Interruption of the *Streptococcus gordonii* M5 sspA/sspB intergenic region by an insertion sequence related to IS1167 of *Streptococcus pneumoniae*

Donald R. Demuth, Yang Duan, Howard F. Jenkinson, Rod McNab, Sucheol Gil and Richard J. Lamont

Author for correspondence: Donald R. Demuth. Tel: +1 215 898 2125. Fax: +1 215 898 3695. e-mail: demuth@biochem.dental.upenn.edu

Streptococcus gordonii M5 and DL1 each express two related adhesin polypeptides, SspA and SspB, which are members of the antigen I/II family of streptococcal surface proteins. The *sspA* and *sspB* genes are tandemly arranged in both strains, with *sspA* residing upstream of *sspB*. The genes are separated by approximately 400 nucleotides in *S. gordonii* DL1 and 1300 nucleotides in *S. gordonii* M5. The nucleotide sequence of the *sspAsspB* intergenic region of strain M5 is reported and the difference in length compared to *S. gordonii* DL1 shown to arise from the presence of an insertion sequence, designated ISSg1, consisting of 1197 bp. The nucleotide sequence of ISSg1 is highly homologous to IS1167 of *Streptococcus pneumoniae* and is related to a lesser extent to other members of the IS1096 family of bacterial insertion sequences. It contains a single ORF of 1026 bp, encoding a putative transposase polypeptide of 342 amino acids. The deduced transposase sequence exhibits 93% identity with the transposase polypeptides encoded by IS7767. However, the *S. gordonii* protein lacks a 90 residue central domain that is present in the IS7767 transposase and in the transposase polypeptides encoded by the related IS elements. In addition, the organization of the inverted repeats flanking the transposase gene in *S. gordonii* differs from IS1167. Extension products generated from a *sspB*-specific primer indicated that transcription initiates within the intergenic region in both *S. gordonii* strains, suggesting that *sspA* and *sspB* are independently transcribed. Transcription appears to initiate 42 bases upstream of *sspB* in *S. gordonii* DL1. In contrast, *sspB* transcription in M5 initiates at least 125 bases upstream of *sspB*, in close proximity to the terminal inverted repeat of ISSg1. These results indicate that the *sspB* promoters of *S. gordonii* M5 and DL1 are not conserved and suggest that ISSg1 sequences may play a role in directing the expression of *sspB* in *S. gordonii* M5.

Keywords: *Streptococcus gordonii*, sspB, insertion sequence

INTRODUCTION

The human oral cavity presents a complex environment comprising a unique range of habitats that are colonized by specific bacterial populations. For example, organisms such as the oral streptococci colonize both hard tissue (tooth enamel) and soft tissue (mucosa) surfaces in the oral cavity (Frandsen et al., 1991; Nyvad & Kilian, 1990) and must adapt to the constant flow of saliva that bathes these surfaces. Indeed, the survival of the cells may be dependent on their ability to adhere tightly to these host tissue surfaces and to evade the host defences in this open flow system. This is particularly true for strains of *Streptococcus gordonii*, which are considered to be primary colonizers of oral tissues (Nyvad & Kilian, 1990). This organism expresses a vast repertoire of adherence properties that enable avid attachment to the mineralized and/or mucosal surfaces, and to other oral bacteria and various salivary constituents (Demuth et al., 1990a; Gibbons et al., 1991;
Jenkinson et al., 1992; Kolenbrander & London, 1993; Lamont et al., 1994; Scannapieco et al., 1989). Once established, these streptococcal cells then become part of the foundation upon which dental plaque develops.

