Cyanide hydrolysis in a cyanide-degrading bacterium, *Pseudomonas stutzeri* AK61, by cyanidase

Atsushi Watanabe, Kazuyoshi Yano, Kazunori Ikekuburo and Isao Karube

Author for correspondence: Isao Karube. Tel: +81 3 3481 4471. Fax: +81 3 3481 4581. e-mail: karube@bio.rcast.u-tokyo.ac.jp

Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan

The cyanide-degrading bacterial strain AK61 was isolated from waste water at a metal-plating plant. The isolated strain was characterized by Gram-staining, quinone analysis, fatty acid profile and the API 20NE identification system, and identified as *Pseudomonas stutzeri*. Whole cells were able to degrade cyanide rapidly in a 1 mM solution containing no organic substances, and produced ammonia as a product. The induction of the cyanide-degrading activity of *P. stutzeri* AK61 did not depend on the presence of cyanide in the culture medium during growth. The cyanide-degrading enzyme was purified approximately 49-fold from a cell extract of *P. stutzeri* AK61. The enzyme had a *Km* of 1.7 mM for cyanide and a specific activity of 54.6 μmol ammonia produced min⁻¹. The activity of the enzyme was optimal at 30 °C and pH 7.5. The results of SDS-PAGE, gel-filtration chromatography and NH₂-terminal amino acid sequence analysis of the enzyme indicated that the functional enzyme was an aggregated protein consisting of a 38 kDa polypeptide. Like cyanidase (cyanide dihydratase), it was shown that the enzyme catalysed the hydrolysis of cyanide to ammonia and formate.

Keywords: cyanide degradation, hydrolysis, cyanidase

INTRODUCTION

Cyanide is highly toxic to living organisms because it inactivates the respiration system by tightly binding to cytochrome *c* oxidase (Solomonson & Spehar, 1981). Despite the toxicity of cyanide, large amounts of it are used in the metal-plating, pharmaceutical and agricultural-chemical industries. Waste water containing cyanide from these industries must be treated so that it contains a low level (<1 mg l⁻¹) of cyanide before being released into the environment (Raybuck, 1992). Currently, cyanide in waste water is removed by chemical methods such as alkaline chlorination, ozonization and wet-air oxidation (Raybuck, 1992). These methods are expensive and require the use of hazardous reagents such as chlorine and sodium hypochlorite. Biological treatment of cyanide may be cheaper and more environmentally acceptable than chemical methods (Dubey & Holmes, 1995).

To develop the biological treatment of cyanide, screening of cyanide-degrading micro-organisms has been carried out. Some biological pathways have been suggested for the degradation or detoxification of cyanide in bacteria and fungi (Knowles & Bunch, 1986; Raybuck, 1992; Dubey & Holmes, 1995). *Pseudomonas fluorescens* NCIMB 11764 has been shown to grow in a medium containing cyanide as the sole nitrogen source (Harris & Knowles, 1983). *P. fluorescens* NCIMB 11764 converts cyanide to ammonia and carbon dioxide. This reaction may proceed by means of NAD(P)H-dependent oxygenase and cyanase (Dorr & Knowles, 1989). A *Pseudomonas* species which degraded cyanide by another pathway was isolated from the activated sludge at a coke plant (White et al., 1988). Although the cyanide-degrading enzyme was not purified, it was shown that the strain degraded cyanide to ammonia and formate under both aerobic and anaerobic conditions. Recently, *Alcaligenes xylosoxidans* subsp. *denitrificans* DF3 (Ingvorsen et al., 1991) and *Bacillus pumilus* C1 (Meyers et al., 1991) were also shown to degrade cyanide by the same pathway as the pseudomonad. These strains have been reported to degrade cyanide by cyanidase (cyanide dihydratase), which catalyses the hydrolysis of cyanide to ammonia and formate (Ingvorsen et al., 1991; Meyers et al., 1993). Some phytopathogenic fungi,
including Gloecocerospora sorgii (Fry & Munch, 1975; Wang et al., 1993), Fusarium lateritium (Cluness et al., 1993) and Stemphylium loti (Fry & Millar, 1972), have also been reported to degrade cyanide. Cyanide hydratases (EC 4.2.1.66) catalysing the hydrolysis of cyanide have been isolated from G. sorgii and F. lateritium, and subsequently characterized.

In this study, we report the isolation of a cyanide-degrading bacterium from the waste water of a metal-plating plant. In addition, purification and characterization of a cyanide-degrading enzyme from the strain are described.

