Identification of novel species-specific antigens of *Mycoplasma hyopneumoniae* by preparative SDS-PAGE ELISA profiling

Anthony L. Scarman,¹,² James C. Chin,¹ Graeme J. Eamens,¹ Stephen F. Delaney² and Steven P. Djordjevic¹

Author for correspondence: Steven P. Djordjevic. Tel: +61 46 293426/349. Fax: +61 46 293384. e-mail: djordjs@agric.nsw.gov.au

Mycoplasma hyopneumoniae, *M. hyorhinis* and *M. flocculare* are commonly isolated from the respiratory tract of pigs and are phylogenetically related. The identification and characterization of antigens specific for *M. hyopneumoniae* is crucial for the development of serological reagents and for understanding the mechanisms of pathogenicity of this pathogen. Protein and antigen profiles of six strains of *M. hyopneumoniae*, four strains of *M. hyorhinis* and a type strain of *M. flocculare* were compared using SDS-PAGE and immunoblotting. Five strains of *M. hyopneumoniae* originally isolated from diverse geographical regions produced similar protein and antigen profiles. One strain, C1735/2, produced a unique protein profile and was poorly immunoreactive, suggesting that some strains of *M. hyopneumoniae* may possess a structurally modified repertoire of antigens. Major *M. hyopneumoniae* antigens with molecular masses of approximately 36, 43, 48, 52, 76, 78, 80, 82, 94, 106, 114 and 200 kDa were identified by immunoblotting using hyperimmune pig sera raised against both high and low passage strains of *M. hyopneumoniae*. Porcine hyperimmune sera raised against the GDL type strain of *M. hyorhinis* reacted strongly with all *M. hyorhinis* strains although the profiles displayed considerable variation. Major antigens of molecular mass 42, 49, 52, 78, 80 and 82 kDa were identified in type strains GDL and BTS-7 and field strain 2; however, field strain 1 produced a unique profile. A preparative SDS-PAGE profiling (PPP) technique was developed which enabled quantification of the immunoreactivity of denatured antigens with porcine serum by ELISA. PPP facilitated the rapid identification of species-specific and cross-reactive antigens among the three mycoplasma species. PPP studies revealed several strongly immunoreactive *M. hyopneumoniae*-specific antigens of 43, 76, 94, 114 and 200 kDa as well as antigens of molecular mass between 52 and 62 kDa which were not apparent in immunoblotting studies. Rabbit monospecific anti-43 kDa serum reacted specifically with a 43 kDa antigen in whole cell lysates of geographically diverse strains of *M. hyopneumoniae* and failed to cross-react with *M. flocculare* or *M. hyorhinis* whole cell lysates. This study has identified a number of *M. hyopneumoniae*-specific antigens which warrant further investigation to determine their potential as diagnostic reagents and the role they play, if any, in pathogenicity.

Keywords: *Mycoplasma hyopneumoniae*, *Mycoplasma hyorhinis*, diagnostic antigens, preparative SDS-PAGE profiling, immunoblotting

Abbreviations: PPP, preparative SDS-PAGE profiling; PEP, porcine enzootic pneumonia.
INTRODUCTION

Mycoplasma hyopneumoniae, *M. hyorhinis* and *M. flocculare* are commonly found in the porcine respiratory tract. *M. hyopneumoniae* is the cause of porcine enzootic pneumonia (PEP), which imposes a severe economic burden on swine production. *M. hyorhinis* has been implicated as an agent of arthritis and polyserositis (Ross, 1992; Friis & Feenstra, 1994) whilst *M. flocculare* is generally regarded as non-pathogenic (Strasser et al., 1992). DNA–DNA hybridization studies and 16S rRNA sequence analysis have demonstrated that these porcine mycoplasma species exhibit phylogenetic similarities and form a sub-cluster within the fermentans phylogenetic group (Stemke et al., 1985, 1992). Further, more than 95% sequence homology exists between the 16S RNA sequences of *M. hyopneumoniae* and *M. flocculare*, indicating a close phylogenetic relationship between these species (Stemke et al., 1992).

Serological cross-reactivity can be demonstrated between these three species using a variety of techniques including growth and metabolic inhibition assays (Friis, 1971), immunoelectrophoresis (Ro & Ross, 1983), complement fixation (Freeman et al., 1984), immuno blotting (Bolske et al., 1987; Young & Ross, 1987; Mori et al., 1988; Thirkell et al., 1991; Strasser et al., 1992) and ELISA (Freeman et al., 1984). The majority of these studies have focussed on antigenic differences between laboratory-adapted type strains of these three species. Earlier studies using growth and metabolic inhibition assays and the complement fixation test were unable to detect serological differences between the J type strain and several field strains of *M. hyopneumoniae* (Roberts & Little, 1970; Rose et al., 1979). Ro & Ross (1983) compared eight field strains of *M. hyopneumoniae* by two-dimensional immunoelectrophoresis and noted some antigenic diversity but were unable to define the molecular masses of similar and variant antigens. Thus, little is known about the molecular identity of antigens amongst strains isolated from different geographical locations and maintained in different laboratories.

