HiPrep 16/60 Sephacryl S-100 column (around 200 kDa) were adsorbed to Con A-Sepharose by a batch affinity method at 37 °C for 1 h. After adsorption, the haemolytic activity and the sugar content were measured as described above.

Periodate oxidation of the haemolytic factor. The haemolytic factor bound to Con A-Sepharose was eluted with 0·2 M α-methyl mannoside. The eluate was dialysed, freeze-dried and then treated with periodate oxide, as described previously (Suzuki et al., 1977). After treatment, the sample was passed through a PD-10 (Pharmacia) column to remove the buffer salts.

1H-NMR spectra of mannoproteins in the C. albicans culture supernatant. The haemolytic fraction purified using the HiPrep 16/60 Sephacryl S-100 column was dialysed and freeze-dried. The 1H-NMR spectrum of this sample was recorded using a JEOL JNM-GSX 400 spectrometer operating at 400 MHz and a probe temperature of 45 °C. The sample was dissolved in D₂O, and acetone was used as the internal standard (2,2,2-trifluoroethanol p.p.m.).

Mannan extraction from the C. albicans cell wall. Mannan was prepared as described by Tojo et al. (1991) using Fehling solution. An aqueous solution of each bulk mannan preparation was applied to a column of DEAE-Sephadex A-50 (Pharmacia), and the 0·05 M NaCl-eluted fraction was dialysed and then freeze-dried.

Flow cytometric analysis. RBCs (1 × 10⁸ cells) and mannan (10 µg) were incubated in an ice bath for 30 min, and the cells were then washed by centrifugation. The washed cells were treated with FAB 1 (10 µl), and then mixed with FITC-labelled anti-rabbit IgG antibody (Seikagaku). The fluorescence intensity of individual cells was measured using a FACScan analyser (Becton Dickinson). To confirm whether band 3 protein was associated with the mannan-binding to RBCs, RBCs were pretreated with a band 3 protein inhibitor, DIDS (0·1 mg ml⁻¹), in an ice bath for 30 min.

Extraction and purification of band 3 protein. This was done by a modification of the method of England et al. (1980).

Effects of band 3 protein inhibitors on haemolytic activity of mannan. To determine the mannan binding site on band 3 protein, RBCs were pretreated with four protein inhibitors:
Haemolytic factor from Candida albicans

Blue dextran (200 kDa) Chymotrypsinogen (25 kDa)

1000 1 1
h
c-
E
600
W
C
0,
.-
g 200
n

Fig. 2. Purification of haemolytic factor from C. albicans culture supernatant. The concentrated C. albicans culture supernatant was gel filtered with a HiPrep 16/60 Sephacryl S-100 column and fractions of 4 ml were collected. (a) Total protein content (thin line) and total sugar content (thick line) were measured. (b) Each fraction was mixed with RBCs (1 × 10⁸ cells ml⁻¹) at a 1:1 ratio, and the degree of haemolysis was measured (bars). To detect the fraction containing mannan, each fraction was added to a well of a 96-well plastic plate coated with Con A, and the amount of mannan bound to the plate was measured by ELISA. Reactivity with FAb 1 is shown as the A₄₉₀ (solid line). V₀, void volume.

DIDS, SITS, BS³ and PLP, for 30 min. Mannan (0.5 mg ml⁻¹) was added to these treated cells, and the degree of haemolysis was measured.

Statistical analysis. Values are shown as means ± se, and statistical analyses of these data were performed using the Student’s t-test.

RESULTS

Haemolytic activity in the C. albicans culture supernatant

To confirm the secretion of a haemolytic factor by C. albicans, the culture supernatant was mixed with human RBCs, and the degree of haemolysis was examined. The haemolytic factor was secreted after 2 d incubation, and the activity was 27.8% haemolysis per 3 × 10⁸ Candida cells (Fig. 1). Since the haemolytic activity was not inhibited by heat treatment (100 °C for 10 min) or by the addition of pepstatin A (an aspartyl protease inhibitor), the active component is probably not a protein such as a secreted aspartyl proteinase (data not shown).