The specific surface components, or adhesins, of \textit{S. gordonii} that mediate the adherence reactions described above have been the focus of considerable interest. A variety of polypeptides that may be involved in adhesion of \textit{S. gordonii} to host cell surface molecules, salivary glycoproteins and other oral bacteria have been described (Andersen et al., 1993; Hasty et al., 1992; Jenkinson & Easingwood, 1990; Lamont et al., 1994; McNab & Jenkinson, 1992). Two of the best characterized adhesin polypeptides of \textit{S. gordonii} are SspA and SspB (Demuth et al., 1996). SspA and SspB (formerly Ssp5) are members of a large family of related polypeptides, the antigen I/II proteins, and are present in virtually all species of streptococci that are indigenous to the human oral cavity (Ma et al., 1991). The genes encoding at least ten separate members of the antigen I/II family of proteins, including \textit{sspA} (4740 bp) and \textit{sspB} (4500 bp) have been cloned and sequenced. These polypeptides are comprised of two repetitive domains, an N-terminal alanine-rich region and a proline-rich repetitive region, both of which are conserved in all members of the antigen I/II family (Demuth et al., 1990a; Kelly et al., 1989; LaPolla et al., 1991). The amino acid sequence of the C-terminal regions of these proteins is also highly conserved. In contrast, a central divergent domain consisting of approximately 400 amino acid residues is poorly conserved between SspB and the \textit{Streptococcus mutans} antigen I/II proteins (Demuth et al., 1990a, 1996). In vitro functional studies of SspA, SspB and antigen I/II polypeptides from \textit{S. mutans} showed that these proteins bind to a specific salivary glycoprotein, salivary agglutinin (SAG), in a lectin-like reaction (Demuth et al., 1990a, b). However, the interaction of SspB with SAG requires sialic acid residues of SAG, whereas the \textit{mutans} I/II protein interacts with SAG in a sialic-acid-independent manner (Demuth et al., 1990a, b). The role of sialic acid in the interaction of SspA and SAG has not yet been established. In addition, isogenic mutants which lack SspA and/or SspB or which express substantially reduced levels of these polypeptides exhibit reduced levels of adhesion to saliva-coated or SAG-coated hydroxyapatite and reduced binding to actinomycetes (Demuth et al., 1996; Jenkinson et al., 1993). Furthermore, SspA and SspB may mediate the binding of \textit{Porphyromonas gingivalis} by \textit{S. gordonii}. For example, the expression of \textit{sspB} in a non-adherent strain of \textit{Enterococcus faecalis} results in a recombinant organism that binds \textit{P. gingivalis} (Lamont et al., 1994). In addition, the purified SspA and SspB proteins bind to \textit{P. gingivalis} cells (W. Brooks, D. R. Demuth, S. Gil & R. J. Lamont, unpublished). Collectively, these data suggest that the Ssp polypeptide proteins may be important for streptococcal adherence to the acquired salivary pellicle and to other oral bacteria \textit{in vivo}.

\textit{S. gordonii} strains M5 and DL1 are unique in that they are the only oral streptococci known thus far to possess two genes, \textit{sspA} and \textit{sspB}, encoding antigen I/II polypeptides (Demuth et al., 1996). Interestingly, the divergent central domain of SspA is more related to the \textit{S. mutans} antigen I/II than it is to the corresponding domain of SspB, suggesting that SspA may represent a naturally occurring chimera of \textit{S. gordonii} and \textit{S. mutans} antigen I/II polypeptides. The \textit{S. gordonii} DL1 \textit{sspA} and \textit{sspB} genes are tandemly arranged and separated by an intergenic sequence of approximately 400 bp (Demuth et al., 1996). However, whereas the tandem arrangement of \textit{sspA} and \textit{sspB} in strain M5 is similar to DL1, approximately 1.3 kbp separates the \textit{sspA} and \textit{sspB} genes. Here we report the nucleotide sequence of the \textit{sspA}/\textit{sspB} intergenic region of \textit{S. gordonii} M5 and show that this region is highly related to IS1167 of \textit{Streptococcus pneumoniae}. The \textit{S. gordonii} insertion sequence contains a single ORF as well as several other features that distinguish it from IS1167. In addition, primer extensions mapped the DL1 and M5 \textit{sspB} promoters within the \textit{sspA}/\textit{sspB} intergenic regions. Transcriptional initiation of the \textit{S. gordonii} DL1 \textit{sspB} gene occurs 42 bp upstream of the coding region, and putative −10 and −35 promoter elements exist upstream of this site. In contrast, transcriptional initiation of M5 \textit{sspB} occurs 125 bases upstream of the coding region, near the junction of the IS element. These results suggest that the \textit{sspB} promoters of \textit{S. gordonii} DL1 and M5 are not conserved and raise the possibility that integration of the IS element altered the \textit{sspB} promoter of strain M5.