Several studies have demonstrated that increasing in vitro passage reduces the virulence of *M. hyopneumoniae*. Experimental challenge of pigs with low passage strains of *M. hyopneumoniae* induces lung lesions whilst inoculation with high passage J strain failed to cause disease (Tajima & Yagihashi, 1982; Zielinski & Ross, 1990). Low passage strains of *M. hyopneumoniae* specifically attach to cilia in porcine tracheal organ cultures inducing ciliostasis and loss of cilia, but attempts to reproduce these pathogenic effects using strains of *M. hyopneumoniae* which had undergone increasing in vitro passage either failed or were significantly diminished (DeBey & Ross, 1994). Furthermore, Ross & Young (1993) found that hyperimmune serum raised against a low passage virulent strain of *M. hyopneumoniae*, preabsorbed against a high passage avirulent strain, contained antibodies predominantly directed against several antigens with molecular masses between 46 and 145 kDa. These antigens, which were specific to or more abundant in the low passage strain, may be important virulence antigens. Such studies suggest that strains of *M. hyopneumoniae* varying in their degree of laboratory passage may display a variable antigenic repertoire.

We have previously described an ELISA, based on a 43 kDa antigen, that detected serum antibodies against *M. hyopneumoniae* with a high sensitivity and specificity in naturally and experimentally infected pigs. This antigen was shown to be highly immunoreactive against porcine hyperimmune serum raised against *M. hyopneumoniae* and did not cross-react with anti-*M. hyorhinis* and anti-*M. flocculare* sera (Djordjevic et al., 1994).

The aim of this study was to identify the repertoire of antigens amongst a small group of geographically diverse strains of *M. hyopneumoniae* using anti-*M. hyopneumoniae* antisera raised against both high and low passage strains of *M. hyopneumoniae* by SDS-PAGE and immunoblotting. In addition, anti-*M. hyopneumoniae*, anti-*M. hyorhinis* and anti-*M. flocculare* sera were used to determine the molecular masses of cross-reactive antigens between these three mycoplasma species and identify *M. hyopneumoniae*-specific antigens. Furthermore, we developed and evaluated a preparative SDS-PAGE profiling (PPP) technique which combined the advantages of the electrophoretic separation of proteins with the convenience and speed of ELISA to identify species-specific and cross-reactive antigens. PPP offered the potential to quantify the humoral immune response against the entire repertoire of mycoplasmal antigens, facilitating the identification of highly immunoreactive and species-specific serological reagents. Finally, we evaluated the diagnostic utility of monospecific antiserum raised to a 43 kDa antigen against whole cell lysates of strains of these three species of porcine mycoplasma by immunoblotting.

METHODS

Growth, preparation and identification of mycoplasma strains. The mycoplasma strains used in this study (Table 1) were obtained from the Australian Mycoplasma Reference Collection (AMRC), South Australian Department of Primary Industries, Central Veterinary Laboratory, Adelaide, Australia. Methods used to culture porcine mycoplasmas have been described by Sheldrake & Romalis (1992). Briefly, both field (low passage) and laboratory adapted (high passage) strains of *M. hyopneumoniae*, *M. hyorhinis* and *M. flocculare* were grown in modified Friis medium at 37 °C and harvested during the exponential phase when the medium became honey coloured and pH was in the range 7.2–6.9. Mycoplasma cells were harvested by centrifugation at 7000 g for 20 min and the pellet was washed three times with Tris-buffered saline (TBS: 10 mM Tris/HCl, 0.9 M NaCl; pH 7.4). Mycoplasma field isolates had been originally typed using immunodiffusion (Taylor-Robinson et al., 1963) and growth-inhibition tests (Clyde, 1964) prior to storage in the AMRC. The identity of all strains of *M. hyopneumoniae* and *M. flocculare* type strain Ms42 was confirmed using species-specific PCR primers
Vaccination was identical to the first except that Freund's incomplete adjuvant was used. The serum anti-\textit{M. hyopneumoniae} was read at 405 nm (Titertek plate reader) when the colour development with 3,3'-diaminobenzidine tetrahydrochloride (DAB) was observed using sera collected from each strain of mycoplasma (1.0 g cell pellet, wet weight) was emulsified in Freund's complete adjuvant (total vaccine volume 2 ml) and 1 ml was administered in the neck and rump of each of two pigs for each strain. One month later, 2 ml of a booster vaccine was prepared and administered as before (except that Freund's incomplete adjuvant was used). Animals were bled before vaccination (prebleed) and weekly after the second vaccination and the serum antibody response was monitored against \textit{M. hyopneumoniae} strain C1735/2 using sera collected from each animal vaccinated with the same antigen, antiserum that was read at 405 nm (Titertek plate reader) when the colour development with 3,3'-diaminobenzidine tetrahydrochloride (DAB) was observed. ELISA was performed with constant current (20 mA) until the tracking dye (bromophenol blue) had migrated to the bottom of the resolving gel. Polyclonal antisera were stained with either silver or Coomassie blue. Western blots were performed using a Hoeffer Trans-Blot as described previously (Djordjevic et al., 1994). Molecular masses were calculated using pre-stained and unstained low range markers (Bio-Rad). Immuno- blots were blocked using 5% skim milk in TBS (10 mM Tris/HCl, 0.9 M NaCl; pH 7.4), reacted with porcine hyperimmune sera (1:500 in TBS with 0.1% skim milk) and incubated with slow shaking at room temperature for 1.5 h. Immunoblots were reacted (1 h) with goat anti-swine IgG (H+L) horseradish peroxidase-conjugate (Southern Biotechnics) (1:1000 in TBS with 0.1% skim milk). Blots were washed (3 x 5 min) in Tris/HCl (100 mM, pH 7.6) prior to colour development with 3,3'-diaminobenzidine tetrahydrochloride (DAB) (0.05% in Tris/HCl, 100 mM, pH 7.6). EUSA. Aliquots (10 μl) of the column fractions were loaded into 96-well ELISA plates (Nunc) and diluted 1:10 with carbonate loading buffer (30 mM sodium carbonate, 20 mM sodium hydroxide carbonate, pH 9.6) and left overnight in a humid chamber at 21 °C. Plates were washed (5 x 400 μl) with TW (Milli Q water/0.05% Tween 20) using a Titrertek microplate washer. Primary antibody (hyperimmune sera against \textit{M. hyopneumoniae} strains J, Beaufort, \textit{M. hyorhinis} strain GDL and \textit{M. flocculare} strain Ms42 was diluted 1:200 in 10% normal goat serum in PBST (phosphate buffered saline, pH 7.2 containing 0.05% Tween 20) and 100 μl was added to the wells. Plates were incubated for 2 h at 21 °C and washed (5 x 400 μl) as described above. Horseradish peroxidase-conjugated goat anti-swine IgG (H+L) (Southern Biotechnics, 100 μl) diluted 1:1000 in 10% normal goat serum in PBST was added and the plates incubated at room temperature for 1 h. After a final washing step (5 x 400 μl) colour development was achieved by the addition of 100 μl of 1 mM 2,2’-azino-di-ethyl-benzethiol-disulfonate (ABTS) diluted in citrate/phosphate buffer (pH 4.2) and incubated at room temperature until the desired colour developed. Absorbance was read at 405 nm (Titrertek plate reader) when the colour

