Overexpression of *Candida albicans* secretory aspartyl proteinase 2 and its expression in *Saccharomyces cerevisiae* do not augment virulence in mice

Nathalie Dubois, Ana Rosa Colina, Francine Aumont, Pierre Belhumeur and Louis de Repentigny

To elucidate the implications of secreted aspartyl proteinase (Sap) in the pathogenesis of *Candida* infections, the *SAP2* gene was expressed in *Saccharomyces cerevisiae* and overexpressed in *Candida albicans*. The coding region of *SAP2*, including its signal sequence and propeptide, was amplified by PCR and cloned downstream of the *S. cerevisiae* or *C. albicans* ADH1 promoter. Plasmid expression of *SAP2* in *S. cerevisiae* showed that the signal peptide was functional. Integrative transformation of *S. cerevisiae* and *C. albicans* was accomplished by homologous recombination within the *URA3* locus for *S. cerevisiae* and the *SAP2* locus for *C. albicans*. Negative control transformants carried plasmids either without the *SAP2* insert or with mutated *sap2*. *S. cerevisiae* and *C. albicans* transformants showed similar growth rates to their parental strains or negative controls, when grown in medium containing amino acids. However, in medium with BSA as sole nitrogen source, constitutive expression of *SAP2* enabled *S. cerevisiae* to grow and increased the growth rate of *C. albicans*. In both media, only *S. cerevisiae* transformants harbouring *SAP2* secreted the enzyme, as confirmed by proteinase activity assays and immunoblotting. When *C. albicans* was grown in amino acids medium, the enzyme was detected exclusively in transformants constitutively expressing *SAP2*. However, in BSA medium these strains secreted enzyme earlier and secreted higher amounts of enzyme and total proteinase activity. In pathogenicity studies in intact mice, expression of Sap2p as a sole putative virulence factor did not cause *S. cerevisiae* to become virulent and constitutive overexpression of *SAP2* did not augment virulence of *C. albicans* in experimental oral or systemic infection.

Keywords: candidiasis, *Candida albicans*, aspartyl proteinase, *Saccharomyces cerevisiae*

INTRODUCTION

Candida albicans is an important opportunistic pathogen causing local or systemic infection in immunocompromised patients (Odds, 1988). Several virulence factors have been proposed in pathogenicity: adhesion, dimorphism, phenotypic switching, molecular mimicry of mammalian integrins and secretion of phospholipases and aspartyl proteinases (Cutler, 1991; White et al., 1995). The secreted aspartyl proteinases (Saps) have been studied extensively and are encoded by at least eight genes which are expressed and regulated differentially (Hube, 1996). Northern analysis has shown that *SAP1* and *SAP3* are regulated during phenotypic switching between the white and opaque forms of strain WO-1, while *SAP2* was found to be the dominant transcript in budding cells grown in medium containing protein as sole nitrogen source. The expression of *SAP4–6* is detected at neutral pH during serum-induced
yeast to hyphal transition, but the expression of SAP7 has not been detected (Hube et al., 1994; White & Agabian, 1995).

In clinical and laboratory strains grown as the yeast form in vitro, Sap2p is the predominantly expressed proteinase. Evidence has also been provided that Saps are secreted by C. albicans in vivo during the course of mucosal and deep-tissue infections (Borg & Rüchel, 1988; De Bernardis et al., 1995). The most commonly used approach to define the role of Saps as virulence attributes has been to compare the lethal effect on mice infected intravenously with parental strains or proteinase-deficient mutants. The mutants, isolated by chemical mutagenesis techniques or UV-irradiation, have been shown to be less virulent than their parental strains. However, definitive proof of the role of Saps in virulence of C. albicans has been lacking, because either (i) the mutants had high levels of reversion, (ii) they still produced detectable proteinase activity in vitro, (iii) the nature of the mutation was undefined or (iv) they may harbour multiple, independent and unknown lesions (Macdonald & Odds, 1983; Kwon-Chung et al., 1985; Crandall & Edwards, 1987; Ross et al., 1990).

Recently, C. albicans strains harbouring targeted disruptions of SAP genes have been constructed using the ura-blaster protocol (Hube et al., 1997; Sanglard et al., 1997). When tested in a murine model of systemic candidiasis, the virulence of C. albicans sap1, sap2 and sap3 mutants was modestly attenuated (Hube et al., 1997). However, the extent of attenuation of virulence did not correlate directly with the reduction of proteolytic activity in vitro. Similarly, mice infected with a C. albicans sap4,5,6 triple homozygous null mutant had survival times significantly longer than that of control animals (Sanglard et al., 1997). In Candida tropicalis, disruption of the SAPT gene was also achieved by co-transformation with a linear DNA fragment carrying a deletion in SAPT (Sanglard et al., 1992). Surprisingly, the virulence of the sapT-null mutant and the proteinase-positive strain did not differ significantly after intravenous infection in mice (Togni et al., 1994). These results suggested that the Sap of C. tropicalis does not contribute significantly to fungal virulence in systemic infections. Alternatively, potentially decreased virulence may have been masked by the redundancy of members of a putative multigene Sap family in C. tropicalis (Monod et al., 1994) and/or the redundancy of other virulence attributes of Candida.

Selective expression/overexpression of genes encoding putative virulence attributes is an attractive strategy to overcome redundancy problems and clarify the contribution of each isoenzyme to virulence. This approach would allow the study of virulence-enhancing genes in already virulent strains (homologous overexpression) and in non-pathogenic but closely related strains (heterologous expression). The rationale for this approach is also based on clinical studies which have shown that the Sap activity of C. albicans isolates from patients with vaginitis (Cassone et al., 1987) or HIV infection (Ollert et al., 1993) was significantly higher than that of isolates from asymptomatic carriers. In this study, we describe the construction of stable Saccharomyces cerevisiae and C. albicans strains that constitutively secrete Sap2p. Sap2p expression by S. cerevisiae allowed it to hydrolyse and use BSA as sole nitrogen source, while Sap2p overexpression in C. albicans resulted in early and high-level proteinase secretion. The virulence of these genetically engineered strains was evaluated in murine models of oral or systemic infections.