\section*{METHODS}

\subsection*{Bacterial strains and growth conditions.} \textit{Streptococcus gordonii} strains M5 and DL1 were grown overnight in brain heart infusion (BHI) at 37 °C. For RNA isolation, 10 ml of an overnight streptococcal culture was inoculated into 200 ml BHI and cells were harvested after 6 h at 37 °C. \textit{Escherichia coli} DH5α and XL1-Blue were grown at 37 °C with aeration in Luria–Bertani (LB) medium [1% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) NaCl] supplemented with 100 μg ampicillin ml⁻¹ (Sigma). Cultures of \textit{E. coli} DH5α F' were used to support propagation of M13 phage for sequencing experiments. These cells were plated onto LB containing 1.5% (w/v) agar, 0.1 mM IPTG (Bethesda Research Laboratories) and 50 μg X-Gal ml⁻¹. Broth cultures were grown in LB without ampicillin, IPTG or X-Gal. \textit{E. coli} DH5α(pEPV2) was grown in LB with ampicillin as described above and carries plasmid pEPV2. This plasmid contains a 2.7 kbp insert spanning the region from nucleotide 4191 of \textit{sspA} to nucleotide 1926 of \textit{sspB} of \textit{S. gordonii} DL1 that encompasses the entire \textit{sspA}/\textit{sspB} intergenic region (see below).

\subsection*{Cloning of the \textit{sspA}/\textit{sspB} intergenic regions of \textit{S. gordonii} strains M5 and DL1.} Our previous work suggested that clone SSP-5 contained the entire \textit{S. gordonii} M5 \textit{sspB} gene and approximately 5.5 kbp of sequence upstream of \textit{sspB} (Demuth et al., 1988). Subsequent sequencing of portions of this upstream region showed that it encoded approximately 4 kbp of \textit{sspA} but lacked the 5' end of the gene (Demuth et al., 1996). The region situated between \textit{sspA} and \textit{sspB} was not previously sequenced. From the restriction map of the \textit{ssp} locus (Demuth et al., 1988), it was determined that the intergenic region is largely contained within a 1.1 kbp BamHI–EcoRI restriction fragment. This fragment was generated by digestion of SSP-5...
DNA with BamHI and EcoRI, purified from 0.8% low-melting-point agarose (Bethesda Research Laboratories) and ligated into BamHI/EcoRI-cleaved M13mp19 replicative form melting-point agarose (Bethesda Research Laboratories) as described by Hanahan (1983). The presence of the correct insert in the recombinant plaques was verified by restriction analysis. The sspA/sspB intergenic region of strain DL1 was amplified by PCR from genomic DNA using the oligonucleotide primers 5'-ACTGAAGCGTTGACCGTGA-3' (a) and 5'-CGCTTCTGGGAGTGCTGACT-3' (b). Oligonucleotide (a) anneals at the 3' end of the S. gordonii DL1 sspA gene, spanning the region corresponding to nucleotides 3058 to 3078 of the S. gordonii M5 sspA gene (GenBank accession number U40025). The complete sequence of the 3' end of sspA from DL1 has not yet been determined. Oligonucleotide (b) anneals to nucleotides 1920 to 1940 of the S. gordonii DL1 sspB gene (GenBank accession number U40027). Amplification reactions were carried out using 5 ng S. gordonii DL1 genomic DNA as the template and 3 U PfuI polymerase (Stratagene) with the following cycle parameters: 95 °C for 30 s; 94 °C for 25 s, 53 °C for 40 s, 72 °C for 6 min (32 cycles); 72 °C for 6 min (1 cycle). The 3.2 kbp amplification product was isolated from low-melting-point agarose and cleaved with PvdI and PstI. The resulting 2.7 kbp fragment was ligated into pBluescript, which was then cleaved with EcoRV and PstI and transformed into E. coli XL-1 Blue to generate strain pEV2.

