High exogenous concentrations of phenoxyacetic acid are crucial for a high penicillin V productivity in *Penicillium chrysogenum*

Claus M. Henriksen,† Jens Nielsen and John Villadsen

A high-penicillin-yielding strain of *Penicillium chrysogenum* was grown in continuous culture on a chemically defined medium with glucose as the growth-limiting component. The cultivations were operated at a constant dilution rate of 0.05 h\(^{-1}\) and the feed concentration of the penicillin V sidechain precursor phenoxyacetic acid was varied between 0 and 65 g l\(^{-1}\). Subsequent formation of penicillin V and by-products related to the penicillin biosynthetic pathway was monitored at steady state. It was established that the concentration of phenoxyacetic acid in the growth medium had to be kept high to obtain a high productivity of penicillin V. The specific production rate of penicillin V as a function of the phenoxyacetic acid concentration followed Michaelis-Menten-type kinetics, from which an overall apparent \(K_M\) value of 42 mM for the incorporation of intracellular phenoxyacetic acid into penicillin V could be obtained. High phenoxyacetic acid concentrations tended to lower the formation of the by-products 6-aminopenicillanic acid and 8-hydroxypenicilllic acid. Furthermore, the undesirable loss of the pathway intermediate isopenicillin N into the extracellular medium was lowered, whereas the opposite effect was observed for the pathway intermediate \(\delta\)-(L-\(\alpha\)-aminoadipyl)-L-cysteinyl-D-valine and the by-product 6-oxo-piperidine-2-carboxylic acid, the \(\delta\)-lactam form of \(\alpha\)-amino adipic acid.

Keywords: *Penicillium chrysogenum*, phenoxyacetic acid, steady-state continuous cultivation, penicillin V, by-products

INTRODUCTION

Amongst the bulk penicillins being produced industrially by fed-batch cultivations of *Penicillium chrysogenum*, penicillins V and G are by far the most important. These two penicillins are formed when the cultivation medium is supplied with phenoxyacetic acid (POA) and phenylacetic acid, respectively. In its natural habitat *P. chrysogenum* produces penicillins DF, F and K, which contain, respectively, hexenoic acid, \(\Delta^3\)-hexenoic acid and octenoic acid as sidechains. All the sidechain precursors are weak acids and are characterized as being amphipathic, i.e. one end of the sidechain precursor is hydrophobic while the other end is hydrophilic. The hydrophobic end is probably required both for the sidechain precursor and for the synthesized penicillin to diffuse readily across the plasma membrane. The different penicillins are formed when the sidechain precursors are coupled to the penam ring structure by the enzyme acyltransferase, using either isopenicillin N (IPN), 6-aminopenicillanic acid (6-APA) or another penicillin as substrate (Alvarez et al., 1993). However, the sidechain precursors have to be 'activated' before they become substrates for the acyltransferase. It is generally agreed that the activated form of the sidechain precursor is the CoA-ester form, but the mechanism behind this activation has still not been fully elucidated.

We have previously studied the influence of POA on the growth energetics of steady-state continuous cultures of *P. chrysogenum* (Henriksen et al., 1998). Since we found no negative physiological effects on the growth of *P. chrysogenum* from high extracellular POA concentrations at an extracellular pH of 6.50, the next step was...
to establish experimentally whether a high concentration of the sidechain precursor is a requirement for obtaining high productivities of penicillin. Here we report the influence of the extracellular POA concentration on the specific formation rates of penicillin V and by-products related to the penicillin biosynthetic pathway, i.e. \(\delta \)-(L-β-aminoadipyl)-L-cysteinyl-D-valine (ACV), IPN, 6-APA, 8-hydroxypenicilllic acid (8-HPA) and 6-oxopiperidine-2-carboxylic acid (OPC), the \(\delta \)-lactam form of a-aminoadipic acid.

METHODS

Strain. The high-penicillin-yielding strain of *P. chrysogenum* used was kindly donated by Novo Nordisk A/S, Bagsværd, Denmark. It is known to yield about 20–25 g penicillin V l\(^{-1}\) after 200 h fed-batch cultivation (Jørgensen et al., 1995).