METHODS

Strains and culture conditions. Yeast strains used in this work are listed in Table 1. Escherichia coli DH10B (Gibco-BRL) was routinely used as a plasmid host for cloning procedures. Bacterial and yeast media were prepared as described by Rose et al. (1990) and Sambrook et al. (1989). Yeast parental strains were grown in YPD medium containing 1% (w/v) yeast extract (Difco), 2% (w/v) Bacto peptone (Difco) and 2% (w/v) dextrose. Uracil/uridine independence selection was performed by using CAT medium [0.67% Yeast Nitrogen Base (YNB) without amino acids (Difco), 0.5 or 1% (w/v) Casamino acids, 0·008% adenine, 0·002% tryptophan] supplemented with 2% dextrose. The medium to regenerate C. albicans spheroplasts was supplemented with 1 M sorbitol. Induction of Sap2p was done in YNB-BSA medium containing 0·17% YNB without amino acids and ammonium sulfate (Difco), supplemented with 2% dextrose and 0·2% BSA (fraction V; Sigma). Media were supplemented with 100 µg uracil/uridine ml⁻¹ as required. All yeast cultures were incubated at 30°C, except for experiments on the kinetics of Sap2p secretion by S. cerevisiae and C. albicans which were conducted at 37°C. Growth rates were monitored by measuring OD₆₀₀. Media were solidified with 2% (w/v) agar. Germ tube formation was evaluated by incubating in 5% (v/v) newborn calf serum (Gibco-BRL) for 3 h at 37°C.

PCR amplification of SAP2 gene. Genomic DNA from C. albicans LAM-1, obtained as described by Magee et al. (1987), was used as template for PCR amplification of SAP2. The two primers were 5'-CGGGATATCAACAAACCCTAGTACATCACCC and 5'-CTGGAGGCTTCACCCCTCTACTTATTAGTCAA. These primers flank the SAP2 coding sequence with its own signal peptide. The underlined sequences indicate EcoRV and SacI restriction sites, respectively. The 100 µl PCR reaction contained 1 µg genomic DNA template, 1 µg each of the two primers, 400 µM each of dATP, dGTP, dCTP and dTTP, 10 µl DMSO, 2 U Vent DNA polymerase (New England Biolabs) and 1 x Vent buffer. The PCR program was 94°C for 1 min, 60°C for 1 min and 72°C for 2 min for 30 cycles. A 1244 bp PCR product was gel-purified and cloned into pBluescript KS II (+) (Stratagene) after digestion with EcoRV and SacI. The PCR product sequence was verified by double-strand sequencing with universal and internal primers (Sanger et al., 1977).

Plasmid constructions. Recombinant DNA manipulations were done by standard methods (Sambrook et al., 1989). Plasmid pVTU-SAP2 was constructed by inserting the SAP2 PCR product, digested by EcoRV and EcoRII, into the EcoRII site of S. cerevisiae shuttle vector pVT102-U (Vernet et al., 1987). A negative control, pVTU-asAP2, carried SAP2 in antisense orientation. pVT102-U is a 2µ-based plasmid bearing the ADH1 promoter (ADH1p), its terminator region and the URA3 marker gene. From pVTU-SAP2, a 2 kb Spbl fragment containing SAP2 downstream of ADH1p, was blunted with T4 DNA polymerase and inserted into the Smal site of pRS306, a S. cerevisiae integrative plasmid containing...
Table 1. Yeast strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. cerevisiae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cJABYS86</td>
<td>MATα leu2 ura3-52 his3 pra1 prb2 prc1 cps</td>
<td>A. H. Bussey (McGill University, Canada)</td>
</tr>
<tr>
<td>PUB754</td>
<td>MATα ura3-52 pra1 prb2 prc1 cps</td>
<td>This study</td>
</tr>
<tr>
<td>SEY6210</td>
<td>MATα leu2-3,112 ura3-52 his3A200 lys2-801 trp1Δ901 sucA2Δ9</td>
<td>Robinson et al. (1988)</td>
</tr>
<tr>
<td>Y55</td>
<td>Laboratory isolate, HO</td>
<td>Clemons et al. (1994)</td>
</tr>
<tr>
<td>YJM128</td>
<td>Clinical isolate</td>
<td>Clemons et al. (1994)</td>
</tr>
<tr>
<td>YJM273</td>
<td>Clinical isolate</td>
<td>Clemons et al. (1994)</td>
</tr>
<tr>
<td>C. albicans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAI4</td>
<td>Δura3::imm434/Δura3::imm434</td>
<td>Fonzi & Irwin (1993)</td>
</tr>
<tr>
<td>LAM-1</td>
<td>Clinical isolate</td>
<td>Lacasse et al. (1990)</td>
</tr>
<tr>
<td>SC5314</td>
<td>Clinical isolate</td>
<td>Gillum et al. (1984)</td>
</tr>
</tbody>
</table>

the URA3 marker gene (Sikorski & Hieter, 1989). This plasmid was named pRS-SAP2. Finally, the C. albicans vector containing C. albicans ADH1p and URA3 marker, YPB-ADH1pL (kindly provided by A. J. P. Brown, University of Aberdeen, UK), was used to insert the 1244 bp EcoRV–Ecl136II SAP2 fragment into EcoRV site under the control of C. albicans ADH1p. This construct was named pYPB-SAP2. A negative control plasmid, pYPB-mSAP2, was generated by inserting a mutated gene, sap2. The mutation was introduced by cleavage of SAP2 with BamHI, filled-in with Klenow DNA polymerase and religated. This introduced a frameshift mutation (verified by sequencing) after the sequence encoding aa 77 and a premature stop codon 9 bp (3 aa) further downstream.