Nucleotide sequencing and analysis. Nucleotide sequencing was carried out by the dideoxy chain-termination method using Sequenase version 2 (United States Biochemical). The DNA fragments containing the entire sspA/sspB intergenic regions of S. gordonii M5 and DL1 were sequenced in a stepwise manner by employing oligonucleotide primers (16–20 nucleotides) that were synthesized from the nucleotide sequence determined with the previous primer. Thus, the same template DNA was used for all sequencing reactions. The oligonucleotide primers utilized were the commercially available M13 -40 primer for the M5-derived fragment and the T7 primer for pEV2. Both strands were sequenced in their entirety. Comparisons of the nucleotide sequences with the GenBank database and analysis of the nucleotide and deduced amino acid sequences were carried out using the Wisconsin Genetics Group series of sequence analysis programs (Devereux et al., 1984).

Primer extension of S. gordonii M5 and DL1 RNA. Total RNA was isolated from 200 ml exponential-phase cultures of S. gordonii M5 and DL1 as described by Reddy et al. (1990). Initially, cultures were put on ice and 10 ml 200 mM Tris pH 8.0, 20 mM EDTA, 20 mM sodium azide, 20 mM aurintricarboxylic acid (Sigma) was added. The cultures were centrifuged at 8000 g for 15 min and the cell pellet was suspended in 5 ml STET buffer [8% sucrose, 5% Triton X-100, 5 mM EDTA, 50 mM Tris pH 7.0, 10 mM vanadyl ribonucleoside complex, (VRC)]. Cell suspensions were extracted with equal volumes of phenol and chloroform, and nucleic acids were precipitated with ethanol. The nucleic acid pellet was washed in 2 ml 70% ethanol, 0.2 M EDTA and centrifuged at 105000 g for 18 h. The RNA pellets were then suspended in 1 ml deionized water and precipitated several times with ethanol. Annealing reactions were carried out with 20–40 µg RNA and 0.1 µg end-labelled primer in 10 mM Tris pH 7.5, 30 mM NaCl, 80% (v/v) formamide as described by Sambrook et al. (1989). The oligonucleotide primer 5'-CTACCGAAGGCATTGCTGACGTCT-3' (c) was used for annealing reactions with strain M5 RNA; the oligonucleotide primer 5'-TAATCTGCTACATTTGGC-3' (d) was used for strain DL1 RNA samples. Primer (c) specifically anneals to a region situated 110–126 bp downstream of the M5 sspB gene start codon and does not hybridize with sspA since this sequence differs in 11 of 16 nucleotide positions between the M5 sspA and sspB genes. Primer (d) anneals to a region situated 139 to 154 bp downstream of the DL1 sspB gene start codon. After precipitation of the annealing mixture with ethanol, the dried RNA pellet was suspended in 100 µl 50 mM Tris pH 8.3, 40 mM KCl, 6 mM MgCl2, 1 mM DTT, 0.1 mg bovine serum albumin ml−1, 0.5 mM each of dATP, dGTP, dCTP and dTTP, and 200 U of Moloney murine leukemia virus reverse transcriptase (Bethesda Research Laboratories). After 2 h incubation at 37 °C, RNaseA was added to 50 µg ml−1 and maintained at 37 °C for an additional 30 min. Samples were extracted with phenol/chloroform, precipitated with ethanol and suspended in 10 µl dH2O containing 2 µl dye mix (95% formamide, 20 mM EDTA, 0.05% bromphenol blue, 0.05% xylene cyanole). Reaction mixtures were heated at 75°C for 15 min and electrophoresed on a 6% (w/v) sequencing gel.

