Neisseria gonorrhoeae bacterioferritin: structural heterogeneity, involvement in iron storage and protection against oxidative stress

Cheng-Yen Chen and Stephen A. Morse

The iron-storage protein bacterioferritin (Bfr) from *Neisseria gonorrhoeae* strain F62 was identified in cell-free extracts and subsequently purified by column chromatography. Gonococcal Bfr had an estimated molecular mass of 400 kDa by gel filtration; however, analysis by SDS-PAGE revealed that it was composed of 18 kDa (BfrA) and 22 kDa (BfrB) subunits. DNA encoding BfrB was amplified by PCR using degenerate primers derived from the N-terminal amino acid sequence of BfrB and from a C-terminal amino acid sequence of *Escherichia coli* Bfr. The DNA sequence of *bfrA* was subsequently obtained by genome walking using single-specific-primer PCR. The two Bfr genes were located in tandem with an intervening gap of 27 bp. A potential Fur-binding sequence (12 of 19 bp identical to the consensus neisserial fur sequence) was located within the 5' flanking region of *bfrA* in front of a putative N₃5 hexamer. The homology between the DNA sequences of *bfrA* and *bfrB* was 55-7%; the deduced amino acid sequences of BfrA (154 residues) and BfrB (157 residues) showed 39-7% identity, and showed 41-3% and 56-1% identity, respectively, to *E. coli* Bfr. Expression of recombinant BfrA and BfrB in *E. coli* strain DH5α was detected on Western blots probed with polyclonal anti-*E. coli* Bfr antiserum. Most Bfrs are homopolymers with identical subunits; however, the evidence presented here suggests that gonococcal Bfr was composed of two similar but not identical subunits, both of which appear to be required for the formation of a functional Bfr. A Bfr-deficient mutant was constructed by inserting the Ω fragment into the BfrB gene. The growth of the BfrB-deficient mutant in complex medium was reduced under iron-limited conditions. The BfrB-deficient mutant was also more sensitive to killing by H₂O₂ and paraquat than the isogenic parent strain. These results demonstrate that gonococcal Bfr plays an important role in iron storage and protection from iron-mediated oxidative stress.

Keywords: *Neisseria gonorrhoeae*, iron-storage protein, bacterioferritin

INTRODUCTION

Iron is important for the growth of bacteria, as evidenced by the wide variety of molecules and mechanisms that have evolved to capture and retain this essential element. However, in the presence of O₂, iron is potentially toxic because of its catalytic generation of cell-damaging free radicals (Flitter *et al.*, 1983; Halliwell & Gutteridge, 1984; Dunford, 1987). To sequester iron for essential requirements and to avoid toxicity from iron overload, aerobic organisms have evolved well-coordinated systems controlling the acquisition, transportation and storage of this element (Briat, 1992).

Two types of iron-storage proteins have been identified in bacteria (Harrison & Arosio, 1996): bacterioferritin (Bfr), which contains non-covalently bound haem groups in addition to a non-haem iron core (Stiefel & Watt, 1979); and ferritin, which does not possess intrinsic haem groups and resembles the iron-containing...
protein (H-type subunit) of mammalian cells (Ford et al., 1984). Bfrs are characterizedly composed of 24 identical 18–22 kDa subunits, which are assembled into a spherical protein shell containing 0.2–20% (approx. 600–2400 iron atoms per molecule) by weight of non-haem iron and 3–12 non-covalently bound protohaem IX groups (Yariv et al., 1981; Ford et al., 1984; Frolow et al., 1994). Subunits are tightly assembled to form a molecule with fourfold, threefold and twofold symmetry axes (432 symmetry) (Ford et al., 1984). Results of electron-microscopic studies have indicated that the iron core can be either crystalline (terrihydrate) or amorphous. Although the mechanism of iron storage in vivo is uncertain, in vitro, iron-core formation involves the oxidation of Fe(II) and hydrolytic polymerization of Fe(III) (Andrews et al., 1993; Hudson et al., 1993).