Yeast transformation. S. cerevisiae strains grown overnight in YPD medium at 30 °C, were transformed using the lithium acetate/ssDNA/PEG procedure described by Schiestl et al. (1993). Strains cJABYS86 (S86), PUB754 (754) and SEY6210 (6210) were transformed with pVTU-SAP2. PUB754, a His+ Leu+ derivative of S86, was obtained by two separate “one-step gene replacement” transformations with HIS3 and LEU2 DNA fragments (Rothstein, 1983). Integration of SAP2 in the S. cerevisiae URA3 locus was done by transforming strain 754 with pRS-SAP2, linearized by NcoI in URA3. Negative controls were also constructed by transforming strain 754 with Ncol-linearized plasmid pRS306.

Transformation of C. albicans CAI4 was done by the spheroplast method as described by Rose et al. (1990), with minor modifications. Briefly, CAI4 yeast cells grown overnight in YPD were diluted in YNB-BSA medium (supplemented with uridine) to an OD_{600} of 0.2. Then, exponentially growing cells (OD_{600} of 0.5) were used to prepare the spheroplasts. pYPB-SAP2 and pYPB-mSAP2 plasmids were linearized by cutting at the KpnI site within SAP2 and used to transform the spheroplasts by integration at the SAP2 locus. The S. cerevisiae and C. albicans transformants, selected by complementation of the ura3 mutation, were grown on CAT plates.

Proper integration was evaluated by Southern blotting analysis (Belhumeur et al., 1993). Genomic DNA from S. cerevisiae transformants, prepared as described by Hoffman & Winston (1987), was digested with AvaII and probed with a 693 bp EcoRV–Smal URA3 (see Fig. 2a) or a 597 bp BamHI–KpnI SAP2 restriction fragment. C. albicans genomic DNA, prepared according to Magee et al. (1987), was digested with KpnI and probed with a 265 bp PsI–DraI SAP2 DNA fragment (see Fig. 2b).

SDS-PAGE and Western blotting. Intra- and extracellular protein extracts from S. cerevisiae plasmid transformants grown for 18 h in CAT medium at 30 °C were obtained by lysing with glass beads (Harlow & Lane, 1988) and acetone precipitation, respectively. One-tenth of the original extract volume was loaded in a 12% polyacrylamide separating gel to perform SDS-PAGE (Laemmli, 1970). For time course evaluation of Sap2p expression, 60 μl culture supernatants was analyzed by SDS-PAGE. Following electrophoresis, proteins were transferred onto nitrocellulose membranes (Towbin et al., 1979). Membranes were blocked with 2% (w/v) skim milk in Tris-buffered saline (TBS: 10 mM Tris/HCl, pH 7.5, 150 mM NaCl) and washed between steps with TBS containing 0.1% Tween 20 (TBST). Membranes were incubated for 1 h with mouse anti-Sap2p mAb IFG3, kindly provided by T. L. Ray (University of Iowa), diluted 1:500 in TBS/2% skim milk. The bound antibody was detected using alkaline-phosphatase-conjugated goat anti-mouse IgG (Gibco-BRL) diluted 1:5000 in TBS/2% skim milk.

Enzyme assays. Proteolytic activity was quantified by the method of Milewski et al. (1994) with minor modifications. Briefly, culture supernatants (150 μl) were mixed with 1% BSA in 50 mM sodium citrate, pH 3.5 (600 μl). After 1 h incubation at 37 °C, reactions were stopped by adding 400 μl 10% (w/v) TCA. Samples were cooled in an ice bath for 10 min and precipitated proteins were removed by centrifugation at 5000 g for 10 min. The A_{540} of the supernatants was measured and corrected for background using a control (for each point) in which TCA solution was added prior to the culture supernatant. One unit of enzyme activity was defined as the amount of enzyme causing a ΔA_{540} of 0.1 in 1 h.

Pathogenicity in vivo. The virulence of S. cerevisiae and C. albicans transformants as well as their parental strains was evaluated in murine models of oral and systemic candidiasis. BAL:CD-1 (ICR) BR female mice, weighing 22–24 g, were obtained from Charles River Breeding Farms (St Constant, Québec, Canada) and were kept at the University of Montreal Animal Care Unit. For experimental infections, the yeast inoculum was prepared from cells grown overnight in CAT medium at 30°C.

The oral infection model described by Chakir et al. (1994) was used with minor modifications. Briefly, both S. cerevisiae and C. albicans yeast cells were washed twice in sterile 0.01 M PBS (pH 7.4) and counted in a haemocytometer. Cells (1 x 10^6) were distributed in sterile plastic microfuge tubes and pelleted by centrifugation at 13000 g. Six mice per strain were anaesthetized intraperitoneally with 0.35 ml ketamine (10 mg ml^{-1}). They were then inoculated by topical application into the oral cavity using a sterile calcium alginate swab...
(Fisher Scientific). A longitudinal quantification of the microorganisms in the oral cavities of individual mice was done by daily oral swabbing until 8 d post-inoculation. Swabs used for sampling were dissolved in 2 ml volumes of Ringer's citrate buffer (Rodrigue et al., 1989) and serial dilutions in PBS were plated on CAT medium supplemented with 50 mg chloramphenicol L–1 (CAT-Chl). Plates were incubated at 30 °C and c.f.u. were counted.