| Table 1. Mycoplasma strains used in this study |
|-----------------|----------------|-------------------|
| Species | Strain | Source* |
| \textit{M. hyopneumoniae} | J (NCTC 10110) | A. Pointon |
| \textit{M. hyopneumoniae} | 232 | T. Young, (Bereiter et al., 1990) |
| \textit{M. hyopneumoniae} | YZ | M. Kobisch |
| \textit{M. hyopneumoniae} | Beaufort | AMRC |
| \textit{M. hyopneumoniae} | Sue | AMRC |
| \textit{M. hyopneumoniae} | C1735/2 | AMRC |
| \textit{M. flocculare} | Ms42 | AMRC |
| \textit{M. hyorhinis} | Field strain 2 | AMRC |
| \textit{M. hyorhinis} | BTS-7 | AMRC |
| \textit{M. hyorhinis} | GDL | AMRC |
| \textit{M. hyorhinis} | Field strain 1 | AMRC |

* A. Pointon, South Australian Research & Development Institute, Adelaide, Australia; M. Kobisch, CNEVA PLOUFRAGAN, Station de Pathologie Porcine, Ploufragan, France; AMRC, Australian Mycoplasma Reference Collection.
development reached an absorbance for fractions containing the 43 kDa antigen approximately 10-fold higher than fractions containing only electrophoresis buffer (negative control). Anti-swine HRP conjugate did not cross-react with any PPP fraction in control experiments.

RESULTS
Whole cell protein analysis by SDS-PAGE

Whole cell extracts of M. hyopneumoniae, M. hyorhinis and M. flocculare were resolved by SDS-PAGE and the proteins stained with Coomassie blue. Electrophoretic profiles of six strains of M. hyopneumoniae, four strains of M. hyorhinis and a type strain of M. flocculare are shown in Fig. 1. M. hyopneumoniae strains J and 232 (both high passage laboratory adapted strains), Sue, Beaufort and OMZ407 (low passage strains) had very similar protein profiles (although none of the profiles were identical), with some variation evident in the region between 80 and 85 kDa. M. hyopneumoniae strain C1735/2 (low passage field strain) showed considerably greater variation compared with the other five strains, particularly in the 80–140 kDa region. M. flocculare type strain Ms42 produced a unique electrophoretic profile; however, many bands aligned at similar molecular sizes with those typical of M. hyopneumoniae. All four M. hyorhinis strains produced very similar electrophoretic profiles and were easily distinguished from the profiles representative of the other two mycoplasma species.

Antigenic analysis by immunoblotting

Homologous immunoreactivity. Immunoblot analysis using anti-M. hyopneumoniae hyperimmune serum prepared against a high passage, laboratory adapted strain J (Fig. 2a) and a low passage (<5) Beaufort isolate (Fig. 2b) were used to probe whole cell extracts of the 11 porcine mycoplasmas described in Table 1. M. hyopneumoniae strains J, 232, Sue, Beaufort and OMZ407 produced similar profiles using both hyperimmune sera. Hyperimmune sera raised against the J strain produced immunoreactive bands with approximate molecular masses at 36, 43, 48, 52, 76, 78, 80, 82, 94 and 114 kDa (Fig. 2a, lane 1). Some M. hyopneumoniae strains lacked some of these immunoreactive bands.