Studies on Neisseria gonorrhoeae have focused primarily on the receptor-mediated mechanisms that this organism uses to obtain iron from host sources; very little is known about the fate of intracellular iron. In this organism, iron is sequestered in the cell as the iron-specific storage protein ferritin (Bfr). In Neisseria gonorrhoeae, ferritin consists of 24 identical 18–22 kDa subunits, which are assembled into a globular protein (H-type subunit) of mammalian cells (Ford et al., 1984). Bfr is composed of two non-identical subunits; the genes encoding these subunits have been cloned and sequenced. A BfrB-deficient mutant was constructed to examine the biological role of gonococcal Bfr.

METHODS

Organisms and growth conditions. *N. gonorrhoeae* strain F62 was used for purification of Bfr. This strain was maintained on GC agar (Difco Laboratories) supplemented with 1% (v/v) IsoVitaleX (Baltimore Biological Laboratories). To determine the effect of iron limitation on the growth of a gonococcal BfrB-deficient mutant, cells were grown in GC broth (Mietzner et al., 1984) supplemented with 1% IsoVitaleX, 0.04% (w/v) NaHCO₃, and with or without 30 µM Desferal (DF) (Ciba-Geigy). Broth cultures were incubated at 37 °C in a gyratory shaker and growth was followed for 8 h by monitoring the optical density of the culture at 600 nm in a model DU-70 spectrophotometer (Beckman Instruments).

Esherichia coli strain DH5α was used as a host for recombinant plasmids and was grown on Luria broth (LB) agar. The Ω fragment was purified from *E. coli* strain HB101 containing pHP45. This was accomplished by purifying pHP45 with a plasmid midikit (Qiagen), digesting the plasmid with HindIII and then by gel purifying the 2 kb DNA band containing the Ω fragment. All cultures were grown at 37 °C in a humidified atmosphere containing 5% CO₂, pUC18 was purchased from Bethesda Research Laboratories.

Purification of gonococcal Bfr. Overnight growth of *N. gonorrhoeae* strain F62 was harvested from GC agar plates and resuspended in 20 mM Tris/HCl buffer (pH 7.2). The cell suspension was sonicated (30 s, 6 times) and then centrifuged at 10000 × g for 20 min. The supernatant was decanted, heated to 65–70 °C for 15 min and centrifuged at 10000 × g for 20 min. The heat-treated supernatant was then fractionated by precipitation with (NH₄)₂SO₄. The fraction that precipitated between 30 and 60% saturation was collected by centrifugation (10000 × g, 15 min), dissolved in 20 mM Tris/HCl buffer (pH 7.2) and desalted by dialysis against the same buffer overnight at 4 °C. The dialysed material was applied to a Sephacryl S-200-HR (Sigma) gel-filtration column (0.9 × 60 cm) that had been equilibrated with 20 mM Tris/HCl buffer (pH 7.4) containing 0.15 M NaCl. The molecular mass standards (Bio-Rad) used were thyroglobulin (670 kDa), bovine gamma globulin (158 kDa), chicken ovalbumin (44 kDa), equine myoglobin (17 kDa) and vitamin B₁₂ (1.35 kDa). The iron-stain-positive fractions, corresponding to 300–500 kDa molecular mass, were pooled and concentrated by centrifugation (Centrifrep-30; Amicon). The retentate was dialysed overnight against 20 mM Tris/HCl buffer (pH 7.2) and then fractionated by anion-exchange chromatography using a DEAE Sepharose CL-6B (Sigma) column (2.8 × 11 cm). Proteins were eluted with a linear gradient of 0.1–0.6 M NaCl; Bfr eluted at approximately 0.3 M NaCl. The purity of Bfr was assessed by SDS-PAGE and by iron-specific staining of non-denaturating polyacrylamide gels.

Iron-specific stain. After electrophoresis of cell-free extracts in non-denaturating polyacrylamide gels, iron-containing proteins were visualized by staining with a solution of 0.75 mM 3-(2-pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine, sodium salt (Ferrozine; Sigma) and 15 mM thioglycolic acid in 2% (v/v) acetic acid (Chung, 1985). To locate column fractions containing iron, an aliquot of each column fraction (200 µl) was added to the Ferrozine reagent (5 µl) and the absorbance at 562 nm was measured after 15 min. Iron-containing protein bands or column fractions exhibited a visible red colour within 20 min of staining. The iron-stained gel was subsequently stained with Coomassie blue and destained with 10% (v/v) acetic acid in order to visualize the presence of any other cellular proteins.