Experimental murine systemic infection (Clemons et al., 1994) was used to study S. cerevisiae virulence. Mice were inoculated intravenously with 2 x 10³ or 6 x 10³ cells, previously washed twice in sterile saline. Six mice per yeast strain were killed at 1, 2 or 4 weeks after infection. To determine organ burden, brains and kidneys were removed aseptically, homogenized in 5 ml sterile saline and plated on CAT-Chl and Sabouraud supplemented with chloramphenicol (SDA-Chl) for determination of c.f.u.

The virulence of C. albicans strains was also evaluated in a model of systemic candidiasis. Mice were inoculated intravenously with 5 x 10³ cells, previously washed twice in PBS. Mice were observed daily for signs of morbidity over 15 d. Moribund animals were scored as non-survivors and euthanized by CO₂ inhalation. To evaluate tissue invasion, additional groups of infected mice were sacrificed at 1, 2, or 6 d post-inoculation. One kidney from each animal was removed and prepared for histological analysis. They were fixed in 10% formalin, embedded in paraffin, sectioned and stained by the hortocort procedure (Luna, 1992). The remaining kidney and the liver were also removed aseptically, weighed and homogenized in 5 ml PBS. Homogenates were plated on CAT-Chl and SDA-Chl and incubated at 30 °C for colony counting. Data were expressed as c.f.u. (g kidney or liver)⁻¹. Several colonies of C. albicans were isolated from both media to verify the in vivo stability of SAP2 integration by Southern blotting as described above.

Zymolase and NaCl resistance. A zymolase test was used to compare the sensitivity of the cell wall of transformants and parental strains (Lussier et al., 1997). S. cerevisiae and C. albicans strains were grown in CAT medium to exponential phase (OD₆₀₀ of 0.6), washed twice in sterile saline and resuspended in sterile zymolase buffer (50 mM Tris/HCl, pH 7.4) at an OD₆₀₀ of 0.635. Aliquots of 400 µl were mixed with 100 µl zymolase 100T (1 mg ml⁻¹) or 100 µl zymolase buffer (controls). After 1 h incubation at 37 °C with gentle shaking, 5 µl serial dilutions were spotted on CAT agar medium. C. albicans and S. cerevisiae strains were also tested for NaCl resistance. Briefly, cultures grown overnight in CAT medium were patched onto CAT plates with 0, 0.2, 0.6, 1.0, 1.4, 1.8, 2.2 or 2.6% NaCl. Sensitivity to zymolase and NaCl was determined by comparison of the level of growth after incubation at 30 °C.

Statistical analysis. The data were fed to the SAS system (SAS Institute, Cary, NC, USA). The Kaplan & Meier (1958) product limit estimate was used to analyse survival data and plot the survival function. The Wilcoxon method (Dawson-Saunders & Trapp, 1990) was applied to compare the survival functions of experimentally infected mouse populations and differences were considered significant at the 0.01 level. Differences in weights and c.f.u. (g kidney)⁻¹ were compared among mouse populations by using the general linear models procedure two-way analysis of variance, conducted with two factors, one between (strain) and one within (time). Significant interactions (P < 0.01) were further analysed using the Bonferroni (Dunn) t-test (Dawson-Saunders & Trapp, 1990) and the resulting comparisons were considered significant at the 0.01 level.

RESULTS

Expression and secretion of Sap2p by S. cerevisiae

As an initial approach toward heterologous expression of C. albicans SAP2 in S. cerevisiae, we performed a PCR amplification of this gene from C. albicans LAM-1. The 1244 bp PCR product containing the native prepro and mature coding regions was cloned into the multicopy expression vector pVT102-U downstream of the constitutive ADH1 promoter, to create the plasmid pVTU-SAP2 (sense orientation). A negative control, pVTUaSAP2 (antisense orientation), bearing the PCR product in opposite orientation was also constructed. These recombinant plasmids were transformed into S. cerevisiae 6210 and S86, the latter defective in intracellular proteinases (Table 1).

The expression of Sap2p was evaluated by Western blotting in intra- and extracellular extracts. As shown in Fig. 1 (lanes 3, 4 and 6), a single positive signal of approximately 42 kDa was detected in the extracts of strains transformed with pVTU-SAP2 (sense orientation). A decreased loading revealed additional forms of 39 and 45 kDa (data not shown). The largest amount of Sap2p was detected in the extracellular fraction (secreted), indicating that the secretion signal was fully functional in S. cerevisiae. In addition, there was more abundant production of Sap2p by strain S86, the intracellular proteinases mutant, compared to 6210 (Fig. 1, lanes 4 and 6). We could not determine whether this difference was due to the lack of these proteinases, since these strains are not isogenic. In addition, degradation of casein was demonstrated in a Petri dish assay (Colina et al., 1996a) using uncentrenced culture supernatant

![Fig. 1. Western blot analysis of intra- (I) and extracellular (E) proteins of S. cerevisiae S86 and 6210 plasmid transformants (with sense or antisense SAP2 constructs) grown in CAT medium for 18 h at 30 °C and probed with an anti-Sap2p mAb. Loaded sample volumes were adjusted to equivalent mass cultures.](image-url)
Expression of *C. albicans* Sap2p and virulence

Fig. 2. Southern blot analysis of wild-type and selected transformants of (a) *S. cerevisiae* and (b) *C. albicans*. Top, integration sites with probes indicated by thick lines. Bottom, *S. cerevisiae* and *C. albicans* genomic DNAs digested with *AvrII* and *KpnI*, respectively, and probed with 32P-labelled *EcoRV-Smal* (*S. cerevisiae*) or *PstI-DraI* SAP2 (*C. albicans*) restriction fragments. Shaded areas represent the chromosomal copy of *URA3* and SAP2.

of S86 (sense orientation), but was absent in the antisense orientation (data not shown). Based on these results, we decided to select strain S86 harbouring pVTU-SAP2 for further experiments. No anti-Sap2p-reacting material was detected in the strain transformed with pVTU-aSAP2 (antisense orientation; Fig. 1, lanes 1 and 2).