Hyperimmune serum raised against the Beaufort strain identified antigens of approximate molecular mass 30 (J strain only), 36–38, 42 (weak), 43, 48, 65 (weak), 72 (weak), 76, 78, 80–82, 94, 106, 114, 200 kDa and a band greater than 200 kDa (Fig. 2b). Immunoreactivity against antigens of molecular mass greater than 85 kDa (particularly 94, 106, 114 kDa antigens) was more intense using the anti-Beaufort hyperimmune serum. Immunoreactive M. hyopneumoniae antigens in the molecular mass range of 34–36, 94, 106 and 114 kDa showed minor intra-species size variation; however, immunoblots probed with monoclonal or monospecific polyclonal antibodies against these antigens would be required to confirm these observations.

Antigens of M. hyopneumoniae strain C1735/2 reacted poorly with both hyperimmune anti-M. hyopneumoniae sera; these sera identified antigens with molecular masses of 43, 46–48 (weak), 78 and (anti-Beaufort antiserum only) 80 kDa (Fig. 2a, b). This antigen profile was more similar to the profile generated by whole cell antigens of M. flocculare strain Ms42. In an attempt to further characterize the antigen profile of strain C1735/2, rabbit hyperimmune anti-C1735/2 antiserum was raised and used to probe an immunoblot containing whole cell antigens of the six M. hyopneumoniae strains. A typical M. hyopneumoniae antigen profile showing antigens with approximate molecular masses of 36, 43, 48–52, 76, 78, 94 and 114 kDa was observed for all M. hyopneumoniae strains except C1735/2, which produced a smearing pattern without clearly defined banding (data not shown).

Heterologous immunoreactivity. M. flocculare antigens of molecular masses 43, 55 and 78 kDa cross-reacted with hyperimmune antisera raised against both the J and Beaufort strains (Fig. 2a and b, respectively, lanes 8) of M. hyopneumoniae. M. flocculare antigens of molecular masses 76, 114 and 200 kDa reacted faintly with the anti-Beaufort antiserum. M. hyorhinis antigens also

![Fig. 1. SDS-PAGE (10%) of whole cell lysates of 11 porcine mycoplasmas (40 μg per lane) stained with Coomassie blue. Molecular mass markers are indicated in kDa. Lane 1, M. flocculare strain Ms42; lanes 2–7, M. hyopneumoniae strains J, 232, Beaufort, Sue, OMZ407, C1735/2, respectively; lanes 8–11, M. hyorhinis, field strain 2, GDL, BTS-7, field strain 1, respectively.](image-url)
Antigens specific for *M. hyopneumoniae* cross-reacted with both anti-*M. hyopneumoniae* sera recognizing 78 kDa antigens, and 85 kDa and approximately 200 kDa antigens reacting only with the anti-Beaufort antiserum. Pig anti-*M. flocculare* sera cross-reacted weakly with *M. hyopneumoniae* antigens of molecular masses 25, 28, 48 kDa and more strongly with a 52 kDa antigen (data not shown). Anti-*M. flocculare* sera also detected cross-reactive *M. hyorhinis* antigens of 48, 52 (strong) and 114 (extremely faint) kDa (data not shown).

Immunoreactive antigen profiles using porcine anti-*M. hyorhinis* hyperimmune serum

Fig. 2(c) shows an immunoblot containing whole cell mycoplasma lysates reacted with hyperimmune sera raised against *M. hyorhinis* type strain GDL. Strongly immunoreactive *M. hyorhinis* antigens were identified at 42, 49, 52, 78, 80 and 82 kDa. Weakly immunoreactive antigens were observed at 36, 44, 47, 85, 94, 106 and 114 kDa. This antigen profile was identical for both type strains GDL and BTS-7 (except for the 36 kDa antigen, which was identified only in strain BTS-7). *M. hyorhinis* field strain 2 displayed strongly immunoreactive antigens of molecular masses 49, 52, 80, and 85 kDa and weakly immunoreactive antigens of 44, 82, 84 and 114 kDa showing similarity with profiles typical of *M. hyorhinis* type strains BTS-7 and GDL. *M. hyorhinis* field strain 1 displayed strongly immunoreactive antigens of molecular masses 47, 49, 80, 82, and 83 kDa and weakly immunoreactive antigens of molecular masses 52 and 85 kDa, producing a unique profile. Although the four strains of *M. hyorhinis* display very similar protein profiles (Fig. 1) and cross-reactive antigen profiles with anti-*M. hyopneumoniae* sera (Fig. 2a, b), considerable antigenic heterogeneity is evident using anti-*M. hyorhinis* serum. Similar observations have been described for many other species of mycoplasma (Andersen et al., 1987; Stättlander et al., 1991; Poumarat et al., 1994). Faintly immunoreactive antigens ranging in molecular mass from 50 to 78 kDa and differing in molecular size by approximately 2 kDa are evident in lanes containing all four *M. hyorhinis* strains (Fig. 2c). Further studies are required to determine the degree and significance of antigenic variability amongst strains of *M. hyorhinis*.

M. hyopneumoniae strains and *M. flocculare* type strain Ms42 failed to cross-react strongly with the anti-*M. hyorhinis* serum (Fig. 2c). An extremely weak cross-

Fig. 2. Immunoblot analysis of 11 porcine mycoplasma strains. Whole cell lysates (20 μg per lane) were resolved on 10% SDS-polyacrylamide gels, transferred onto PVDF membrane and reacted with antisera raised against *M. hyopneumoniae* J strain cross-reacted with both anti-*M. hyopneumoniae* sera recognizing 78 kDa antigens, and 85 kDa and approximately 200 kDa antigens reacting only with the anti-Beaufort antiserum. Pig anti-*M. flocculare* sera cross-reacted weakly with *M. hyopneumoniae* antigens of molecular masses 25, 28, 48 kDa and more strongly with a 52 kDa antigen (data not shown). Anti-*M. flocculare* sera also detected cross-reactive *M. hyorhinis* antigens of 48, 52 (strong) and 114 (extremely faint) kDa (data not shown).