N-terminal sequence analysis. Purified Bfr was subjected to SDS-PAGE and electro-transferred onto a PVDF membrane (Schleicher & Schuell). Protein bands were excised from the transblot and sequenced by standard Edman chemistry on a Beckman P2090 Integrated Micro-sequencing System.

PCR and DNA sequence analysis. *bfrB* was PCR-amplified using a forward degenerate primer (964FP, Table 1), deduced from the N-terminal amino acid sequence of gonococcal *BfrB*, and a reverse degenerate primer (966RP, Table 1), based on a conserved region in the C-terminal of the *E. coli* Bfr (amino acids 128–134) (Andrews et al., 1989; Denoel et al., 1995). PCR conditions consisted of 30 cycles of denaturation at 94 °C for 1.5 min, annealing at 62 °C for 2 min and extension at 72 °C for 2 min. The flanking regions and the remaining sequences of gonococcal *bfrA* and *bfrB* were completed by using single-specific-primer PCR (SSP-PCR) (Shyamala & Ames, 1989). The Applied Biosystems model 373 DNA sequencing system (Perkin-Elmer) was used for sequencing the PCR products according to the manufacturer's cycle sequencing protocol by using dye-terminator chemistry (Sanger et al., 1977).

Cloning of Bfr genes. The entire *bfrA* and *bfrB* coding sequences were amplified by PCR using synthetic primers designed to introduce an EcoRI restriction site at the stop codon (FPEco1, Table 1) and a BamHI site just downstream of the stop codon (RBam1, Table 1). The PCR product was double-digested with BamHI and EcoRI and ligated into pUC18. Competent *E. coli* DH5α cells were transformed and ampicillin-resistant transformants selected on LB medium containing 50 µg ampicillin ml⁻¹. Plasmid miniseps from several transformants were prepared and sequenced to confirm that the *bfr* sequence was correct and in-frame with *lacZ*. The recombinant plasmid in one of the transformants was selected and designated pCYC-1.

Expression of gonococcal Bfr. Whole-cell lysates prepared from *E. coli* DH5α, DH5α with pUC18, or DH5α with pCYC-1 were fractionated by SDS-PAGE and electro-transferred...
onto a nitrocellulose membrane (Schleicher & Schuell). The blot was probed with anti-*E. coli* Bfr polyclonal antiserum (1:1000) and bound antibody detected with horseradish-peroxidase-labelled goat anti-rabbit IgG conjugate (Bio-Rad).

**Construction of a BfrB-deficient mutant of *N. gonorrhoeae.*

The sequence encompassing *bfrA* and *bfrB* and their corresponding flanking regions were amplified by PCR using synthetic oligonucleotide primers (PPEco2 and RPBam2, Table 1) designed to introduce an *EcoRI* restriction site 11 kb upstream of the start codon of *bfrA* and a *BamHI* site 163 bp downstream of the stop codon of *bfrB*. The resulting 2.4 kb PCR fragment was double-digested with *BamHI* and *EcoRI* and ligated into pUC18. The single *HindIII* restriction site on pUC18 had been previously eliminated by digesting with the enzyme, end-filled using the Klenow fragment and religated. Competent *E. coli* DH5α cells were subsequently used for transformation. Ampicillin-resistant transformants were obtained on LB medium containing 30 µg ampicillin ml⁻¹. Plasmid minipreps were prepared to confirm the presence of the 2.4 kb DNA insert. The recombinant plasmid, designated pCYC-2, was digested with *HindIII*, which cuts only once in the coding region of *bfrB*, and ligated with the purified Ω fragment prepared with *HindIII* ends. Competent *E. coli* DH5α cells were transformed as previously described and transformants selected on LB medium containing 30 µg ampicillin ml⁻¹ and 30 µg spectinomycin ml⁻¹. The pCYC-2 containing the insertionally inactivated *bfrB*, designated pCYC-3, was purified from several transformants to confirm the insertion of the Ω fragment and then linearized with *EcoRI* prior to transforming pilated cells of *N. gonorrhoeae* strain F62. Gonococcal transformants were selected on GC agar plates containing 30 µg streptomycin ml⁻¹ and 30 µg spectinomycin ml⁻¹. The presence of the Ω fragment in *bfrB* was confirmed by PCR amplification of the *BfrB* structural gene. One of the transformants, designated F62BfrBΩ, was selected for further studies.