Overall, these findings indicated that the recombinant enzyme was efficiently expressed and secreted into the culture medium and that the signal sequence of *C. albicans* SAP2 was functional in *S. cerevisiae*.

Integrative transformation of *S. cerevisiae* and *C. albicans*

To produce stable *S. cerevisiae* and *C. albicans* transformants that could be used in animal models and for further genetic analysis, plasmids carrying SAP2 were integrated into the genome by homologous recombination.

(i) *S. cerevisiae*. The integrative plasmid, pRS-SAP2 (see Methods), was linearized at the *NcoI* site in *URA3* and transformed into strain 754. A negative control was obtained by integrating pRS306 without insert. Proper integration was evaluated by Southern blotting after digestion of parental and transformant genomic DNAs with *AvrII*. As shown in Fig. 2(a), a single 2.7 kb fragment hybridized to the *URA3* probe in the parental strain (754) as predicted. In positive transformants (884, 885), we expected a 9.1 kb fragment, resulting from the integration of pRS-SAP2. Unexpectedly, both strains gave a positive signal larger than 15 kb which can be interpreted as a double integration. Because of satisfactory expression of Sap2p, these strains were selected for further studies (see below). A 7.1 kb band was detected in negative control 894, corresponding to the integrated vector without SAP2. These findings were confirmed by probing the same blot with a radiolabelled SAP2 DNA fragment (data not shown).

(ii) *C. albicans*. Plasmids pYPB-SAP2 and pYPB-mSAP2 carrying the wild-type and mutated SAP2, respectively, under the control of *ADH1p* were linearized at the *KpnI* site to target the integration into the SAP2 locus. Genomic DNAs were digested with *KpnI* and probed with the SAP2 fragment (see Methods). In the parental strain (CAI4), the SAP2 probe hybridization resulted in a single band larger than 13 kb derived from the wild-type alleles of SAP2. The transformants S1, S2, N1 and N2 had an additional 13 kb fragment, which corresponds in size to the integrated construct (Fig. 2b).

Kinetics of Sap2p secretion by *S. cerevisiae*

The time course for proteinase secretion was investigated in media containing free amino acids from acid hydrolysis of casein (CAT), or BSA as nitrogen source (YNB-BSA). In CAT medium, positive transformants 884 and 885 and negative control 894 showed growth
rates similar to parental strain 754 (Fig. 3a, left). Growth in YNB-BSA medium was restricted to strains harbouring SAP2, suggesting their ability to use BSA as sole nitrogen source (Fig. 3a, right). However, it is noteworthy to mention that the growth rates in this medium were lower than in CAT.

In both media, secreted proteolytic activity was detected exclusively in those transformants carrying SAP2 (Fig. 3b). However, the level of activity was 1.7-fold higher in CAT than in YNB-BSA for the same cell density. This could reflect the greater physiological activity of the cells grown in the former medium. In CAT medium, the maximum level of proteinase activity was attained at the beginning of the stationary phase (Fig. 3b, left).

Additional information on Sap2p secretion was obtained from Western blotting analysis of 885 transformant supernatants. Sap2p was detectable at the beginning of the exponential phase, after 6 and 24 h of incubation in CAT and YNB-BSA media, respectively (Fig. 3c). In both media, the protein was processed to three forms.
Expression of *C. albicans* Sap2p and virulence

Fig. 4. Kinetics of Sap2p secretion by *C. albicans* positive transformants S1 (●) and S2 (○), negative controls N1 (■) and N2 (□), and parental strain CAI4 (●) grown in 1% CAT (left) or YNB-BSA (right) media at 37 °C. At the indicated times, culture samples were evaluated for growth (a), extracellular proteolytic activity (b) and Sap2p expression in S2 and N1 (Western blot) (c). Data are mean values of duplicate experiments.
with approximate molecular masses of 45, 42 and 39 kDa. The middle 42 kDa form co-migrated with Sap2p purified from concentrated culture filtrate of C. albicans LAM-1, consistent with our previous observations (Colina et al., 1996b). The larger 45 kDa form may result from altered post-translational modification or incomplete processing of the protein by S. cerevisiae and the smaller 39 kDa form may represent a degradation product. Using a zymogram procedure described previously (Colina et al., 1996b), it was shown that each of the three bands had enzymatic activity using mucin as substrate (data not shown). No Sap2p was detected in negative control 894 (data not shown).

Kinetics of Sap2p secretion by C. albicans

As for S. cerevisiae, C. albicans was grown in CAT or YNB-BSA medium, not inducing or inducing SAP2 expression, respectively. In CAT medium, the growth rates of the secretor-transformant S2, as well as the negative controls N1 and N2 (with mutated sap2), were indistinguishable from that of the parental strain, CAI4. However, the secretor-transformant S1 grew far more slowly than CAI4 (Fig. 4a, left). In YNB-BSA medium, transformants S1 and S2 displayed similar growth rates, which were greater than those of CAI4 and negative controls (Fig. 4a, right). Overall, cultures of S2, N1, N2 and CAI4 reached a higher cell density when media were supplemented with amino acids rather than BSA as nitrogen source.