Immunoreactive antigen profiles using porcine anti-*M. hyorhinis* hyperimmune serum

Fig. 2(c) shows an immunoblot containing whole cell mycoplasma lysates reacted with hyperimmune sera raised against *M. hyorhinis* type strain GDL. Strongly immunoreactive *M. hyorhinis* antigens were identified at 42, 49, 52, 78, 80 and 82 kDa. Weakly immunoreactive antigens were observed at 36, 44, 47, 85, 94, 106 and 114 kDa. This antigen profile was identical for both type strains GDL and BTS-7 (except for the 36 kDa antigen, which was identified only in strain BTS-7). *M. hyorhinis* field strain 2 displayed strongly immunoreactive antigens of molecular masses 49, 52, 80, and 85 kDa and weakly immunoreactive antigens of 44, 82, 84 and 114 kDa showing similarity with profiles typical of *M. hyorhinis* type strains BTS-7 and GDL. *M. hyorhinis* field strain 1 displayed strongly immunoreactive antigens of molecular masses 47, 49, 80, 82, and 83 kDa and weakly immunoreactive antigens of molecular masses 52 and 85 kDa, producing a unique profile. Although the four strains of *M. hyorhinis* display very similar protein profiles (Fig. 1) and cross-reactive antigen profiles with anti-*M. hyopneumoniae* sera (Fig. 2a, b), considerable antigenic heterogeneity is evident using anti-*M. hyorhinis* serum. Similar observations have been described for many other species of mycoplasma (Andersen et al., 1987; Stättlander et al., 1991; Poumarat et al., 1994). Faintly immunoreactive antigens ranging in molecular mass from 50 to 78 kDa and differing in molecular size by approximately 2 kDa are evident in lanes containing all four *M. hyorhinis* strains (Fig. 2c). Further studies are required to determine the degree and significance of antigenic variability amongst strains of *M. hyorhinis*.

M. hyopneumoniae strains and *M. flocculare* type strain Ms42 failed to cross-react strongly with the anti-*M. hyorhinis* serum (Fig. 2c). An extremely weak cross-

(a), *M. hyopneumoniae* Beaufort strain (b), and *M. hyorhinis* GDL strain (c). For all blots: lanes 1-6, *M. hyopneumoniae* strains J, 232, Beaufort, Sue, C1735/2, OMZ407, respectively; lane 7, *M. hyorhinis* field strain 2; lane 8, *M. flocculare* Ms42; lanes 9-1 1, *M. hyorhinis* GDL, BTS-7, field strain 1, respectively. Asterisks identify the presence of faintly immunoreactive bands. An extremely faint cross-reactive *M. hyopneumoniae* antigen of 81 kDa is present in all six strains, but can only be observed in lanes 1 and 2 in (c), which contain whole cell lysates of *M. hyopneumoniae* strains J and 232.
A reactive antigen (81 kDa) was observed in all M. hyopneumoniae strains.

Preparative SDS-PAGE profiling (PPP)

The BioPrep 491 SDS-PAGE column has been used previously for the electrophoretic separation and purification of preparative quantities of M. hyopneumoniae membrane proteins (Djordjevic et al., 1994). Preliminary investigations showed that 9% polyacrylamide columns adequately separated antigens within a molecular mass range of 20–80 kDa and a 5% polyacrylamide column resolved high molecular mass antigens between 80 and 250 kDa. Fig. 3(a, b) shows that fractions (9.5 ml) eluted from a 9% SDS-polyacrylamide column contained between one and three discernible antigens when resolved on a 10% SDS-polyacrylamide slab gel, transferred onto PVDF membrane and reacted with antisera raised against M. hyopneumoniae J strain.

Comparison of PPP of M. hyopneumoniae, M. hyorhinis and M. flocculare type strains against anti-M. hyopneumoniae J strain serum

Fig. 5 shows PPP, eluted from 9% (Fig. 5a) and 5% (Fig. 5b) polyacrylamide columns, respectively, of antigens of the three porcine mycoplasma type strains reacted with hyperimmune sera raised against the J strain of M. hyopneumoniae. Strongly immunoreactive M. hyopneumoniae antigens were identified with molecular masses of 43, 76, 94, 114 and 200 kDa which appeared specific for M. hyopneumoniae. Strong cross-reactivity was observed with M. flocculare antigens of molecular masses 36, 55 and 78 kDa. Interestingly, cross-reactivity of the 36 kDa antigen was not observed by immunoblotting (Fig. 2). Weak cross-reactivity was observed with M. hyorhinis antigens of molecular masses 55 and 78 kDa. PPP generated from mycoplasma antigens eluted from 5% polyacrylamide columns using the anti-strain J hyperimmune serum showed that the majority of the cross-reactivity was associated with the first three fractions (comprising antigens of molecular masses up to 80 kDa) which migrate just behind the dye front.
Fig. 4. PPP of *M. hyopneumoniae* J strain whole cell lysate showing ELISA reactivity (A_{405}) for each consecutive fraction that eluted from the column. Aliquots (10 μl) of each fraction were coated on to a microtitre plate and reacted against hyperimmune serum raised to the J strain of *M. hyopneumoniae*. Panels (a) and (b) show PPP of the first 50 fractions eluted from 9% and 5% polyacrylamide columns respectively. The numbers on the profile indicate molecular masses (kDa).