Sensitivity to *H₂O₂* and paraquat. The sensitivity of *N. gonorrhoeae* strain F62 and its isogenic BfrB-deficient mutant to *H₂O₂* and paraquat was determined by measuring the diameter (cm) of the clear zone surrounding the disc minus the diameter of the disc. The mean zone of inhibition ± standard deviation was calculated from the results of three separate experiments.

RESULTS

Purification of gonococcal Bfr

Bfr was initially purified by size-exclusion chromatography and its location identified by the addition of Ferrozine to each column fraction and monitoring of OD at 562 nm. Bfr-containing fractions exhibited the highest OD₄₅₀ and were subjected to non-denaturing PAGE followed by the iron-specific stain. Subsequent staining of the same gel with Coomassie blue revealed the presence of several protein-containing bands; however, Bfr was the only protein that could be visualized by the iron-specific stain. The molecular mass of Bfr, as estimated by gel filtration, was between 300 and 500 kDa. DEAE-Sepharose column chromatography was subsequently used for further purification of Bfr. Fractions eluted by a NaCl gradient, which exhibited the highest OD at 562 nm in the presence of Ferrozine, were assessed by SDS-PAGE (12% acrylamide) and Coomassie blue staining. The data in Fig. 1 show that, without heating, purified Bfr migrated as a single protein-containing band at a slower rate than the 97 kDa molecular mass standard (lane 1). However, after heating at 100 °C for 10 min in sample loading buffer, Bfr migrated as two smaller bands with estimated molecular masses of 18 and 22 kDa, respectively (lane 2, shown with arrows). It was noted that after heating and electrophoresis, Bfr could not be visualized by the iron-specific stain (data not shown).

N-terminal sequence analysis

The bands containing the 18 and 22 kDa proteins were eluted from the gels and the sequence of the first 10 (MQGNQAV4VDY) N-terminal residues of the 18 kDa protein and the first 15 (MKGDLRV4ELNKNL) N-terminal residues of the 22 kDa protein were obtained by automated Edman degradation. These N-terminal sequences showed similarities (30–66%) to the N-

Table 1. Primer sequences of oligonucleotides used in this study

<table>
<thead>
<tr>
<th>Primer designation</th>
<th>Sequence*</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>964FP</td>
<td>GTATGCGTAGCTGACTGACAAACAAA</td>
<td>Amplification of bfrB</td>
</tr>
<tr>
<td>96RP</td>
<td>CCTAATGCTTGCATCCTCTTCCTTG CGCCTGTGTGG</td>
<td>Same as above</td>
</tr>
<tr>
<td>PPEco1</td>
<td>CCGCATCCATGCAAGGGAATACACTGTTT</td>
<td>Amplification of bfrA and bfrB</td>
</tr>
<tr>
<td>PEBam1</td>
<td>CCCGGATCCGTCCTCCTTTGGCGCCTGTGGTTT</td>
<td>Same as above</td>
</tr>
<tr>
<td>PEBam2</td>
<td>CCCGGATCCATCCATCGGTATTACCAAACAA</td>
<td>Amplification of bfrA and bfrB and flanking regions</td>
</tr>
</tbody>
</table>

I represents inosine.

Neisseria gonorrhoeae bacterioferritin
terminal sequences of several bacterial Bfrs, for example *E. coli*, *Nitrobacter winogradskyi*, *Azotobacter vinelandii*, *Brucella melitensis*, *Synechocystis* spp., *Mycobacterium leprae*, *Mycobacterium paratuberculosis* and *Mycobacterium avium*, and were designated as BfrA (18 kDa) and BfrB (22 kDa).