Under non-inducing conditions (CAT medium), secreted proteolytic activity was detectable only in the supernatants of transformants S1 and S2 (Fig. 4b, left). These results indicated that SAP2, placed under ADH1p, was constitutively expressed in transformants S1 and S2. In YNB-BSA medium, conditions in which wild-type SAP2 is induced, proteolytic activity was detected in CAI4 and negative controls as well as in secretor-transformants. However, in the latter strains, activity was 3-3-fold (S1) and 1-75-fold (S2) higher than in CAI4 or negative controls (Fig. 4b, right). Although higher proteolytic activity in S1 could have possibly resulted from the integration of multiple copies of the ADH1 fusion, this was unlikely because the intensities of the bands for wild-type SAP2 and integrated vector were individually comparable in the Southern analysis of S1 and S2 (Fig. 2b). Enhanced proteolytic activity in YNBBSA compared to CAT medium (Fig. 4) may have resulted from the presence of other Saps produced in YNB-BSA (Hube et al., 1994).

Finally, the supernatants of S2 and N1 strains were selected to evaluate the presence of Sap2p. In CAT medium, Sap2p of S2 (apparent molecular mass 42 kDa) was detectable after 9 h incubation, corresponding to the exponential phase (Fig. 4c, left). No protein was detected in N1 supernatants (data not shown). Interestingly, when BSA was included in the culture medium (Fig. 4c, right), S2 produced detectable Sap2p 3 h earlier than N1. The slower growth rate of N1 compared to S2 correlated with the apparent lower level of secretion of Sap2p.

Germination rates of the transformants and parental strain were indistinguishable. After 3 h of incubation at 37 °C, more than 70% of blastoconidia had germinated.

Pathogenicity in vivo

The virulence of S. cerevisiae negative (894) and positive (884, 885) transformants was evaluated in experimental oral or systemic infection in mice. In the former, all three strains were completely cleared from the oral cavity 5 h after inoculation (data not shown). A similar result was obtained after systemic infection. No c.f.u. were recovered from kidneys or brains of mice over a period of 28 d after infection with each of the S. cerevisiae strains. The inoculum of 2 × 10⁷ cells was selected in accordance with a study by Clemons et al. (1994) which evaluated the pathogenic potential of various clinical and laboratory isolates of S. cerevisiae. In addition, when the experiment was repeated using 6 × 10⁷ cells to exclude the possibility of an insufficient inoculum, cultures of homogenized organs remained completely negative for all strains. A control experiment was conducted using a 2 × 10⁷ cells inoculum of S. cerevisiae Y55 (avirulent laboratory strain) and virulent clinical isolates YJM128 and YJM273, as described by Clemons et al. (1994). Quantification of c.f.u. in kidneys and brains of mice produced results very close to those reported by Clemons et al. (1994) (data not shown). This confirmed that lack of virulence with strains 884, 885 and 894 was not due to a technical problem.

C. albicans parental strain SC5314 and positive (S1, S2) and negative (N1, N2) transformants were compared for their virulence in two models of candidiasis. In the murine oral model, all four transformants were completely cleared 24 h post-inoculation. Positive control C. albicans LAM-1 produced an initial decrease in c.f.u. at 24 h followed by a mean peak of 5.6 × 10⁶ c.f.u. 48 h after infection, as reported by Lacasse et al. (1990). C. albicans parental strain SC5314 was less virulent than LAM-1 in the oral model, producing a peak of 3.0 × 10⁶ c.f.u. Virulence of C. albicans transformants was also determined in a murine model of systemic candidiasis. In a first experiment, in which survival of mice was used as end point (Fig. 5), no mice died after intravenous infection with strain S1 which was thus completely avirulent. However, strain SC5314 was significantly (P < 0.0007) more virulent than S2, N1 and N2, which were not significantly different between themselves (P > 0.15). A second experiment evaluated kidney and liver burdens of the same strains after intravenous infection. Comparison of organ weights revealed no reproducibly significant differences 1, 3 and 6 d after infection with strains SC5314, S1, S2, N1 and N2 (data not shown). However, comparison of mean log(c.f.u.) recovered from kidneys on these same days showed a strikingly decreased c.f.u. g⁻¹ for strain S1 compared to the other four strains, which between themselves were
Fig. 5. Survival of CD-1 mice infected intravenously with 5×10^9 cells of C. albicans transformants S1 (\bullet, $n = 12$), S2 (\square, $n = 15$), N1 (\blacksquare, $n = 14$), N2 (\varnothing, $n = 12$) and parental strain SC5314 (\oplus, $n = 14$).

Table 2. Comparative c.f.u. of C. albicans parental strain and transformants recovered from kidneys at various times during disseminated infection of mice

<table>
<thead>
<tr>
<th>Day</th>
<th>Strain</th>
<th>No. of animals</th>
<th>log[c.f.u. (g kidney)$^{-1}$] (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SC5314</td>
<td>7</td>
<td>4.45 ± 0.75</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>7</td>
<td>0.88 ± 1.39</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>7</td>
<td>4.57 ± 0.27</td>
</tr>
<tr>
<td></td>
<td>N1</td>
<td>4</td>
<td>5.93 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>5</td>
<td>5.53 ± 0.52</td>
</tr>
<tr>
<td>3</td>
<td>SC5314</td>
<td>7</td>
<td>5.04 ± 0.51</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>6</td>
<td>0.88 ± 0.88</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>6</td>
<td>5.99 ± 0.74</td>
</tr>
<tr>
<td></td>
<td>N1</td>
<td>6</td>
<td>5.15 ± 0.60</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>5</td>
<td>5.10 ± 0.73</td>
</tr>
<tr>
<td>6</td>
<td>SC5314</td>
<td>7</td>
<td>4.98 ± 0.59</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>4</td>
<td>5.58 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>N1</td>
<td>5</td>
<td>5.78 ± 0.28</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>6</td>
<td>5.55 ± 0.31</td>
</tr>
</tbody>
</table>

Counts in liver were 2 (day 1) and 4 log(c.f.u.) (days 3 and 6) lower than those obtained from the kidneys. However, the relationship between strains remained the same. All strains produced equivalent liver c.f.u. on the three observation days, except for strain S1 which yielded negative cultures (data not shown). Finally, randomly selected colonies of S1, S2, N1 and N2 isolated from the kidneys of mice showed no modification at the SAP2 locus by Southern blotting.