Purification of a haemolytic factor from the C. albicans culture supernatant

The concentrated culture supernatant of C. albicans (10 mg dry wt) was gel filtered on a HiPrep 16/60 Sephacryl S-100 column. Haemolytic activity (39% haemolysis per 50 μg sugar) was detected in the sugar-rich fraction of 200 kDa; this fraction also reacted with FAb 1 (Fig. 2). The haemolytic fractions were pooled and fractionated on Con A-Sepharose. The haemolytic activity was associated with the material adsorbed by Con A-Sepharose and was not detected in the unbound fraction. These results indicated that a mannoprotein secreted from C. albicans promoted the disruption of RBCs. The haemolytic activity of the mannoprotein eluted from Con A-Sepharose (42.7% haemolysis per 50 μg sugar) was completely abolished by periodate oxidation, suggesting that the sugar moiety of the mannoprotein was important in inducing the haemolysis.

¹H-NMR spectrum of the mannoprotein

The polysaccharide in the haemolytic fraction eluted from the HiPrep 16/60 Sephacryl S-100 column was structurally analysed by ¹H-NMR spectroscopy. The anomeric proton chemical shifts of oligosaccharides were assigned by adapting the findings of Shibata et al. (1993, 1995). The polysaccharide showed signals at 4.84 and 4.85 p.p.m. (corresponding to the 1,2-β-linked manno pyranose unit), and also signals corresponding to 1,3-α- or 1,2-α-linked manno pyranose units (5.38, 5.27, 5.14, 5.03 and 4.91 p.p.m.). These results indicated that the haemolytic polysaccharide was a mannoprotein derived from the cell wall of C. albicans.

Haemolytic activity of mannan extracted from C. albicans

To confirm the role of mannan in haemolysis, we purified a C. albicans mannan (95% carbohydrate, 3% protein). Mannose and Dextran T-40 (Pharmacia) were used as negative controls to demonstrate that the haemolysis was not due to osmolysis or non-specific activities of polysaccharides. It was found that the extent of RBC haemolysis was dependent upon the amount of mannan (Fig. 3). The addition of mannose or dextran, however, did not induce haemolysis.

Mannan binding to the surface of RBCs

We conducted flow cytometric analysis to demonstrate the existence of a mannan-binding site on RBCs. As shown in Fig. 4, the fluorescence intensity of mannan-
The haemolytic activity of mannan was inhibited by the addition of DIDS (Table 1). A family of stilbene disulfonate derivatives, DIDS, SITS and BS\(^3\), inhibits anion transport by binding covalently or noncovalently to the Lys-539 or Lys-542 of band 3 protein (Yamaguchi et al., 1995). PLP reacts with Lys-851 in band 3 protein, and is an inhibitor of band 3-mediated anion exchange (Okubo et al., 1994). The stilbene disulfonate derivatives inhibited the haemolysis, but PLP did not (Table 1). These results suggest that the binding of the mannan to RBCs was mediated by Lys-539 or Lys-542 in band 3 protein.

DISCUSSION

Some pathogenic micro-organisms secrete haemolytic factors in order to obtain haemoglobin or haemin as a source of iron (Belanger et al., 1995; Lewis & Dyer, 1995). We previously reported that haemoglobin utilization by C. albicans was related to a morphological change (Watanabe et al., 1997). A complement-mediated haemolysis induced by secretion from C. albicans has been observed (Manns et al., 1994), but the secretion of a haemolytic factor by C. albicans was not reported. In the present paper, we have demonstrated the secretion of a haemolytic factor by C. albicans and characterized this factor.