RESULTS

Comparison of the S. gordonii DL1 and M5 sspA/sspB intergenic region. S. gordonii M5 and DL1 have recently been shown to contain two highly related but distinct copies of the ssp gene, designated sspA and sspB (Demuth et al., 1996). During the course of these studies, restriction mapping of the ssp locus in these strains suggested that sspA and sspB of M5 were separated by approximately 1-3 kbp whereas the two genes appeared to be closely organized in strain DL1. In addition, Zhou et al. (1995) recently reported that the S. pneumoniae insertion element, IS1167, was similar in sequence to a short non-coding region in our previously published sspB sequence (Demuth et al., 1990a). Therefore, to investigate the difference between the DL1 and M5 ssp loci and the relationship of the M5 locus to S. pneumoniae sequences, the complete nucleotide sequence of the sspA/sspB intergenic region of S. gordonii M5 was determined (Fig. 1). This sequence was also compared to a fragment from the S. gordonii DL1 ssp locus that contained the 3' end of sspA (900 bp), the entire intergenic region (420 bp) and 1100 bp of sspB (Demuth et al., 1996). The nucleotide sequences of the 3' ends of the M5 and DL1 sspA genes were 95% identical and this level of similarity extended 120 bp downstream of the sspA stop codon. This highly conserved region of the sspA/sspB intergenic region is indicated by the bold italicized sequence in Fig. 1. Within this 120 bp non-coding region is an inverted repeat (IR-C) that resembles a rho-independent transcriptional terminator, suggesting that transcription of sspA terminates within the sspA/sspB intergenic region. Further downstream, the intergenic sequences of S. gordonii M5 and DL1 diverge and exhibit little similarity until the coding region of sspB. The nucleotide sequences of the 5' ends of the M5 and DL1 sspB genes exhibit 85% identity. Thus, the sspA and sspB genes of strains DL1 and M5 are highly related, whereas the intergenic sequences differ significantly

2049
Fig. 1. Nucleotide sequence of the *S. gordonii* sspA/sspB intergenic region. The sequence extends from the first nucleotide upstream of the sspB start codon (nucleotide 1) to the stop codon of sspA (nucleotides 1332-1334). The putative *ISSgl* transposase is transcribed in the opposite direction relative to the sspA and sspB genes. The portion of the sequence presented in bold italics (nucleotides 1215-1334) is conserved within the intergenic regions of both *S. gordonii* M5 and DL1. The remainder of the sequence is unique to strain M5. The four inverted repeat sequences, IR-A, IR-B, IR-C and IR-D are indicated by opposing arrows. The deduced amino acid sequence of the putative *ISSgl* transposase is indicated in bold. A ribosome-binding site (RBS) is shown in bold and double-underlined, and potential -10 and -35 promoter elements are shown in bold and single-underlined.

(with the exception of the 120 bp region described above). As shown in Fig. 1, the entire sspA/sspB intergenic region of strain M5 consists of 1334 bp and contains a single ORF that is transcribed from the opposite DNA strand relative to sspA and sspB genes. The ORF is preceded by a ribosome-binding site and putative -10 and -35 sequences (bold and double- or single-underlined sequences in Fig. 1). It is also flanked by a 24 bp inverted repeat (IR-A/A'). Comparison of this sequence with those in the GenBank database revealed that approximately 1200 bp of the intergenic region, including the entire ORF and the inverted repeat, IR-A/A', exhibited similarity to the *S. pneumoniae* insertion element IS1167 (Zhou et al., 1995) and several other members of the *IS2096* family of bacterial IS elements (Zhou & Morrison, 1995; see below). This result suggests that the ssp locus of *S. gordonii* M5 has been interrupted by a sequence that has features resembling those of known streptococcal insertion elements, although it is not known if the putative IS...
element is active. We have designated this sequence ISSg1.