PCR and DNA sequence analysis

Degenerate primers deduced from the N-terminal amino acid sequence of the gonococcal BfrB and from a region of *E. coli* Bfr (amino acids 128–134) were used to PCR-amplify the majority of the BfrB gene. The flanking regions and the remaining sequence of the BfrB gene were obtained by SSP-PCR. Results of this additional sequencing indicated that the DNA sequence encoding bfrA was upstream of bfrB. The complete nucleotide and deduced amino acid sequences of the gonococcal Bfrs indicated two ORFs of 462 bp and 471 bp, corresponding to positions 148–609 and 640–1110, respectively. The two Bfr genes were located in tandem with an intervening gap of 27 bases. Potential Shine–Dalgarno ribosome-binding sites (GAGAG for bfrA and AGGAG for bfrB) were located 6–10 bp upstream from the ATG start codon of bfrA and bfrB, respectively. Putative −10 and −35 promoter regions were also identified and a GC-rich region of dyad symmetry located 43 bp downstream from the stop codon in bfrB could function as a rho-independent transcription terminator. There was a potential Fur-binding sequence (12 of 19 bases were identical to the consensus neisserial fur sequences; Genco & Desai, 1996) in front of the −35 hexamer. There was 55.7 % homology between the DNA sequences of bfrA and bfrB; and 39.7 % identity for the amino acid sequences of BfrA and BfrB. The deduced amino acid sequence of BfrA consisted of 154 amino acids with a predicted molecular mass of 17961 Da and an isoelectric point (pI) of 4.17; BfrB consisted of 157 amino acids, and had a molecular mass of 18014 Da and a pI of 4.58. The deduced amino acid sequences of BfrA and BfrB showed 41.3 % and 56.1 % identity to *E. coli* Bfr, respectively.

Cloning and expression of Bfr

The entire coding sequence encompassing bfrA and bfrB was amplified by PCR and ligated into pUC18 and in-frame with *lacZ*. Competent *E. coli* DH5α cells were
transformed, and transformants containing pCYC-1 were analysed for expression of gonococcal Bfr on Western blots probed with anti-*E. coli* Bfr polyclonal antiserum. The results in Fig. 2 show that *E. coli* DH5α or *E. coli* DH5α containing pUC18 exhibited a single Bfr subunit of 20 kDa. The transformants expressed two additional proteins corresponding in size to the gonococcal BfrA and B (Fig. 2a, lane 3), and both proteins reacted with the polyclonal antiserum to *E. coli* Bfr (Fig. 2b, lane 3). These additional proteins were not observed in *E. coli* DH5α or *E. coli* DH5α containing pUC18.

Construction of a BfrB-deficient mutant of *N. gonorrhoeae*

A BfrB-deficient mutant was constructed to determine the biological function of gonococcal Bfr. Attempts to construct a gonococcal BfrA-deficient mutant, or a double knock out by either insertion or deletion inactivation were not successful because of the lack of restriction sites in *bfrA*. Therefore, pCYC-2 was disrupted by the insertion of the Ω fragment from pHPR5Ω into the single *HindIII* site present in *bfrB*. The resulting plasmid, pCYC-3, which contains the insertionally inactivated *bfrB*, was linearized with *EcoRI* prior to transforming piliated *N. gonorrhoeae* strain F62. One of the several spectinomycin- and streptomycin-resistant transformants, F62BfrBΩ, was selected for further studies. The presence of the Ω fragment in the BfrB gene of F62BfrBΩ was confirmed by PCR amplification of *bfrA* and *bfrB* individually. The *bfrA* amplicon from F62BfrBΩ was the same size as that from strain F62; however, the *bfrB* amplicon from F62BfrBΩ was 2 kb larger than that of strain F62, indicating that the Ω fragment was inserted into *bfrB* (data not shown). The absence of BfrB subunits in the mutant was also confirmed by immunoblot analysis with anti-*E. coli* Bfr antiserum (data not shown).

Effect of iron on the growth of BfrB-deficient mutant

N. gonorrhoeae strains F62 and F62BfrBΩ were grown in liquid GC medium with or without 30 µM DF. Growth of both strains was markedly reduced under iron-limited conditions (Fig. 3); however, growth of
strain F62BfrBΩ was inhibited to a greater degree than was the growth of strain F62 under identical growth conditions.

Sensitivity of BfrB-deficient mutant to H₂O₂ and paraquat

To assess the contribution of BfrB to the oxidative stress resistance of *N. gonorrhoeae*, the sensitivities of strains F62 and F62BfrBΩ to H₂O₂ and paraquat were compared in a disc-diffusion assay. The results (Fig. 4a) show that the growth of F62BfrBΩ was inhibited by H₂O₂ in a dose-dependent fashion, whereas the growth of wild-type parent strain was inhibited to a lesser degree by amounts of H₂O₂ up to 2.5 μmol; both F62 and F62BfrBΩ exhibited a similar growth inhibition at 5 μmol H₂O₂. Paraquat is a redox-cycling agent that readily diffuses across the cell envelopes and generates superoxide within the cytosol. Both strains F62 and F62BfrBΩ appeared to be more sensitive to inhibition by paraquat than H₂O₂ and the growth of F62BfrBΩ was inhibited to a greater extent than strain F62 even at the lowest concentration of paraquat tested (Fig. 4b).

