Phenotype in *Candida albicans* of a disruption of the *BGL2* gene encoding a 1,3-β-glucosyltransferase

Aparna V. Sarthy, Thomas McGonigal, Michael Coen, David J. Frost, Jonathan A. Meulbroek and Robert C. Goldman

Author for correspondence: Robert C. Goldman. Tel: +1 847 937 4477. Fax: +1 847 938 6603. e-mail: robert.goldman@abbott.com

The *BGL2* gene encodes a unique 1,3-β-glucosyltransferase (Bgl2p) present in the cell wall of *Candida albicans* and other fungi. Although believed to be involved in cell wall assembly, disruption of the gene in *Saccharomyces cerevisiae* showed no apparent phenotype. We performed sequential disruptions of the *BGL2* loci in a homozygous *ura3* clinical isolate of *C. albicans* using the *URA3* blaster method, in order to investigate the role of Bgl2p in this dimorphic, pathogenic fungus. Strain CACW-1 contained disruptions of both homologues of the *BGL2* gene and lacked Bgl2p, as assessed by protein extraction, SDS-PAGE and Western blot analysis, and enzyme assay; however, residual non-Bgl2p transferase activity was detected. CACW-1 was attenuated in virulence for mice when compared to an isogenic parent strain, and fewer organisms were recovered from the kidneys of infected animals. Additional phenotypic changes included: (1) a dramatic increase in the sensitivity to the chitin synthesis inhibitor nikkomycin Z when CACW-1 cells were incubated at 37 or 42°C; (2) an 8.7±1.6% slower growth rate at 37°C for CACW-1 when compared to its isogenic parent; and (3) aggregation of CACW-1 cells during stationary phase and/or incubation of stationary phase cells in phosphate buffer. Characterization of SDS-extracted cell walls did not reveal any significant differences in the levels of 1,3-β- or 1,6-β-glucan. These data reveal that loss of Bgl2p does have a phenotype in *C. albicans*, and indicate that (1) loss of Bgl2p function renders cells more dependent on chitin for wall integrity, and attenuates virulence (probably due to subtle changes in wall structure), and (2) that additional 1,3-β-glucosyltransferases are present in the *C. albicans* *BGL2* disruptant.

Keywords: *Candida albicans*, BGL2, transglycosylation

INTRODUCTION

The biochemistry and structure of the fungal cell wall represent some of the few and clear differences between fungal and mammalian cells. The cell wall provides many functions, including maintenance of cell shape, protection from damage by extracellular agents, protection from osmotic forces, and expression of virulence properties facilitating interaction of the pathogen with the host (Reiss et al., 1992; Shepherd, 1987; Shepherd et al., 1985). The cell wall is therefore an attractive target for antifungal drug development, and specific lipo-peptide (echinocandin class), glycolipid (papulacandin class) and peptidyl-nucleotide (polyoxin class) compounds are either in preclinical or clinical development as antifungal agents which affect cell wall synthesis. In addition, a study has shown that reduction of the chitin content of the cell wall of *Candida albicans* via disruption of the *CSD2/CAL1/DIT101/KTI2* gene (the *C. albicans* homologue of the *Saccharomyces cerevisiae CHS3* gene) resulted in attenuation of virulence of this pathogen (Bulawa et al., 1995), demonstrating that non-lytic alterations in fungal cell wall synthesis can decrease fungal virulence *in vivo*. The magnitude of this effect may be in question based on a separate study (Mio et al., 1996).

A large number of mannoproteins as well as an extensive
glucan and chitin network make up the architecture of the cell wall of *S. cerevisiae* and other fungi (Shepherd, 1987; Shepherd *et al.*, 1985). Recent data have confirmed the existence of covalent linkages between various structural components of the fungal cell wall, including chitin and glucan (Elorza *et al.*, 1989; Sietsma & Wessels, 1981; Surarit *et al.*, 1988; Kollar *et al.*, 1995). The action of wall-associated glycosyltransferases is the most likely mechanism for formation of such covalent linkages. A novel 35 kDa glycosyltransferase encoded by the *BGL2* gene, first described in *C. albicans* (Hartland *et al.*, 1991), catalyses the following transference reaction with 1,3-β-glucan:

\[
E + G_n \rightarrow E : G_{n-2} + G_2 \\
E : G_{n-2} + G_y \rightarrow E + G_{n+y-2}
\]