Structure of ISSg1 and comparison with IS1167

The overall structures of the putative S. gordonii IS sequence and IS1167 are shown in Fig. 2(a) and (b), respectively. The ISSg1 element consists of 1197 bp whereas IS1167 is 1435 bp in length and the arrangement of the inverted repeats differs in the IS1167 and ISSg1 sequences. IS1167 is flanked by a 24 bp terminal imperfect inverted repeat that is similar to IR-A/A' and a direct repeat of 8 bp that has no homologue in the ISSg1 sequence. In contrast, ISSg1 has a second copy of IR-A' that is present upstream of the ORF. No corresponding repeat sequence exists in IS1167 at this position. In addition, the ISSg1 element lacks the direct repeat sequences that flank IR-A and IR-A' in IS1167. The sspA/sspB intergenic region of S. gordonii DL1 is presented in Fig. 2(c). Interestingly, a sequence that resembles IR-A' is present within the conserved sequence that resides downstream of sspA in S. gordonii DL1. The remainder of the DL1 intergenic region exhibits no significant similarity to either IS1167, ISSg1 or other prokaryotic insertion sequences.

The structure of IS1167 differs from other members of the IS1096 family of IS elements since it possesses two overlapping ORFs (ORF1 and ORF2) encoding peptides of 172 and 253 amino acids, respectively (Zhou et al., 1995). These genes presumably encode the transposase activity required for the insertion and/or excision of the IS element (Galas & Chandler, 1989). The ISSg1 sequence encodes a single putative transposase polypeptide, and thus is more similar to the structure of IS1096 and its related sequences. However, it lacks a region of approximately 100 amino acid residues that is present in both the transposase sequences of the IS1096-like IS elements and in ORF2 of IS1167 (see below). Although the organization of the transposase ORF resembles IS1096, the deduced amino acid sequence of the ISSg1 transposase is most similar to the IS1167 ORFs (Fig. 3). Indeed, the ISSg1 ORF is almost identical to portions of the IS1167 ORFs. Significantly lower levels of sequence identity (from 30 to 45%) exist between the ISSg1 transposase and the transposase polypeptides encoded by IS1181, IS1165, IS1251 and IS1001 (not shown). The N-terminal 156 residues of the ISSg1 ORF sequence are 92% identical to ORF1 of IS1167 (Fig. 3a) and residues 188–342 of the putative ISSg1 transposase are 92% identical to residues 103–254 of ORF2 (Fig. 3b). However, the C-terminus of ORF1 and 99 residues at the N-terminus of ORF2 have no counterpart within the ISSg1 deduced polypeptide sequence (see Fig. 3). This suggests that a portion of the IS1167 transposase sequences have been deleted in ISSg1.

Mapping of the S. gordonii M5 and DL1 sspB promoters

The existence of a sequence that resembles a rho-independent transcriptional terminator downstream of sspA suggested that the S. gordonii M5 and DL1 sspB genes are not transcribed as part of an operon with sspA but are transcribed from their own promoters. Presumably, the sspB promoter resides within the sspA/sspB intergenic region. Therefore, we were interested in determining if the presence of ISSg1 affected
Fig. 3. Comparison of the deduced amino acid sequence of the putative iSSg7 transposase with ORF1 (a) and ORF2 (b) of IS7167. The iSSg7 transposase is the top sequence in each panel. Sequences were aligned using the BESTFIT program of Devereux et al. (1984). Identical residues are indicated with colons. Numbering is based on the deduced amino acid sequence of the iSSg7 polypeptide.