Media. Both the batch medium and the feed during continuous operation were defined. The batch medium contained (l-l):

- 25 g sucrose, 1.6 g KH\(_2\)PO\(_4\), 0.5 g NaCl, 0.04 g FeSO\(_4\), 0.7 g MgSO\(_4\), 0.05 g CaCl\(_2\), 2H\(_2\)O, 0.5 ml Pluronic F68 (Fluka) and 5 ml trace metal solution. The feed was similar to the batch medium except for the sucrose, which was replaced by 15 g glucose and the phenoxyacetic acid, which was added in various concentrations up to 6.5 g l\(^{-1}\) (added as sodium phenoxyacetate). At steady-state conditions growth was limited by glucose. The trace metal solution contained (l-l):

- 10 g CuSO\(_4\), 5H\(_2\)O
- 40 g ZnSO\(_4\), 7H\(_2\)O
- 40 g MnSO\(_4\), H\(_2\)O

Cultivation conditions. All cultures were carried out in a high-performance Chemap bioreactor with an approximate working volume of 6.5 l (Nielsen & Villadsen, 1993). The bioreactor was placed on a load cell with an accuracy of ±20 g and operated for constant-mass continuous cultivation at a fixed dilution rate of 0.05 h\(^{-1}\). The temperature, pH, aeration rate and head space pressure were kept constant at 25-30 °C, 6.50, 1 vol. vol.\(^{-1}\) min\(^{-1}\) and 1.5 bar, respectively. The agitation rate was kept constant at a level sufficient to maintain a dissolved oxygen tension above 100% (air saturation at 1 bar). The batch cultures were inoculated with spores from rice cultures to an initial concentration of 46 \(\times 10^3\) spores kg\(^{-1}\). All rice cultures were prepared from the same stock of vials initially hydrolysed enzymically by invertase to glucose and leucovorin, leaving gluconic acid as the main carbon source (sucrose is metabolized in 50 M H\(_2\)SO\(_4\)).

Sampling. Cell-free samples were taken automatically by means of an in situ membrane module (Christensen et al., 1991) and collected for later analysis in a fraction collector positioned in a refrigerator. Biomass samples were taken manually. For dry weight measurements the samples were filtered, washed with water and dried at 105 °C until constant weight.

Steady state. Attainment of steady state was based on measurements of the biomass concentration, the oxygen consumption rate, the carbon dioxide evolution rate and the concentration of penicillin V in the cell-free samples. As illustrated by Christensen et al. (1995), the strain of *P. chrysogenum* we used is genetically unstable, resulting in a decrease in the penicillin productivity after more than 6-7 residence times. Hence all steady-state data were obtained during the first 6 residence times and after the steady state had been reached.

HPLC analysis of penicillin. Penicillin V, penicilloic acid V, \(p \)-hydroxypenicillin V, POA and \(p \)-hydroxyPOA were analysed as described by Christensen et al. (1994). Penicillin V, penicilloic acid V and \(p \)-hydroxypenicillin V were pooled together by converting penicilloic acid V and \(p \)-hydroxyPOA into penicillin V equivalents. Similarly, \(p \)-hydroxyPOA was converted into POA equivalents and reported as such.

HPLC analysis of 6-APA, 8-HPA, OPC and IPN. 6-APA, 8-HPA, OPC and IPN were quantified according to Henriksen et al. (1997). IPN was a kind gift from Gist-Brocades.

HPLC analysis of thiol-group-containing metabolites. Thiol-group-containing metabolites, including ACV, glutathione, cysteine and homocysteine, were measured by an HPLC method based on precolumn derivatization with the fluorescing reagent monobromobimane as follows.