where *E* is the enzyme, *G* is the acceptor glucan (*G* > 4) and *G* is the enzyme:glucosyl intermediate, *G* is the released disaccharide laminaribiose, *G* is the acceptor glucan (*G* > 4) and *G* is the transference product which contains a 1,6-β-linkage at the transfer site (Hartland *et al.*, 1991; Goldman *et al.*, 1995). The *BGL2*-encoded enzyme is present in *S. cerevisiae* (Goldman *et al.*, 1995; Klebl & Tanner, 1989; Mrsa *et al.*, 1993) and the pathogenic fungi *C. albicans* (Hartland *et al.*, 1991) and *Aspergillus fumigatus* (R. Hartland, personal communication). The transference reaction catalysed by the Bgl2p enzyme is not essential for growth in *S. cerevisiae* (Klebl & Tanner, 1989). However, we previously reported that a Bgl2p-like enzyme probably was functional in *S. cerevisiae* (Coen *et al.*, 1994), as one of the products, laminaribiose (*G*), was released from cell wall glucan during growth. The *BGL2* gene product was originally described as an exoglucanase (Klebl & Tanner, 1989), then as an endoglucanase (Mrsa *et al.*, 1993), but is now known to have active transglycosylase function (Hartland *et al.*, 1991; Goldman *et al.*, 1995). Structural analysis of Bgl2p reveals that it is uniquely specialized for transference function (C. Hutchins & R. Goldman, unpublished).

We initiated a study in *C. albicans* to determine the effects of loss of the Bgl2p enzyme activity on growth, wall structure/function and/or pathogenicity. Strains deficient in the Bgl2p enzyme can also be used to characterize other glucosyltransferase activities that may be essential for cell wall assembly. The present study describes the disruption of both copies of the *BGL2* gene in a clinical isolate of *C. albicans*. The strain was further evaluated for the presence of glucosyltransferase activity and virulence using a mouse model system. Low levels of non-Bgl2p glucosyltransferase activity were detectable in this strain. The strain also showed a slight attenuation of virulence as compared to the *BGL2* parent, and fewer *C. albicans* were recovered from the kidneys of infected mice.

METHODS

Yeast strains, plasmids and media. The *C. albicans* strains used are listed in Table 1. Strain CAI-4 was used to disrupt the *BGL2* gene homologues in the construction of CACW-0 and CACW-1. The *hisG-URA3-hisG* and *C. albicans BGL2* sequences are contained in pMB7 (Fonzi & Irwin, 1993) and pDS14 (provided by P. A. Sullivan, Massey University, New Zealand), respectively, and were used to construct strains containing disruptions in the *BGL2* gene. Yeast strains were maintained on YPD medium (Sherman *et al.*, 1982) supplemented with 25 μg uridine ml⁻¹. Synthetic depleted (SD) medium contained 0.67% *Yeast Nitrogen Base* (Difco) and 2% (w/v) glucose (Sherman *et al.*, 1982). Uridine auxotrophs were selected by the 5-fluoroorotic acid method as described by Boeke *et al.* (1984) and maintained on medium supplemented with uridine. SD medium was supplemented with 25 μg uridine ml⁻¹ when required.

Plasmid construction, and transformation. A 930 bp PCR fragment was amplified from pDS14 such that the *BGL2* coding sequence was flanked by a unique *SacI* site at the 5' end and unique *BglII* and *BamHI* sites at the 3' end. PCR amplification was performed using the Perkin Elmer Cetus thermal cycler and GeneAmp Kit with the primers 5'TGTTGAGTCGACTACTCTGCAACCCTTCT 3' and 5' AGAGTTGATCCGAGATCTAGAATCCAAAAACAC 3'. Thirty cycles of 94°C/30 s melting, 55°C/1 min annealing and 72°C/1 min extension steps were used for the amplification. The PCR product was digested with *BamHI* and *SacI* and cloned into the *BamHI* and *SacI* sites of pBluescript KS (Strategene) to create pBSCaBGL2. Plasmid pMB7 (Fonzi & Irwin, 1993) was digested with *SacI* and *BglII* to release a 3-9 kb fragment containing the *hisG-URA3-hisG* cassette. This fragment was blunt-end ligated into the flush-ended *EcoRI* site in the *BGL2* gene of pBSCaBGL2 to generate pCBHUH1. A 5 kb *BglII*-SacI fragment containing the *hisG-URA3-hisG* cassette inserted into the *BGL2* gene was isolated from pCBHUH1 and transformed into *C. albicans* as described by Burgers & Percival (1987). Uridine prototrophs were selected on SD medium lacking uridine.

Southern blot analysis. Yeast genomic DNA was extracted as described by Hoffman & Winston (1987). Approximately 5 μg DNA was digested with *EcoRI* and electrophoresed on an agarose gel which was then transferred onto Hybond-N paper (Amersham). Southern blot analysis was done as described by Maniatis *et al.* (1982) using a 32P-labelled fragment containing the *Candida BGL2* gene as probe.

Growth rate measurements. Strains were grown overnight at 37°C in SD medium with limiting glucose (0.1%) and transferred to SD medium containing 0.5% glucose to a final OD 600 of 0.05 (measured using a Bausch & Lomb Spectronic 1001 spectrophotometer). Cells were grown at 37°C with shaking, and mildly sonicated for 10 s in a Bransonic model 220 sonicator bath to disrupt clumps prior to reading the optical density value. Cultures were diluted before reading to obtain optical density values within the linear range, in order to avoid non-linear readings. The generation time was determined in triplicate, and converted to *k* (the instantaneous growth rate constant) by the formula *g* = ln2/*k*, where *g* is expressed in hours.