the structure of the putative sspB promoter in this strain. To accomplish this, primer extension reactions were carried out utilizing primers that were specific for the sspB gene of S. gordonii M5 or DL1. As shown in Fig. 4, a single primer extension product was obtained for each strain, suggesting that a single promoter directs the expression of sspB. The size of the extension product obtained from DL1 RNA predicts that transcription initiates 42 bases upstream of the sspB translational initiation codon (Fig. 5a). Sequences that may represent potential -10 and -35 promoter elements exist upstream of the putative initiation site. In contrast, the extension product obtained with strain M5 suggests that transcription initiates 125 bases upstream of sspB (Fig. 5b). However, no -10, -35 or other promoter consensus sequences were identified at the appropriate distances upstream from this site. Instead, two inverted repeat sequences exist upstream of the putative transcriptional initiation site: IR-B, which is of unknown origin and function, and IR-A, which represents an iSSg7 terminal inverted repeat sequence and defines the
Streptococcus gordonii insertion sequence

Fig. 5. Comparison of the S. gordonii DL1 and M5 sspB promoter regions. Transcriptional initiation sites predicted from primer extension reactions are indicated by the bold arrows. Inverted repeat sequences are labelled IR-A, IR-B and IR-C and indicated by opposing arrows. The putative sspB ribosome-binding sites (RBS) are shown in bold and double-underlined, and -10 and -35 promoter elements are shown in bold and single-underlined. IR-C is present in the intergenic regions of S. gordonii DL1 and M5 and resembles a rho-independent transcriptional terminator.

junction with the ISSgl element. Since it is possible that these inverted repeats form secondary structures that may cause the reverse transcriptase to pause, primer extension reactions were also conducted at 50 °C to destabilize the potential stem-loop that may form at IR-B. The extension product obtained under elevated reaction temperatures was identical to that observed in Fig. 4 (not shown). Taken together, these results suggest that the sequences that direct sspB expression in M5 reside near or within the ISSgl element and are clearly different from the sspB promoter sequences of strain DL1.

DISCUSSION

S. gordonii M5 and DL1 are the only strains of oral streptococci that have been shown to possess two distinct copies of the gene encoding antigen I/II (Demuth et al., 1996). However, the structure of the ssp locus differs in these strains. The sspAB genes of DL1 are arranged in tandem and separated by approximately 400 non-coding nucleotides, whereas sspAB of M5 are separated by over 1300 bp. The nucleotide sequence of the M5 sspAB intergenic region presented here shows that this difference arises from the presence of an insertion sequence that is related to, but distinct from the pneumococcal insertion sequence IS1167. This is consistent with the findings of Zhou et al. (1995) who reported that IS1167 was similar to a short non-coding region in our previously published nucleotide sequence of the M5 sspB gene (Demuth et al., 1990a). The ISSgl element has been stable during 10 years of laboratory culture and results from Southern blotting experiments suggest that it is present in a single copy in the M5 genome. In contrast, IS1167 is present in multicopy (from 3 to 12 copies per cell) in strains of S. pneumoniae examined by Zhou et al. (1995) but, like ISSgl, appears to be very stable under laboratory culturing conditions. ISSgl encodes a single polypeptide of 342 amino acids with a predicted isoelectric point of 10-67, consistent with the highly basic nature of transposases encoded by other bacterial insertion sequences (Bennett, 1991). The putative transposase polypeptide is highly similar (85-95% sequence identity) to regions of both ORF1 and ORF2 of IS1167 and exhibits 30-40% sequence identity with transposases encoded by IS1165 (Johansen & Kibernich, 1992), IS1181 (Derbise et al., 1994), IS1251 (Handwerger et al., 1995) and IS1001 (van der Zee et al., 1995).
1993). However, the ISSg1 protein lacks a central domain that is present in IS1167 (encompassing the C-terminus of ORF1 and the N-terminal residues of ORF2 in IS1167) and in all of the transposases of the IS1096 family of IS elements. Thus, ISSg1 may represent a new member of the IS1096 family (Cirillo et al., 1991; Zhou & Morrison, 1995) of IS elements that may have arisen from IS1167 by deletion of this central coding domain. It is not known if IS1167 expresses separate proteins from ORF1 and ORF2 or if translational readthrough, occurring from a −1 frameshift, generates a single transposase polypeptide (Chandler & Fayet, 1993). Whether the lack of these sequences in the ISSg1 transposase influences its activity remains to be determined.