METHODS

Isolation of the cyanide-degrading strain. The cyanide-degrading micro-organism was isolated from the waste water of a metal-plating plant by cultivation in an isolation medium containing 1 mM KCN. The isolation medium contained the following ingredients per litre distilled water: 1 g K$_2$HPO$_4$, 2H$_2$O, 0.2 g MgSO$_4$ · 7H$_2$O, 0.01 g CaCl$_2$, 0.01 g NaCl, 0.2 mg MnSO$_4$, 0.2 mg CuSO$_4$ · 5H$_2$O, 0.2 mg ZnSO$_4$, 2 g glucose, 1 g tryptone. The pH of the medium was adjusted to 7.6 using HCl. KCN solution, which was sterilized using a 0.2 µm pore filter, was added to the medium before inoculation. The isolation medium in a shake flask was inoculated with the waste water and incubated at 30 °C for 48 h with shaking. The grown culture was serially diluted and plated onto TYG agar

The isolated strain was grown using 3 l isolation medium containing 1 mM KCN. The isolation medium was inoculated with the waste water and incubated at 30 °C for 48 h with shaking. The grown culture was serially diluted and plated onto TYG agar

Other assays. The production of formate via the degradation of cyanide by the purified enzyme was assayed. The reaction was carried out in 50 mM phosphate buffer (pH 7.6) with an initial concentration of 0–1 mM cyanide at 30 °C. After degradation of cyanide in the reaction mixtures, concentrations of formate were determined. Formate was colorimetrically estimated by the reduction of NAD$^+$ with formate dehydrogenase (Boehringer Mannheim) as described by Quayle (1966).

RESULTS AND DISCUSSION

Isolation and characteristics of P. stutzeri AK61

Several bacterial strains were isolated from the waste water of a metal plating plant with the isolation medium containing 1 mM KCN. One of them, designated AK61, exhibited cyanide-degrading activity. Strain AK61 was a
gram-negative, rod-shaped bacterium that was not able to grow under anaerobic conditions. Analysis of the quinone system revealed the occurrence of a ubiquinone with nine isoprenoic units in the side chain (Q-9). The profile of cellular fatty acids obtained from strain AK61 showed high amounts of octadecanoic acid (18:0), hexadecanoic acid (16:0) and hexadecenoic acid (16:1) and the presence of 3-OH-decanoic acid (10:0-3-OH) and 3-OH-dodecanoic acid (12:0-3-OH) (data not shown). The fatty acid profile and the quinone system demonstrate that strain AK61 belongs to the genus Pseudomonas (Yokota et al., 1992; Oyaizu & Komagata, 1983; Collins & Jones, 1981). The detection of 3-hydroxy fatty acids has been reported to be especially significant for the classification of Pseudomonas species (Oyaizu & Komagata, 1983). Investigation with the commercially available API 20NE identification system for strain AK61 resulted in an identification as Pseudomonas stutzeri with a probability of 94.2%. The DNA base composition (GC content) of strain AK61 ranged from 62 to 63 mol%, which matched with that of P. stutzeri (Krieg & Holt, 1984).

Degradation of cyanide by P. stutzeri AK61

A typical time course of cultivation of P. stutzeri AK61 in the isolation medium containing 1 mM KCN is shown in Fig. 1. An initial lag period of about 6 h was observed after inoculation, during which time cyanide in the medium was degraded. After this period, growth commenced. Within 17 h, all free cyanide in the solution was degraded. The final OD660 after 30 h incubation was approximately 0.4.

A degradation profile of cyanide by the washed cells was assayed in phosphate buffer containing 1 mM KCN (Fig. 2). Rapid removal of cyanide and the simultaneous accumulation of ammonia was observed in the reaction mixtures (data not shown). The final molar yield of ammonia was approximately 73%. Some bacterial strains which are able to degrade cyanide and generate ammonia have been isolated. P. fluorescens NCIMB 11746 converted cyanide to ammonia and carbon dioxide (Dorr & Knowles, 1989). In addition, Pseudomonas sp. (White et al., 1988), A. xylosoxidans subsp. denitrificans DF3 (Ingvorsen et al., 1991) and B. pumilus C1 (Meyers et al., 1991) were reported to convert cyanide to ammonia and formate. The cyanide-degrading activity of P. fluorescens NCIMB 11746 and A. xylosoxidans subsp. denitrificans DF3 was induced by cyanide during growth. On the other hand, induction of the cyanide-degrading activity of B. pumilus C1 was inhibited by addition of cyanide into the medium (Meyers et al., 1991). The cyanide-degrading activity of B. pumilus C1 was observed in only late-exponential- or early-stationary-phase cells cultured without cyanide. In contrast, the cyanide-degrading activity of P. stutzeri AK61 was observed whether it was cultured in cyanide-containing media or not (Fig. 2). The degradation profile of cyanide by the cells cultured without cyanide was similar to that of the cells cultured with cyanide. These results suggest that the biosynthesis of the cyanide-degrading enzyme by P. stutzeri AK61 is independent of the presence of cyanide during culture. This property of P. stutzeri AK61 may be useful for applying this strain to biological treatment of cyanide and preparing the cyanide-degrading enzyme, because P. stutzeri AK61 does not require cyanide to produce the cyanide-degrading activity and the induction is not inhibited by cyanide.