DISCUSSION

Iron is an essential element for the growth of almost all bacteria. Many of the molecular details of iron assimilation have been explored (Briott, 1992; Wooldridge & Williams, 1993); however, most of these studies have focused on the variety of strategies that bacterial pathogens employ to obtain iron from the host. Relatively little attention has been given to the intracellular sequestration, mobilization and storage of iron. Under aerobic conditions, excess iron may contribute to the generation of compounds by stimulating the production of highly reactive oxygen species by the iron-catalysed Haber–Weiss reaction (Haber & Weiss, 1934). The resulting hydroxyl radicals can cause lipid peroxidation, DNA damage and degradation of other biomolecules (Halliwell & Gutteridge, 1984; Touati et al., 1995). Thus, strict regulation of assimilation and storage of iron in both eukaryotic and prokaryotic cells is crucial to prevent the accumulation of free intracellular iron and to protect cells from iron toxicity (Klausner et al., 1993). Protection from iron toxicity may be mediated, in part, by ferritins and Bfr, which are capable of sequestering a few thousand iron atoms in their central cavity in a soluble, non-toxic, bioavailable form (Grossman et al., 1992).

In this study, we have identified and purified a Bfr from *N. gonorrhoeae*, and subsequently cloned and sequenced the corresponding genes. The identification of gonococcal Bfr was facilitated by an iron-specific stain, which is based on the interaction between the iron atoms stored in the Bfr and a sensitive chromogenic ligand, Ferrozine, which results in the formation of a reddish-coloured complex. Bfr was the only protein in non-denaturing PAGE of supernatants of sonicated cell suspensions that could be readily stained with Ferrozine, indicating the high content of iron molecules within this protein. Additional data indicating that this protein is Bfr include heat stability (65–70 °C for 15 min) (Smith et al., 1988; Andrews et al., 1993), molecular mass between 300 and 500 kDa for the holoprotein and between 18 and 22 kDa for its subunits, N-terminal sequence homology to Bfr subunits from other bacteria, and immunological cross-reactivity with anti- *E. coli* Bfr antiserum.

Unlike most Bfrs, which are homopolymers composed of identical subunits, gonococcal Bfr comprises two similar, but not identical, subunits. Harker & Wullstein (1985) reported that the Bfr from *A. vinelandii* comprised two non-identical subunits; however, Grossman et al. (1992) were able to clone only one gene for this protein. More convincing data for structural heterogeneity of Bfr were obtained from *Pseudomonas aeruginosa*, in which the first 69 and 53 residues of the N-terminal amino acid sequence of the α and β subunits differed considerably (Moore et al., 1994). The corresponding genes for the α and β subunits of *P. aeruginosa* Bfr have not been cloned to further substantiate these findings. The results of our study are the first to locate genes encoding different Bfr subunits and verify the existence of structural heterogeneity in this iron-storage protein. Structural heterogeneity of Bfr may be less complicated than in mammalian ferritins, where the structural complexity is due to combinations of various ratios of two subunits, heavy (H) and light (L), which differ in size, amino acid composition, surface charge and immunoreactivity (Theil, 1987; Harrison & Arosio, 1996).

How the biosynthesis of Bfr or prokaryotic ferritin is regulated by iron awaits elucidation. In *E. coli*, the induction of *bfr* expression by iron was found to be dependent on the ferric uptake regulator protein (Fur), although not to the direct interaction between Fur and the *bfr* gene (Harrison & Arosio, 1996). It is not clear how Fur acts as an intermediate and what other cellular components are involved in this regulation. The genes encoding the two gonococcal Bfr subunits were located in tandem with an intervening gap of only 27 bp, suggesting that they might be co-transcribed and co-regulated. The presence of a potential iron box within the 5′ region of *bfrA* in front of a putative −35 hexamer suggests that gonococcal Bfr might be negatively regulated by iron. However, this contradicts results obtained with other micro-organisms, suggesting that in spite of the presence of potential iron boxes the production of Bfr was either up-regulated by, or indifferent to, the iron concentration present in the growth medium (Grossman et al., 1992; Cristina et al., 1994; Evans et al., 1995). The genetic regulation of gonococcal Bfr is currently under investigation.