In the previous experiment, one kidney was removed for c.f.u. quantification and the other for histological analysis. Macroscopic examination of the kidneys showed several surface microabcesses 3 and 6 d after infection for all strains except S1. Interestingly, larger microabcesses were noted for strain S2 after 3 d, compared to the other strains. Histopathological examination demonstrated a mixture of blastoconidia, hyphae and pseudohyphae in the cortex on days 1 and 3 with strains SC5314, N1, N2 and S2. However, no fungi were observed on these same days in kidneys of mice infected with strain S1. Moreover, strain SC5314 produced several cortical abcesses on day 1, while strains N1, N2 and S2 produced very rare blastoconidia and hyphae. On day 3, more widespread fungi were seen with strain SC5314 compared to day 1, with extension into the renal medulla; N1, N2 and S2 were very sparse or absent.

Zymolysate and NaCl resistance

We observed decreasing viability of S. cerevisiae and C. albicans transformants expressing or overexpressing Sap2p on CAT medium held for 5 d at 4 °C, after initial growth at 30 °C for 48 h. This could have potentially resulted from cell wall damage produced by massive expression and/or secretion of the protease. The same hypothesis could also account for the absence of increased virulence of positive transformant S2 and the decreased virulence of S1 in vivo, compared to the negative controls. To assess this possibility, two different cell wall resistance assays were done. In both the zymolysate and NaCl resistance assays, all S. cerevisiae negative control and positive transformants demonstrated the same level of sensitivity. However, treatment with zymolysate resulted in a 2 log greater decrease in viability of C. albicans strain S1, compared to SC5314, S2, N1 and N2. In addition, growth of strain S1 was inhibited by 1-4 % NaCl, compared to 2-2 % for the other four C. albicans strains.

DISCUSSION

This is the first report describing the construction of stable S. cerevisiae and C. albicans integrative transformants constitutively secreting Sap2p. We used the S. cerevisiae or C. albicans ADH1 promoter (Bertram et al., 1996) on expression plasmids to overexpress C. albicans SAP2 in both yeast species. The ADH1 promoter has been used in studies of gene expression in C. albicans (Cormack et al., 1997).

On the basis of SAP2 DNA and Sap2p N-terminal sequences, the mRNA is translated as a preproform, 56 aa larger than the mature protein. The prepropeptide has a signal peptide sequence of 14–21 aa with 1–4 putative signal peptidase cleavage sites and two Lys-Arg sequences, one of which is immediately before the N terminus of the mature form (Wright et al., 1992; Hube, 1996). Thus, Sap2p was expected to be processed in S. cerevisiae because it has been shown that the cleavage of C. tropicalis Sap heterologously expressed in S. cerevisiae is mediated by KEX2-dependent proteolysis (Togni et al., 1996).

The Sap2p signal peptide was functional in S. cerevisiae, allowing the secretion of three active forms of Sap2p. While we cannot rule out the possibility of post-translational modification, the higher molecular mass
form (45 kDa) may result from incomplete processing of the proteinase by \textit{S. cerevisiae}. The secretion of a premature form may be due to saturation of the processing system as a consequence of overexpression of the protein. Previous reports have shown that heterologous expression of \textit{C. tropicalis} SAPT1 (Togni et al., 1996) or \textit{C. albicans} SAP1 (Smolenski et al., 1997) in \textit{S. cerevisiae} resulted in secretion of extracellular active enzyme identical to the native form, indicating that no oligosaccharide chains were added. In both cases, expression was under the control of inducible promoter of \textit{S. cerevisiae}. The absence of enhanced virulence of \textit{S. cerevisiae} SAP2 transformants is consistent with the long-held view that \textit{C. albicans} possesses a multiplicity of properties, each with a low propensity for enhancing fungal infectivity, none necessarily dominant and all, even in combination, unable to overcome fully intact host defences (Odds, 1988).

Unknown mutations occurring concurrently in all strains would be unlikely to explain the significantly enhanced survival of mice infected with the \textit{C. albicans} negative control (N1, N2) or positive SAP2 transformant (S2), compared to parental strain SC5314. In addition, although N1, N2 and S2 only contain one copy of \textit{URA3}, while the wild-type SC5314 has two copies, a gene dosage effect is also unlikely to be responsible for the attenuated virulence of N1, N2 and S2 since heterozygous \textit{URA3} mutants were as virulent as parental strains in experimentally infected mice (Leberer et al., 1997). Because the negative controls (N1, N2) would have been expected to be as virulent as the wild-type SC5314, mutated SAP2 may have been translated into a truncated protein, resulting in saturation of the secretory pathway.