Purification of cyanide-degrading enzyme

A cell extract of P. stutzeri AK61 prepared from 3 l of culture in isolation medium without cyanide showed an initial specific activity of 1·11 units (mg protein)⁻¹. The cyanide-degrading enzyme was purified by salting-out and column chromatography. The results of a typical
Table 1. Purification of cyanide-degrading enzyme from P. stutzeri AK61

Reactions were carried out in 1.4 ml 50 mM phosphate buffer (pH 7.5) containing 10 mM KCN for 5 min at 30 °C.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Total protein (mg)</th>
<th>Total activity (units)*</th>
<th>Specific activity (units [mg protein]⁻¹)</th>
<th>Yield (%)</th>
<th>Purification (fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell extract</td>
<td>163.5</td>
<td>182</td>
<td>1.11</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>DEAM</td>
<td>1.41</td>
<td>47.2</td>
<td>33.5</td>
<td>26.0</td>
<td>30.1</td>
</tr>
<tr>
<td>DEAE-Toyopearl 650</td>
<td>0.78</td>
<td>34.5</td>
<td>44.2</td>
<td>18.9</td>
<td>39.7</td>
</tr>
<tr>
<td>Hydroxyapatite</td>
<td>0.43</td>
<td>23.3</td>
<td>54.6</td>
<td>12.8</td>
<td>49.0</td>
</tr>
</tbody>
</table>

* One unit of the enzyme was defined as the amount needed to catalyse the formation of 1 µmol ammonia from cyanide min⁻¹.

Fig. 3. SDS-PAGE of steps during the purification of the cyanide-degrading enzyme from P. stutzeri AK61. Lanes: 1 and 8, molecular mass standards (rabbit muscle phosphorylase b, BSA, hen egg-white ovalbumin, bovine carbonic anhydrase, soybean trypsin inhibitor and hen egg-white lysozyme); 2, cell extract; 3, salt-out; 4, DEAM eluate; 5, phenyl-Toyopearl eluate; 6, DEAE-Toyopearl eluate; 7, hydroxyapatite eluate.

purification are shown in Table 1. The cyanide-degrading enzyme was purified 49-fold using this procedure with an overall yield of 12.8%. The purified enzyme had a specific activity of 54.6 unit (mg protein)⁻¹. The enzyme responsible for the activity had a molecular mass of >100 kDa based on gel-filtration chromatography, but produced one major band at 38 kDa when analysed by SDS-PAGE (Fig. 3). When the NH₂-terminal amino acid sequence of the purified enzyme was determined by automated Edman degradation, only one sequence was found (Fig. 4). These results suggest that the functional enzyme is an aggregated protein that consists of a 38 kDa polypeptide subunit. The NH₂-terminal amino acid sequence of the purified enzyme had remarkable homology to those of cyanidase from A. xylosoxidans subsp. denitrificans DF3 (Ingvorsen et al., 1991) and cyanide dihydratase from B. pumilus C1 (C1). Identical residues are enclosed by boxes.

Fig. 4. NH₂-terminal amino acid sequence of the cyanide-degrading enzyme from P. stutzeri AK61 (AK61) and comparison with those of cyanidase from A. xylosoxidans subsp. denitrificans DF3 (DF3) and cyanide dihydratase from B. pumilus C1 (C1). Identical residues are enclosed by boxes.

Kinetic studies

The initial velocity of cyanide degradation by the purified enzyme was investigated over a substrate concentration range of 0.6-10 mM. A Lineweaver–Burk plot showed a linear response over this concentration range (data not shown). A Michaelis–Menten constant (Km) of 1.7 mM was determined for cyanide. In order to study the effect of temperature and pH on the purified enzyme activity, it was assayed over a temperature range of 15–40 °C and a pH range of 6–10. The optimum temperature for the enzyme under our assay conditions was 30 °C (data not shown), above which the activity rapidly decreased. The optimum pH for the enzymic activity was 7.5 (data not shown), above which the activity decreased; no activity was observed at pH 10.