Despite the structural similarity between ferritins and Bfrs, they share little homology in their amino acid sequences and exhibit no immunological cross-reactivity (Wai et al., 1995), suggesting that they have different origins. Most studies suggest micro-organisms possess...
either a ferritin or a Bfr homologue (Stiefel & Watt, 1979; Moore et al., 1986; Kurokwa et al., 1989; Brooks et al., 1991; Grossman et al., 1992; Laulhere et al., 1993; Inglis et al., 1994; Denoel et al., 1995) for which full-length or partial sequences are available is shown in Fig. 5. Gonococcal BfrA and BfrB shared 39.7% identity. The percentage identity compared to other bacterial Bfrs ranged from 39.5% to 59.6% for BfrA, and from 41.6% to 62.2% for BfrB. A seven amino acid motif consisting of Glu-18, -51, -94, -127, His-54, -130 and Tyr-25, which constitutes the ferroxidase centre (Andrews et al., 1991; Brun et al., 1995) and is associated with the binuclear metal-binding site, was fully conserved in BfrA (Fig. 5); however, only four of these residues were conserved in BfrB. Conversely, the methionine residue (Met-52), which provides the axial ligand for haem binding (Grossman et al., 1992; Cheesman et al., 1993), was conserved only in BfrB. These data demonstrate that the structure and function of Bfr are conserved among prokaryotes and suggest that both subunits are required to form a functional Bfr, with BfrA providing the ferroxidase centre and BfrB the haem-binding ligand. Interestingly, the seven amino acids which constitute the ferroxidase centre were conserved in E. coli ferritin but only five were retained in E. coli Bfr (Andrews et al., 1991, 1992). It has been suggested that the ferritin and Bfr of E. coli are the bacterial counterparts of the mammalian H-rich and L-rich ferritins with respective roles in short-term iron flux and long-term iron storage (Andrews et al., 1993). It is not clear whether gonococcal Bfr comprises equal molar ratios of the A and B subunits, or whether different Bfr subunits associate to form a Bfr that is either BfrA-rich or BfrB-rich. However, the absence of iron-specific staining of iron storage (Andrews et al., 1991, 1992) and three to nine haem groups per 24 subunits in the Bfr from P. aeruginosa (Kadir & Moore, 1990). We have yet to determine the number of haem groups

either a ferritin or a Bfr homologue (Stiefel & Watt, 1979; Moore et al., 1986; Kurokwa et al., 1989; Brooks et al., 1991; Rocha et al., 1992; Laulhere et al., 1993; Cristina et al., 1994; Inglis et al., 1994; Denoel et al., 1995; Evans et al., 1995; Penfold et al., 1996). However, the presence of both ferritin and Bfr has been reported in E. coli (Yariv et al., 1981; Izuhara et al., 1991) and Helicobacter pylori (Doig et al., 1993; Evans et al., 1995). It is not clear why relatively few bacteria possess both types of iron-storage proteins and what advantage this apparent redundancy has. In vitro data indicate that the rate at which iron is incorporated into apoferritin is approximately fivefold faster than into apoBfr, suggesting that ferritin might compete for iron in vivo more efficiently than Bfr (Andrews et al., 1993). We cannot rule out the possibility that the two biochemically and genetically different iron-storage proteins might have other specific or essential functions. For example, E. coli Bfr is also known as cytochrome b, and may additionally function as an electron-storage molecule (Smith et al., 1988). We have been unable to identify a potential ferritin homologue in N. gonorrhoeae by homology searches comparing the sequences of the E. coli and Haemophilus influenzae ferritin against the gonococcal (University of Oklahoma, N. gonorrhoeae strain FA1090) and meningococcal (The Sanger Center, Neisseria meningitidis serogroup A strain Z2491) genome databases. Alternatively, the gonococcus may have a ferritin gene that has little homology to those of E. coli or H. influenzae.