Fig. 5. Superimposed PPP of 9% (a) and 5% (b) columns of whole cell lysates derived from type strains of *M. hyopneumoniae* (J, solid line), *M. hyorhinis* (GDL, dashed line), and *M. flocculare* (Ms42, dotted line) probed with hyperimmune serum raised against the J strain of *M. hyopneumoniae*. ELISA reactivity (A_{405}) was measured for each consecutive fraction that eluted from the column. Panels (a) and (b) show PPP of the first 50 fractions eluted from 9% and 5% polyacrylamide columns respectively. The numbers above the profile indicate molecular masses (kDa).

shown), whilst anti-*M. flocculare* serum identified weakly cross-reactive *M. hyopneumoniae* antigens with molecular masses of 50–55 and 65 kDa (data not shown). The basis for the identification of species-specific antigens by the absence of cross-reacting antigens in other mycoplasma species is based on an assumption that cross-reactive antigens of different molecular masses are unrelated. Further studies are required to confirm the species specificity of these antigens.

Purification and specificity of a 43 kDa *M. hyopneumoniae*-specific antigen

Although we have determined from immunoblotting and PPP studies that antigens of 36, 43, 76, 94, 114 and 200 kDa are specific for *M. hyopneumoniae*, we chose one of these antigens to further evaluate its diagnostic potential. The 43 kDa antigen was selected for two reasons: first, whilst PPP studies identified the 43 kDa
antigen as an *M. hyopneumoniae*-specific antigen (Fig. 5), immunoblotting studies detected a cross-reactive 43 kDa antigen in a whole cell lysate of *M. flocculare* using anti-*M. hyopneumoniae* serum (Fig. 2); and second, we had previously used the 43 kDa antigen as an ELISA antigen to detect porcine serum antibodies against *M. hyopneumoniae* but had not determined the presence of this antigen amongst geographically diverse field and laboratory-adapted strains of this pathogen. Fraction 9 (from a single column run) containing the 43 kDa antigen was concentrated by ultrafiltration (Amicon, YM30) and emulsified with Freund’s adjuvant for the generation of monospecific polyclonal antisera. Fig. 6 shows an immunoblot of whole cell lysates of 12 porcine mycoplasma strains reacted against rabbit anti-43 kDa serum. *M. hyopneumoniae* strain YZ (originating in France) became available in the latter stages of this study and was included in this experiment to test the specificity of the anti-43 kDa antiserum against as many *M. hyopneumoniae* strains from different geographic origins as possible. A strongly reactive band of molecular mass 43 kDa is present in the whole cell lysates of all *M. hyopneumoniae* strains but absent from lanes containing whole cell lysates of *M. hyorhinis* and *M. flocculare*. A faintly reactive band of approximate molecular mass 45 kDa is evident in lanes containing *M. hyopneumoniae* strains J (lane 1) and Sue (Lane 5) and may be due to antigenic size variation in these two strains.

DISCUSSION

Protein and antigenic variation among mycoplasmas has traditionally been studied using SDS-PAGE and immunoblotting techniques. However, these techniques do not readily facilitate quantitative comparisons between strains unless densitometric analyses are performed. ELISA is one of the most sensitive, versatile and rapid diagnostic assay formats and has been used to detect and quantify the immune response against mycoplasmal antigens (Ross & Young, 1993). SDS-PAGE, immunoblotting and various chromatographic matrices have been used to identify and recover diagnostic mycoplasmal antigens for ELISA (Sheldrake & Romalis, 1992; Bolske et al., 1987; Young & Ross, 1987; Mori et al., 1988; Kazama et al., 1989). Comparatively lengthy time periods are often required to run and monitor fractions eluted from chromatographic columns. Other limitations include difficulties with producing preparative quantities of desired antigen(s), and atypical chromatographic behaviour of some antigens in column matrices (Sheldrake & Romalis, 1992). In this communication we report the development of a preparative SDS-PAGE profiling technique which can rapidly identify and quantify the immunoreactive responses against the spectrum of whole cell mycoplasmal proteins, facilitating the identification of potentially useful diagnostic antigens. Using hyperimmune sera to profile whole cell lysates of *M. hyopneumoniae*, *M. hyorhinis* and *M. flocculare*, antigens of molecular masses 36, 43, 76, 94, 114 and 200 kDa were shown to be *M. hyopneumoniae*-specific, highly immunoreactive antigens. One of these antigens (43 kDa) was used to produce polyclonal antisera to confirm its specificity for *M. hyopneumoniae* in an immunoblot assay. Although the 43 kDa antigen has been shown in a previous study to (i) fail to cross-react with porcine hyperimmune anti-*M. hyorhinis* and anti-*M. flocculare* antisera and (ii) form the basis of a diagnostic ELISA for the detection of serum antibodies against *M. hyopneumoniae* (Djordjevic et al., 1994), the utility of anti-43 kDa sera as a diagnostic antiserum for immunoblotting studies has not been addressed. Polyclonal antibodies raised against this antigen were able to detect a 43 kDa band on immunoblots containing whole cell lysates of the seven strains of *M. hyopneumoniae* described in this study and failed to cross-react with whole cell lysates of *M. flocculare* and *M. hyorhinis*.