HPLC equipment. The HPLC equipment was from Waters and consisted of two pumps (type 510), an autosampler/autoinjection system (type WISP 712), a column oven (type TCM) and a scanning fluorosence detector (type 470). The autoinjection system was equipped with a built-in cooling unit, maintaining the sample temperature at 4–5 °C. Data acquisition and pump control were performed by the 810 Baseline software from Waters. The column used was a Nova-Pak C-18 (300 x 3.9 mm) with 4 \(\mu \)m packing (Waters, part no. 11695) with a Nova-Pak C-18 precolumn (Waters, part no. 15220).

Eluents. The eluents were prepared with Milli-Q water, microfiltered through a filter with a pore size of 0.45 \(\mu \)m (Millipore catalogue no. HVLP4700) and degassed for 10–15 min by means of ultrasound. The two eluents A and B consisted of 85% (v/v) 43 mM acetic acid (Merck) + 15% (v/v) methanol (Merck) and 10% (v/v) 43 mM acetic acid + 90% (v/v) methanol, respectively. The pH of both eluents was adjusted to 4.0 by 18 M H\(_2\)SO\(_4\).

Gradient. The mobile phase was changed as a function of time as follows: 0–14 min 100% (v/v) A; 14–17 min linear gradient to 85% A and 15% B; 17–32 min 85% A and 15% B; 32–42 min linear gradient to 20% A and 80% B; 42–43 min 20% A and 80% B; 43–46 min linear gradient to 100% A; 46–55 min 100% A.

Separation and detection. The separation temperature and the flow of the mobile phase were set at 35 °C and 1.0 ml min\(^{-1}\), respectively. Fluorescence was detected with excitation at 370 nm and emission at 480 nm. The injection volume was 10 \(\mu \)l. Under these separation conditions the retention times within the same series of 10 measurements were as follows: cysteine, 4.56 ± 0.01 min; glutathione, 6.03 ± 0.01 min; homocysteine, 7.50 ± 0.01 min; ACV, 28.04 ± 0.04 min. Detection was linear up to 50 \(\mu \)M for all four components with a relative standard deviation of 0.6%, 1.0%, 0.8% and 1.0% for the peak area, respectively. The limit of detection was in the lower micromolar area.

Standards. Glutathione, cysteine and homocysteine were from Sigma. Bis-ACV was kindly supplied by Gist-Brocades. Samples containing 40 \(\mu \)l 1-25 mM of each standard dissolved in 50 mM phosphate buffer, pH 2.5, were stored at −20 °C and thawed on ice prior to analysis.

Sample preparation and derivatization. A 40 \(\mu \)l volume of each standard and sample from the cultivations was reduced by adding 10 \(\mu \)l freshly prepared NaBH\(_4\) (100 mg ml\(^{-1}\); Sigma)
Penicillin productivity in *P. chrysogenum*

Table 1. Symbols and abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACV</td>
<td>δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine</td>
</tr>
<tr>
<td>6-APA</td>
<td>6-Aminopenicillanic acid</td>
</tr>
<tr>
<td>C_{tot,cyt}</td>
<td>Total intracellular concentration of POA [mM]</td>
</tr>
<tr>
<td>C_{undiss,cyt}</td>
<td>Intracellular concentration of undissociated POA [μM]</td>
</tr>
<tr>
<td>8-HPA</td>
<td>8-Hydroxypenicillanic acid</td>
</tr>
<tr>
<td>IPN</td>
<td>Isopenicillin N</td>
</tr>
<tr>
<td>K_m</td>
<td>Michaelis–Menten constant [μM or mM]</td>
</tr>
<tr>
<td>K_{m,total}</td>
<td>Overall apparent Michaelis–Menten constant for the sequence of reactions leading to the incorporation of cytoplasmic POA into penicillin V [mM]</td>
</tr>
<tr>
<td>K_{m,undiss}</td>
<td>Overall apparent Michaelis–Menten constant for the sequence of reactions leading to the incorporation of cytoplasmic POA into penicillin V when assuming undissociated POA as being the only substrate [μM]</td>
</tr>
<tr>
<td>OPC</td>
<td>6-Oxopiperidine-2-carboxylic acid</td>
</tr>
<tr>
<td>POA</td>
<td>Phenoxyacetic acid</td>
</tr>
<tr>
<td>r_{ACV}</td>
<td>Specific net formation rate of ACV [nmol (g dry wt)^-1 h^-1]</td>
</tr>
<tr>
<td>r_{6-APA}</td>
<td>Specific net formation rate of 6-APA [μmol (g dry wt)^-1 h^-1]</td>
</tr>
<tr>
<td>r_{8-HPA}</td>
<td>Specific net formation rate of 8-HPA [μmol (g dry wt)^-1 h^-1]</td>
</tr>
<tr>
<td>r_{IPN}</td>
<td>Specific formation rate of IPN [μmol (g dry wt)^-1 h^-1]</td>
</tr>
<tr>
<td>r_{OPC}</td>
<td>Specific formation rate of OPC [μmol (g dry wt)^-1 h^-1]</td>
</tr>
<tr>
<td>r_p</td>
<td>Specific production rate of penicillin V [μmol (g dry wt)^-1 h^-1]</td>
</tr>
<tr>
<td>r_{p,max}</td>
<td>Maximum specific production rate of penicillin V [μmol (g dry wt)^-1 h^-1]</td>
</tr>
</tbody>
</table>