The homology of the amino acid sequences of gonococcal BfrA and BfrB to those of other Bfrs (Andrews et al., 1989; Kurokwa et al., 1989; Brooks et al., 1991; Grossman et al., 1992; Laulhere et al., 1993; Inglis et al., 1994; Denoel et al., 1995) for which full-length or partial sequences are available is shown in Fig. 5. Gonococcal BfrA and BfrB shared 39.7% identity. The percentage identity compared to other bacterial Bfrs ranged from 39.5% to 59.6% for BfrA, and from 41.6% to 62.2% for BfrB. A seven amino acid motif consisting of Glu-18, -51, -94, -127, His-54, -130 and Tyr-25, which constitutes the ferroxidase centre (Andrews et al., 1991; Brun et al., 1995) and is associated with the binuclear metal-binding site, was fully conserved in BfrA (Fig. 5); however, only four of these seven residues were conserved in BfrB. Conversely, the methionine residue (Met-52), which provides the axial ligand for haem binding (Grossman et al., 1992; Cheesman et al., 1993), was conserved only in BfrB. These data demonstrate that the structure and function of Bfr are conserved among prokaryotes and suggest that both subunits are required to form a functional Bfr, with BfrA providing the ferroxidase centre and BfrB the haem-binding ligand. Interestingly, the seven amino acids which constitute the ferroxidase centre were conserved in E. coli ferritin but only five were retained in E. coli Bfr (Andrews et al., 1991, 1992). It has been suggested that the ferritin and Bfr of E. coli are the bacterial counterparts of the mammalian H-rich and L-rich ferritins with respective roles in short-term iron flux and long-term iron storage (Andrews et al., 1993). It is not clear whether gonococcal Bfr comprises equal molar ratios of the A and B subunits, or whether different Bfr subunits associate to form a Bfr that is either BfrA-rich or BfrB-rich. However, the absence of iron-specific staining of iron storage (Andrews et al., 1991, 1992) and three to nine haem groups per 24 subunits in the Bfr from P. aeruginosa (Kadir & Moore, 1990). We have yet to determine the number of haem groups
per subunit in the gonococcal Bfr. However, it is likely that this value is less than 12 since only BfrB contains the essential methionine residue for haem binding.

Eukaryotic ferritins function by buffering the free-iron concentration in the cells, thus protecting cells from harmful iron-catalysed oxidative damage (Harrison & Arosio, 1996). Similarly, a ferritin homologue from Campylobacter jejuni was recently reported to contribute to protection against oxidative stress (Wai et al., 1996). We investigated the role of the gonococcal Bfr in protecting against oxidative stress by insertionally inactivating BfrB and examining the sensitivity of a BfrB-deficient mutant to hydrogen peroxide and paraquat. The growth of the BfrB-deficient mutant of N. gonorrhoeae was less than that of the parent strain under both iron-sufficient and iron-limiting conditions, suggesting that Bfr plays a role in iron storage. In addition, the BfrB-deficient mutant was more sensitive to H₂O₂ and paraquat than the parent strain, suggesting that the accumulation of intracellular free iron caused by the absence of BfrB may lead to hypersensitivity to H₂O₂. Furthermore, BfrA alone was not capable of protecting the cell from oxidative injury.

A ferritin- and Bfr-deficient double mutant of E. coli grew poorly under iron-limited conditions (Simon Andrews, personal communication), suggesting the possibility of another internal iron pool. In our study, insertional inactivation of BfrB was not lethal to the growth of the gonococcus and provides further support for an internal iron pool. However, questions remain as to how this iron pool interacts with iron-storage or iron-requiring proteins. Although ferritins and Bfrs are involved in iron storage and in protection against oxidative stress, the exact role of ferritin and Bfr in iron metabolism has yet to be elucidated since the intracellular levels of these proteins present are considered too low to serve as major iron-storage compounds (Braun, 1997).

ACKNOWLEDGEMENTS

We would like to thank Dr Simon Andrews of University of Sheffield, UK for providing the polyclonal antiserum to E. coli Bfr; Ms Tamara Crews of the Biotechnology Core Facility at Centers for Disease Control, USA, for performing the N-terminal amino acid sequence analysis; and Dr Bernard Beall, Division of Bacterial and Mycotic Diseases, Centers for Disease Control, USA, for helpful suggestions.

REFERENCES

Harker, A. R. & Woolson, L. H. (1985). Evidence for two non-

Received 1 March 1999; revised 18 May 1999; accepted 7 June 1999.