The presence of species-specific and cross-reactive antigens among type strains of *M. hyopneumoniae*, *M. hyorhinis* and *M. flocculare* has been described previously in immunoblot studies (Bolske et al., 1987; Young & Ross, 1987; Mori et al., 1988; Thirkell et al., 1991). Thirkell et al. (1991) described cross-reactive antigens between *M. hyopneumoniae* and *M. flocculare* of molecular mass 52, 58, 64, 74, 107 and 184 kDa whilst Young & Ross (1987) identified cross-reactive antigens of 41, 50 and 110 kDa. Mori et al. (1988) identified cross-reactive antigens in *M. flocculare* probed with anti-*M. hyopneumoniae* serum with molecular masses of 46 and 74 kDa. Similarly, Bolske et al. (1987) described a 73 kDa antigen common to all three mycoplasma species and 41 and 35 kDa antigens common to *M. hyopneumoniae* and *M. flocculare*. In this study we identified cross-reactive antigens in *M. flocculare* with molecular masses of 36, 55 and 78 kDa in PPP studies (Fig. 5) and of 43, 55 and 78 kDa in immunoblotting studies using anti-*M. hyopneumoniae* sera (Fig. 2). Although it is feasible that the 36, 43 and 78 kDa antigens described here are similar to those described in other studies, further experiments are required to confirm this. The molecular masses of these antigens
Antigens specific for *M. hyopneumoniae*

vary considerably between studies and this variation could be due to any one of a number of different experimental parameters including different sources (pig versus rabbit) and type of antisera (convalescent versus hyperimmune) and the different methods used to extract antigens. Strains of mycoplasma derived from various geographical locations with different degrees of *in vitro* passage could be expected to display different antigen profiles. In addition, minor differences in relative mobilities of antigens in different studies may be a function of the different molecular mass markers (stained versus unstained) used to estimate molecular mass. Finally, antigenic size variation has recently been described for an antigen from *M. hyopneumoniae* with a molecular mass of 97 kDa (Zhang et al., 1993) and this phenomenon is likely to alter the relative molecular masses of some antigens amongst different strains of this species.

Considerable genomic heterogeneity has been reported among strains of *M. hyopneumoniae* recovered from different geographical locations in both Europe and the United States (Frey et al., 1992; Artiushin & Minion, 1996) and considerably greater genomic variation was observed when comparing *M. hyopneumoniae* with *M. flocculare* (Frey et al., 1992; Chan & Ross, 1984). Genomic heterogeneity is common among mycoplasma species and it is thought that mycoplasmas evolve rapidly (Razin et al., 1983; Christiansen & Andersen, 1988; Ionas et al., 1991; Frey et al., 1992; Poumarat et al., 1994; Artiushin & Minion, 1996). The fastidious nature of *M. hyopneumoniae*, its slow growth and the complex medium requirements needed to culture field strains are reflected by the paucity of studies comparing protein and antigen profiles of this species. We examined six strains of *M. hyopneumoniae* isolated from diverse geographical regions together with strains of *M. hyorhinis* and *M. flocculare* using SDS-PAGE and immunoblotting techniques. The electrophoretic profiles produced by *M. hyopneumoniae* strains J, Beaufort, Sue, 232 and OMZ407 are very similar. Strains J and 232 are high passage laboratory adapted strains originally isolated in Great Britain (Goodwin et al., 1965) and the United States (Bereiter et al., 1990) respectively, whilst OMZ407, Sue and Beaufort are field strains with a low passage history recovered from pneumonic lungs in pigs from Victoria, Australia. Only strain C1735/2 displayed a different protein profile compared with the other *M. hyopneumoniae* strains. Although the geographical origin of strain C1735/2 is unconfirmed the circumstances of its appearance in a PEP-free herd in Queensland, Australia, suggests that it may have originated from Canada (see below). One dimensional SDS-PAGE studies carried out on denatured whole cell lysates of other mycoplasmal species have not identified major intraspecies antigenic variation (Andersen et al., 1987; Städtlander & Watson, 1992; Poumarat et al., 1994).

In contrast, considerable antigen profile variability has been reported amongst mycoplasmas belonging to the same species (Andersen et al., 1987; Städtlander et al., 1991; Avakian et al., 1991; Städtlander & Watson, 1992). Poumarat et al. (1994) observed marked differences in the antigenic profiles amongst 20 *Mycoplasma bovis* field strains belonging to both the same and different genomic groups. However, all *M. hyopneumoniae* strains reported in this communication (except C1735/2) produced very similar antigen profiles. The conservation of antigens amongst *M. hyopneumoniae* strains and a relatively high degree of genomic heterogeneity suggest that these antigens are evolutionarily conserved and may function in crucial biological roles important for the survival of the species.