Symbols and abbreviations. The symbols and abbreviations used in this paper are shown in Table 1.

RESULTS AND DISCUSSION

Production of penicillin V

A series of continuous cultivations with a high-penicillin-yielding strain of *P. chrysogenum* was conducted on a chemically defined medium with glucose as the growth-limiting component at a fixed dilution rate of 0.05 h^-1. The penicillin V sidechain precursor POA was added to the feed in various concentrations between 0 and 6.5 g l^-1 and as soon as the feeding was initiated biosynthesis of penicillin V started. The strain used is known for its capability to oxidize POA into p-hydroxyPOA to some extent during fed-batch cultivations on a complex medium, and due to the rather broad substrate specificity of the acyltransferase, incorporation of p-hydroxyPOA into p-hydroxypenicillin V is observed (Jørgensen et al., 1995). During continuous cultivation on the chemically defined medium, oxidation of POA was measured as well, but at a very low level: p-hydroxyPOA accounted for less than 0.5% of the residual POA concentration. Formation of p-hydroxy-penicillin V was therefore also insignificant. Likewise, the level of penicilloic acid V formed by hydrolysis of penicillin V was very low. The difference between the POA concentration in the feed and the residual POA concentration in the bioreactor matched the amount of POA incorporated into penicillin V, which implies that POA is not metabolized by the applied strain of *P. chrysogenum*.

Fig. 1 shows the influence of the POA concentration in the feed on the steady-state specific production rate of penicillin V (r_p). At a POA concentration of 6.5 g l^-1 r_p...
incorporation rate of exogenous POA into penicillin V is seen to obey Michaelis-Menten type saturation kinetics. Thus, \(r_p \) can be expressed as equation (1), with, respectively, \(r_{p,\text{max}} \), \(C_{\text{total,cyt}} \), and \(C_{\text{undiss,cyt}} \) as the maximum specific production rate of penicillin V, the total intracellular POA concentration and the intracellular concentration of undissociated POA. \(K_{m,\text{total}} \) and \(K_{m,\text{undiss}} \) are the two Michaelis-Menten saturation constants.

\[
r_p = \frac{r_{p,\text{max}} C_{\text{total,cyt}}}{C_{\text{total,cyt}} + K_{m,\text{total}}} = \frac{r_{p,\text{max}} C_{\text{undiss,cyt}}}{C_{\text{undiss,cyt}} + K_{m,\text{undiss}}} \tag{1}
\]

When the experimental data are fitted to equation (1), values of 42 mM and 3.3 \(\mu \)M are obtained for \(K_{m,\text{total}} \) and \(K_{m,\text{undiss}} \), respectively. The high value for \(K_{m,\text{total}} \) confirms the low affinity towards POA as sidechain precursor for penicillin synthesis. If the enzyme responsible for the CoA-ester activation of POA exclusively activated the undissociated form of POA, as discussed by Henriksen et al. (1998) as an explanation for the sidechain precursor preference observed in \(P. \) chrysogenum, this enzyme possesses a very high affinity towards undissociated POA, as reflected by the low \(K_{m,\text{undiss}} \).