The disruption of RBCs was significantly promoted by the addition of C. albicans culture supernatant (Fig. 1), indicating that a haemolytic factor was released from C. albicans. Since C. albicans secretes an aspartyl protease for invasion into the host (Colina et al., 1996; Zink et al., 1996), such an enzyme has been suggested as the cause of the haemolysis. However, the addition of pepstatin A, an aspartyl protease inhibitor, or treatment

Table 1. Effects of anion transport inhibitors on the haemolytic activity of mannan

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Conc (mM)</th>
<th>Inhibition (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIDS</td>
<td>0.10</td>
<td>86.0±2.2</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>37.4±5.3</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>5.2±3.0</td>
</tr>
<tr>
<td>SITS</td>
<td>0.50</td>
<td>91.8±1.0</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>37.8±1.0</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>20.0±2.0</td>
</tr>
<tr>
<td>BS(^3)</td>
<td>4.00</td>
<td>78.5±0.6</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>61.1±0.4</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>27.3±0.9</td>
</tr>
<tr>
<td>PLP†</td>
<td>0.25</td>
<td>0.4±0.1</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.2±0.1</td>
</tr>
</tbody>
</table>

*Inhibition (%) = [(percentage haemolysis by mannan – percentage haemolysis by [mannan + inhibitor]) × 100, divided by percentage haemolysis by mannan.†Inhibition activity of PLP at 1.0 mM was not examined, because of haemolysis by PLP.

Effect of anion transport inhibitors on haemolytic activity of mannan

The effect of DIDS on the haemolytic activity of mannan was measured to confirm the relationship between the binding of mannan to band 3 protein and haemolysis.
at 100 °C for 10 min did not affect the haemolytic activity (data not shown). Thus, we suggest that the haemolytic factor is not enzymic. The haemolytic activity was associated with a sugar-rich fraction of approximately 200 kDa. This fraction also reacted with Con A and FAb 1 (Fig. 2). These results demonstrate that the haemolytic activity was probably caused by a mannoprotein. When the sugar moeity of the mannoprotein was disrupted by periodate oxidation, the haemolytic activity was lost. This suggests that the sugar moeity of the mannoprotein is important for binding to RBCs and/or for inducing haemolysis. Structural studies indicated that the haemolytic fraction contained sugar residues typical of cell-wall mannans, and purified bulk mannans also showed haemolytic activity. Both mannann binding to RBCs and the haemolytic activity of mannann were strongly inhibited by treatment with DIDS (Fig. 4, Table 1). As DIDS is an anion-transport inhibitor which binds to band 3 protein, band 3 protein might be involved in the binding of, and haemolysis by, mannann. The binding of mannann to RBCs was inhibited by DIDS, indicating that DIDS masked the mannann-binding site of the band 3 protein. A family of stilbene disulfonate derivatives, DIDS, SITS and BS3, which inhibit anion transport by binding covalently or noncovalently to Lys-539 or Lys-542 of band 3 protein, showed haemolytic activity. Both mannan and BS3, which inhibit anion transport by binding covalently or noncovalently to Lys-539 or Lys-542 of band 3 protein, inhibited the haemolysis (Table 1). Thus, it was suggested that the mannann bound to band 3 protein on RBCs, and that Lys-539 or Lys-542 of band 3 protein might be an important site for the binding of mannann. The results with PLP supported this conclusion. Since band 3 protein catalyses anion exchange and seems to be associated with spectrin via ankyrin (Yamaguchi et al., 1995), we suggest that the mannann destabilizes the RBC membrane through the function of band 3 protein.

As haemolytic activity was detected in the culture supernatant of \textit{C. albicans} in vitro, some mannoprotein may be produced at local sites in vivo. However, large amounts of mannoprotein are not detected in patients with candidiasis. Although systemic haemolysis may not be caused by the mannoprotein, haemolysis around infected sites may enhance the growth of \textit{C. albicans} because haemoglobin is an important factor for \textit{Candida} growth in the host.

REFERENCES

Received 29 June 1998; revised 9 October 1998; accepted 18 November 1998.