The effects on enzyme activity of the following metal ions were investigated: K⁺, Na⁺, Fe⁺⁺, Ca⁺⁺, Mg⁺⁺, Zn⁺⁺, Mn⁺⁺, Ni⁺⁺, Hg⁺⁺, Cr⁺⁺, Co⁺⁺. The activity was strongly inhibited by addition of Hg⁺⁺ at a concentration of 0.1 mM; the relative activity was 36%. This suggests the possible presence of thiol groups at the catalytic site of the enzyme. The addition of the other cations to the reaction buffer did not affect the activity of the enzyme.
Relative products

As a result of cyanide degradation by whole cells, ammonia was produced in the reaction mixture. The purified enzyme was able to degrade cyanide in a phosphate buffer without a co-enzyme. In addition, the NH$_2$-terminal amino acid sequence of the purified enzyme shows remarkable homology to that of cyanidase from A. xylosoxidans subsp. denitrificans DF3 (Ingvorsen et al., 1991). It is possible that the enzyme purified from P. stutzeri AK61 catalyses the same reaction as cyanidase (cyanide dihydratase), which catalyses the hydrolysis of cyanide to ammonia and formate (Ingvorsen et al., 1991; Meyers et al., 1993). To demonstrate that, like cyanidase, the purified enzyme converts cyanide to formate and ammonia, production of formate was assayed using formate-dehydrogenase-catalysed reduction of NAD$^+$. Because cyanide forms a complex, which has an absorption maximum at approximately 320 nm, with NAD$^+$ (Imai & Suzuki, 1970), ammonia and formate concentrations were estimated after the cyanide in the reaction mixtures was completely degraded. The purified enzyme was added to phosphate buffer solutions containing several different concentrations of cyanide, and the final concentrations of ammonia and formate in the reaction mixtures were estimated. The final concentrations of ammonia and formate increased linearly, and the amounts of the products were equivalent to approximately 80% of the initial concentration of cyanide (Fig. 5). This result showed that the enzyme from P. stutzeri AK61 catalysed the hydrolysis of cyanide like cyanidase and that P. stutzeri AK61 degrades cyanide by the same pathway as A. xylosoxidans subsp. denitrificans DF3 and B. pumilus C1.

Cyanidase from P. stutzeri AK61 has similar properties to cyanidase from A. xylosoxidans subsp. denitrificans DF3 (Ingvorsen et al., 1991) and cyanide dihydratase from B. pumilus C1 (Meyers et al., 1991). These enzymes had molecular masses of over 100 kDa based on gel-filtration chromatography, and the polypeptide chains of the enzymes had molecular masses of approximately 38 kDa as shown by SDS-PAGE. In addition, the enzymes had a K_m of approximately 2 mM for cyanide and the NH$_2$-terminal amino acid sequence of cyanidase from P. stutzeri AK61 shows a remarkable homology to that of cyanidase from A. xylosoxidans subsp. denitrificans DF3 (Ingvorsen et al., 1991). These enzymes, however, also show a number of different properties. The three enzymes show different optimum temperatures (26 °C for cyanidase from A. xylosoxidans subsp. denitrificans DF3, 37 °C for cyanide dihydratase from B. pumilus C1 and 30 °C for the purified enzyme in this paper). The activity of cyanide dihydratase from B. pumilus C1 was significantly enhanced by addition of Cr$^{3+}$ at a concentration of 5–500 μM (Meyers et al., 1991). However, the addition of 100 μM Cr$^{3+}$ did not affect the activity of cyanidase from P. stutzeri AK61. The results of SDS-PAGE, gel-filtration chromatography and the NH$_2$-terminal amino acid sequence of cyanidase from P. stutzeri AK61 showed that this enzyme consists of one kind of polypeptide. In contrast, cyanidase (cyanide dihydratase) from A. xylosoxidans subsp. denitrificans DF3 (Ingvorsen et al., 1991) and B. pumilus C1 (Meyers et al., 1993) consisted of two and three kinds of polypeptide chains, respectively. Proteins which consist of one polypeptide are suitable for gene cloning and for expression in an active form.

ACKNOWLEDGEMENTS

We thank Associate Professor Akira Yokota for suggestions during the identification of the isolated bacterium.

REFERENCES

Received 28 October 1997; revised 2 February 1998; accepted 4 February 1998.