The organization of the inverted repeat around ISSg1 also differs from IS1167, suggesting that rearrangements in the sspA/sspB intergenic region may have occurred after the initial insertion of ISSg1. This is consistent with the ability of some IS elements (e.g. IS257) and transposons (e.g. Tn5404) to actively promote deletions, rearrangements and integration of foreign sequences (Byrne et al., 1991; Derbise et al., 1995; Matthews & Stewart, 1988; Wada et al., 1991). Indeed, rearrangements within this region might also explain the lack of similarity within the sspB promoters of M5 and DL1 (see below).

S. gordonii DL1 does not possess the entire ISSg1 sequence. However, a 120 bp portion of the M5 intergenic region situated immediately downstream of sspA is conserved in DL1. This conserved region extends into the coding region of the putative ISSg1 transposase gene and contains an inverted repeat similar to IR-A; raising the possibility that *S. gordonii* DL1 might have previously carried a copy of the ISSg1 element. The second inverted repeat (IR-C) downstream of sspA in both M5 and DL1 resembles a rho-independent transcriptional terminator (Platt, 1986), suggesting that sspA and sspB are independently transcribed. Several other lines of evidence support this observation: (a) the primer extension results show that sspB transcription initiates within the sspA/sspB intergenic region in both strains, (b) expression of the M5 sspB gene in E. coli and *Enterococcus faecalis* does not require sequences that reside within sspA or the ISSg1 transposase gene (Demuth et al., 1989), and (c) Northern blots of *S. gordonii* DL1 RNA showed that sspB is encoded by a message of approximately 5 kb (H. F. Jenkinson, unpublished data). Therefore, we conclude that sspA and sspB are independently transcribed in *S. gordonii*.

The sspA and sspB coding sequences exhibit substantial sequence identity extending into the intergenic region downstream of sspA, suggesting that the sequence and overall organization of the ssp locus was conserved in DL1 and M5 until the integration of the ISSg1 element into the *S. gordonii* M5 genome. Thus, it was surprising to find that the M5 and DL1 sspB promoters differ. Transcription initiates at least 125 nucleotides upstream of sspB in M5. However, it is possible that the inverted repeat at −125 (IR-B) may block extension by the reverse transcriptase. Thus, the true initiation site and promoter of sspB may reside even farther upstream, within the IS sequence. Outwardly facing promoters within IS elements have been shown to direct expression of katA in *Bordetella pertussis* (DeShazer et al., 1994) and *cfrA* in *Bacteroides fragilis* (Podglajen et al., 1994). In addition, sequences within the terminal inverted repeat of IS903 (from *Lactococcus lactis*) are potentially promoter-active (Dodd et al., 1994). In contrast, transcription of DL1 sspB initiates at nucleotide −42. Putative −10 and −35 sequences reside upstream of the initiation site, but the −35 sequence does not closely match the E. coli consensus sequence. One possible explanation is that sspB expression in DL1 does not require a −35 sequence but is directed from an extended −10 site. Indeed, Sabelnikov et al. (1995) suggested that extended −10 sequences frequently direct gene expression in *S. pneumoniae*. However, further studies will be required to precisely map the sspB promoter sequences and to evaluate the role of ISSg1 in directing and/or regulating the expression of sspB in *S. gordonii* M5.

ACKNOWLEDGEMENTS

This work was supported by National Institutes of Health grants DE08239, RR00040 and DE09439. H.J.F. gratefully acknowledges support from the Health Research Council of New Zealand.

REFERENCES

Demuth, D. R., Lamney, M. S., Huck, M., Lally, E. T. & Malamud, D. (1990b). Comparison of *Streptococcus mutans* and *Strepto-
Streptococcus gordonii insertion sequence

coccus sanguis receptors for human salivary agglutinin. Microb Pathog 9, 199–211.

Received 19 November 1996; revised 17 February 1997; accepted 19 February 1997.