Formation of by-products related to the penicillin biosynthetic pathway

The production of penicillin is known to be accompanied by the formation of a series of different by-products related to the penicillin biosynthetic pathway (Jørgensen et al., 1995). Some of the by-products are simply intermediates from the pathway, i.e. ACV, IPN and 6-APA, or derived from these, for example 8-HPA, which is formed by carboxylation of 6-APA. Others are degradation products of penicillin, for example penicilloic acid. Finally, by-products such as OPC, the \(\delta \)-lactam form of \(\alpha \)-aminoacidic acid, are formed without a clear linkage to penicillin biosynthesis. The specific formation rates of ACV, IPN, 6-APA, 8-HPA and OPC (\(r_{\text{ACV}}, r_{\text{IPN}}, r_{\text{6-APA}}, r_{\text{8-HPA}} \) and \(r_{\text{OPC}} \), respectively) are depicted in Fig. 3. Since the carboxylation of 6-APA into 8-HPA is a rapid, non-enzymic reaction (Henriksen et al., 1997), the formation of 6-APA and 8-HPA has been treated as a single reaction. The specific formation rates of 6-APA and 8-HPA drop dramatically as soon as POA appears in the extracellular medium and they decrease with increasing POA concentration until at a POA concentration in excess of 4 g l\(^{-1}\) they become constant. This coincides with the levelling off of the specific production rate of penicillin V, as seen in Fig. 1. These observations clearly indicate that the supply of activated sidechain precursor at this point is no longer rate-controlling for penicillin biosynthesis. Likewise, \(r_{\text{IPN}} \) decreases with increasing POA concentration, whereas the secretion of intracellular ACV increases at high POA concentrations though at a level significantly lower than observed for any of the other by-products. Finally,
formation of OPC is constant at low POA concentrations but increases at high concentrations of POA. It is worth noting that OPC is the dominant by-product in cultivations with POA.

Fig. 4 shows the normalized steady-state distribution of net fluxes in the penicillin biosynthetic pathway at a POA concentration of 6.5 g l⁻¹ in the feed. From 100 mol ACV formed in the initial biosynthetic step in the pathway, as much as 97.1 mol ends up in penicillin V, of which 2.0 mol is lost as penicilloic acid V by hydrolysis. The level of by-product formation is significantly lower than observed by Jørgensen et al. (1995) during a fed-batch cultivation with the same strain but on a complex medium.

Concluding remarks

According to Henriksen et al. (1998), concentrations of POA up to 6.5 g l⁻¹ at pH 6.50 do not cause any negative physiological effects, such as uncoupling of the plasma membrane potential upon uptake from the extracellular medium, on a high-penicillin-yielding strain of P. chrysogenum. In the present study it was established that high concentrations of POA are necessary for obtaining high productivities of penicillin V, since the reactions that form the sequence responsible for incorporation of the sidechains into the different penicillins have an overall low affinity towards POA. Furthermore, high POA concentrations tend to decrease the overall rate of formation of by-products related to the penicillin biosynthetic pathway. It is, however, questionable whether concentrations of POA significantly higher than 6.5 g l⁻¹ are economically feasible in industrial fed-batch penicillin cultivations, unless the excess POA concentration is consumed at the end of the cultivation.

REFERENCES

Henriksen, C. M., Nielsen, J. & Villadsen, J. (1998). Modelling of the protonophoric uncoupling by phenoxycetic acid of the penicillin biosynthetic pathway at a POA concentration of 6.5 g l⁻¹ in the feed. All fluxes have been normalized with respect to the rate of ACV formation in the initial enzymic step (23.3 μmol (g dry wt)⁻¹ h⁻¹). Bars indicate fluxes across the plasma membrane.

Received 28 January 1998; accepted 9 March 1998.