Although positive \textit{C. albicans} transformants S1 and S2 were expected to be isogenic, they had different phenotypes. S1 grew much slower in CAT medium compared to all other strains, including the wild-type SC5314. In addition, this strain had higher proteolytic activity in YNB-BSA medium and was avirulent after systemic infection in intact mice. The strikingly decreased virulence of strain S1 and its enhanced cell wall sensitivity compared to the other \textit{C. albicans} transformants suggest that SAP2 overexpression may have damaged the cell wall, resulting in enhanced killing by polymorphonuclear leukocytes and other intact host defences. Alternatively, an unknown mutation in S1 causing slower growth in CAT medium may also have attenuated virulence. With regard to strain S2, a mutation may have caused a reduced secretion of Sap2p, which in turn caused less damage to the cell wall of \textit{C. albicans}. Lack of enhancement of virulence of positive \textit{C. albicans} transformant S2 compared to negative controls N1 and N2 may have resulted from unlikely spurious mutations during transformation, the route of infection, the absence of immunosuppression, or defects in other virulence factors due to saturation of secretory pathways. In this regard, all \textit{C. albicans} transformants maintained the ability to form pseudohyphae and hyphae \textit{in vivo}. Although Sap2p is the most abundant transcript of \textit{C. albicans} yeast cells, increased virulence \textit{in vivo} may require not only its enhanced expression, but also the early participation of other putative
virulence factors, including members of the Sap iso-
zyme family such as Sap4, 5 and 6 which are produced
by the hyphal form of C. albicans. Finally, an absence
of SAP2 constitutive expression in the animal models was
unlikely because ADH1 is a strong constitutive pro-
moter. Furthermore, C. albicans transformants isolated
from the kidneys of mice showed no modification at the
SAP2 locus. Further studies will be required to determine
whether differences in virulence would be observed in a
rat vaginal model between the wild-type and strains
overexpressing SAP2. Although SAP2 constitutive ex-
pression did not augment virulence, this new approach
may be a useful paradigm in the study of virulence
attributes in Candida and other fungal pathogens.

ACKNOWLEDGEMENTS

This study was supported by grants from the Medical
Research Council of Canada and the Fonds de la Recherche en
Santé du Québec. A. R. C. was the recipient of a studentship
from the Consejo Nacional de Investigaciones Científicas y
Tecnológicas, Caracas, Venezuela. We are grateful to W.
Fonzi for providing C. albicans CA4, to A. H. Bussey for S.
cerevisiae cIABY586 and to K. V. Clemons for S. cerevisiae
YJM128, YJM273 and Y55. We also wish to thank A. J. P.
Brown for vector YPB-ADHIpL and T. L. Ray for anti-Sap2
mAb. We thank Annie-Claude Miailhe for excellent technical
assistance and Marc Fredette, Michel Lamoureux and Yves
Lepage for statistical analysis. This work was presented in
part at the 97th General Meeting of the American Society for
Microbiology, Miami Beach, FL, USA, 4–5 May, 1997.

REFERENCES

secretory acid proteinase in Candida albicans. J Gen Microbiol
137, 2455–2461.

Belhumeur, P., Lee, A., Tam, R., Di Paolo, T., Fortin, N. & Clark,
mutant in Saccharomyces cerevisiae: GTP-binding proteins
involved in the maintenance of nuclear organization. Mol Cell
Biol 13, 2152–2161.

Bertram, G., Swoboda, R. K., Gooday, G. W., Gow, N. A. R. &
albicans ADH1 gene encoding an immunogenic alcohol de-
hydrogenase. Yeast 12, 115–127.

proteinase by proteolytic Candida spp. during experimental

Cassone, A., De Bernardis, F., Mondello, F., Ceddia, T. & Agatensi,
L. (1987). Evidence for a correlation between proteinase secre-

Differential pattern of infection and immune response during
experimental oral candidiasis in BALB/c and DBA/2 (H-2b)

Clemens, K. V., McCusker, J. H., Davis, R. W. & Stevens, D. A.
(1994). Comparative pathogenesis of clinical and nonclinical

Colina, A.-R., Aumont, F., Belhumeur, P. & de Repentigny, L.
(1996a). Development of a method to detect secretory muci-

Colina, A.-R., Aumont, F., Deslauriers, N., Belhumeur, P. & de
Repentigny, L. (1996b). Evidence for degradation of gastro-
intestinal mucin by Candida albicans secretory aspartyl pro-

Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A. R., Falkow,
protein (yEGFP): a reporter of gene expression in Candida
albicans. Microbiology 143, 303–311.

Crandall, M. & Edwards, J. E., Jr (1987). Segregation of protease-
negative mutants from heterozygous Candida albicans. J Gen
Microbiol 133, 2817–2824.

Biostatistics. Norwalk, CT: Appleton & Lange.

De Bernardis, F., Cassone, A., Sturtevant, J. & Calderone, R.
(1995). Expression of Candida albicans SAP1 and SAP2 in

De Bernardis, F., Chiani, P., Ciccozzi, M., Pellegrini, G., Ceddia, T.,
Elevated aspartyl proteinase secretion and experimental patho-
genicity of Candida albicans isolates from oral cavities of subjects
infected with human immunodeficiency virus. Infect Immun 64,
466–471.

Candida albicans gene for orotidine-5'-phosphate decar-
boxylase by complementation of the S. cerevisiae and E. coli pyrF

preparation from yeast efficiently releases autonomous plasmids

of intracellular forms of secretory aspartic proteinase in Candida

Hube, B., Monod, M., Schofield, D. A., Brown, A. J. P. & Gow,
N. A. R. (1994). Expression of seven members of the gene family
encoding secretory aspartyl proteinases in Candida albicans. Mol
Microbiol 14, 87–99.

Hube, B., Sanglard, D., Odds, F. C., Hess, D., Monod, M., Schäfer,
W., Brown, A. J. P. & Gow, N. A. R. (1997). Disruption of each of
the secreted aspartate proteinase genes SAP1, SAP2 and SAP3 of

Kimberly, F., Bausch, K., Noonan, J., Huguenel, E. & Tamburini,
P. (1997). Role of aspartic proteases in disseminated Candida

Genetic evidence for role of extracellular proteinase in virulence of

Lacasse, M., Fortier, C., Trudel, L., Collet, A. J. & Deslauriers, N.
(1990). Experimental oral candidosis in the mouse: micro-
biological and histological aspects. J Oral Pathol Med 19,
136–141.

Received 26 January 1998; revised 20 April 1998; accepted 24 April 1998.