Unlike the similarity of antigen profiles among strains of *M. hyopneumoniae*, the profiles generated by anti-*M. hyorhinis* antisera of the two field strains of *M. hyorhinis* were readily distinguishable from one another and from the profiles generated by type strains GDL and BTS-7. This result was unexpected as the electrophoretic profiles of whole cell lysates stained with Coomassie blue were very similar for all four *M. hyorhinis* strains and it suggests that considerable antigenic heterogeneity may exist amongst strains of this species. Although field strain 1 produced a unique antigenic profile against anti-*M. hyorhinis* strain GDL serum it was indistinguishable from the other three *M. hyorhinis* strains (with the exception of a high molecular mass antigen at approximately 200 kDa) when reacted against anti-*M. hyopneumoniae* sera. Consequently, immunoblotting may be a useful tool for the identification of field strains of *M. hyorhinis* and warrants further investigation, particularly in light of the studies performed by Gois et al. (1974), who described antigenic variation amongst seven strains of *M. hyorhinis* using a variety of immunological techniques. All four *M. hyorhinis* strains displayed marked antigenic size heterogeneity, producing a distinctive immunoreactive 'ladder' pattern on immunoblots. This antigen pattern has been reported for several species of mycoplasma including *M. hyorhinis* and is most likely indicative of size variation of immunoreactive membrane associated lipoproteins described by Rosengarten & Wise (1990).

M. hyopneumoniae strain C1735/2 is clearly unusual, displaying a unique protein profile, and is poorly immunoreactive against hyperimmune sera raised to either high or low passage strains of *M. hyopneumoniae*. C1735/2 was recovered from lung samples submitted by a piggery (previously free of PEP) in south-east Queensland, Australia, when a severe outbreak of PEP occurred soon after the importation of boar from Canada. Two mycoplasma isolates (C1735/5, C1735/2) were recovered from infected lung and the gel-diffusion test identified C1735/5 as *M. hyorhinis* whilst C1735/2 failed to give any reaction with anti-*M. hyorhinis* or anti-*M. hyopneumoniae* antisera. Strain C1735/2 was later identified as *M. hyopneumoniae* by the growth inhibition test and its species identity confirmed by PCR using *M. hyopneumoniae* specific primers (this study). Avakian et al. (1991) described strains of *Mycoplasma gallisepticum* that were poorly immunoreactive to antisera raised against another *M. gallisepticum* strain.
Whilst anti-\textit{M. hyopneumoniae} J strain sera detected strongly immunoreactive \textit{M. hyopneumoniae} antigens of molecular mass between 52 and 62 kDa in PPP experiments, these antigens are poorly reactive on immunoblots probed with the same antiserum. For both PPP and immunoblotting studies, antigens are denatured in reducing mixture (Laemmli, 1970) and separated by SDS-PAGE using the same buffer composition. Whilst proteins may partially renature during Western transfer (Bolske \textit{et al.}, 1987) the conformational state of mycoplasmal antigens dissolved in SDS-PAGE buffer, diluted in carbonate buffer and coated onto 96-well microtitre plates may be different compared with the same antigens used in immunoblotting studies. These differences may alter the repertoire of linear and conformational epitopes amongst different proteins, affecting the ability of some antibodies to bind to some antigens. Bolske \textit{et al.} (1987) described different specificities of anti-\textit{M. hyopneumoniae} serum for antigens which had undergone different preparation procedures likely to affect their degree of renaturation. Finally, antigens identified as cross-reactive species in immunoblotting studies are often of a different molecular mass to those described in PPP studies, which may also be a reflection of this phenomenon.

Recently, we described \textit{M. hyopneumoniae} antigens of molecular masses of 76, 78, 80–82, 94, 106 and 114 kDa which afforded a significant reduction in lung pathology when administered as parenteral vaccines to pigs (Djordjevic \textit{et al.}, 1996). Ultimately, the control of mycoplasmal pneumonia will depend upon the development of reliable diagnostic reagents and a thorough understanding of the mechanism(s) of pathogenesis. Recently, we have cloned and characterized a gene encoding the 94 kDa \textit{M. hyopneumoniae}-specific antigen described in this study. Hybridization studies have shown that the DNA encoding this antigen is present in all seven strains of \textit{M. hyopneumoniae} described here yet fails to hybridize to genomic DNA from strains of \textit{M. flocculare} and \textit{M. myorhinis} (data not shown). More importantly, the deduced amino acid sequence reveals the presence of tandemly arranged, proline-rich repeat motifs typical of bacterial and eukaryote binding proteins (Williamson, 1994). Clearly, further studies are required to characterize the \textit{M. hyopneumoniae}-specific antigens of 36, 43, 76, 94, and 114 kDa described here to evaluate their diagnostic and prophylactic potential as a means of controlling mycoplasmal pneumonia.

ACKNOWLEDGEMENTS

We are grateful for the supply of \textit{M. hyopneumoniae} strain 232 from Dr T. Young, French field isolate YZ from Dr M. Kobisch and strains C1735/2, Sue, Beaufort, OMZ407 from Dr A. Pointon, Australian Mycoplasma Reference Collection. A.S. is a recipient of an Australian Postgraduate Research Award. This work was partly funded by the Pig Research & Development Corporation (DAN 47P). We gratefully acknowledge the technical assistance of L. Romalis, M. Saunders and V. Taylor in photography and mycoplasmal culture.

REFERENCES

Antigens specific for *M. hyopneumoniae*

Received 10 June 1996; revised 26 September 1996; accepted 2 October 1996.