Aggregation measurements. The tendency towards aggregation was monitored in both exponential- and stationary-phase cells grown in SD medium plus 0.5% glucose. Exponential-phase cells were harvested at an optical density value of 2.0-3.0, while stationary-phase cells were from cultures grown for 16 h. Cells were washed once with PBS (0.137 M NaCl; 2.7 mM KCl; 0.10 M sodium phosphate), once with 0.066 M sodium/potassium phosphate buffer (pH 7.5) and resuspended in 0.066 M phosphate buffer to an OD 600 value of about 1.0. Cells were incubated with shaking at 200 r.p.m. in a New
Brunswick Aquatherm water-bath shaker at 37 °C, and the optical density value was determined over time. Alternatively, cells were examined microscopically and the frequency distribution of aggregates was determined by triplicate counting of 100–150 aggregates. Aggregates of size two or more may represent mother–daughter associations that had not separated, or more distantly related cells which had aggregated together when cells were examined directly from culture.

Zymolyase sensitivity

The sensitivity towards lysis by Zymolyase 100T (Seikagaku America) was determined for both exponential- and stationary-phase cells prepared as given above for aggregation measurements. Cells suspended in 0.02 M phosphate buffer with varying amounts of Zymolyase 100T were incubated at 37 °C with shaking, and the optical density value was determined with time. Data were plotted and the rate of lysis was determined from the linear portion of the curve (time vs optical density value).

Germ tube formation upon glucose starvation

Cells were grown overnight at 37 °C in SD medium plus 0.1 % glucose. Coded samples were analysed in a cell counting chamber for total cell number and percentage germ tubes. Microscopy fields (10 per sample) were counted, and the standard deviation was determined.

MIC profiles

The MIC values for various drugs were determined by micro broth dilution in 96-well microtitre trays, using cells grown in SD medium plus 0.5 % glucose. Cells were inoculated to about 2×10^6 cells ml$^{-1}$ in 100 µl media containing twofold serial dilutions of drugs. Plates were incubated at the indicated temperatures and monitored for growth on days 1, 2 and 4. MIC profiles were determined three to five times, depending on the drug, with similar results, and representative data are reported.

Bgl2p extraction and analysis

Glucosyltransferase activity was extracted from walls as previously described (Goldman et al., 1995). Briefly, 16 g cell paste was thawed in 5 ml 25 mM Tris/HCl (pH 7.5) and mixed with 45 ml acid-washed 0.5 mm glass beads in a Braun 70 ml glass cylinder. Cells were maintained at 4 °C with CO₂ cooling and broken using a Braun type 853030 cell disrupter. The cell wall pellet was washed once with cold distilled H₂O by centrifugation (10000 g for 10 min) and the pellet wet weight was recorded. The pellet was resuspended in cold distilled H₂O (1.8 x wet wt) and transferred to a glass Corex tube. The pellet was extracted with butanol (1.2 x wet wt) at 4 °C for 15 min with gentle rocking, then centrifuged at 10000 g for 5 min at 4 °C and the supernatant was discarded. The extraction and centrifugation steps were repeated two more times. The cell wall pellet was washed once with cold distilled H₂O by centrifugation, and the pellet wet weight was recorded. The pellet was resuspended in 5 mM Tris/HCl (pH 7.5) (2.0 x wet wt) and heated at 70 °C for 10 min. The sample was cooled by addition of 1 x volume of 5 mM Tris/HCl (pH 7.5) and centrifuged at 30000 g for 30 min at 4 °C. The supernatant was concentrated to approximately 500 µl and assayed for protein concentration and glucosyltransferase activity. Protein extracts were separated by SDS-PAGE (4–20 %, w/v, acrylamide) and analysed by Western blotting using antiserum raised against Bgl2p (1:5000 dilution) isolated from S. cerevisiae, and goat anti-rabbit IgG (peroxidase-conjugated; 1:5000 dilution).

Glucosyltransferase assay

Reagents were prepared and reactions were conducted as previously described (Goldman et al., 1995). Briefly, this included preparation of labelled glucan using C. albicans microsomes in a final volume of 2 ml 2 mM UDP-[³H]Glc [Amersham TRK.385; 12.3 Ci (4.55 x 10⁶ Bq) mmol⁻¹; final specific activity of 62–124 mCi (3.7–55 GBq) mmol⁻¹], 1 mM EDTA, 8 % (v/v) glycerol, 20 µM GTPyS, 0.5 % Brij-35, 80 mM Tris/HCl (pH 7.75) and microsomes (2 mg protein). Glucan was precipitated with 2 vols cold 95 % ethanol, and the dried glucan was digested with laminaripentahydrolase prepared from Zymolyase 100T. The soluble glucan oligosaccharides were purified on Sephadex G50 and then by HPLC as described by Goldman et al. (1995), and stored at -20 °C in H₂O containing 1 % ethanol. Laminariogalactosidases and glucosyltransferase reaction products were separated on a Dynamax-60A 8 µm NH₂ column, 4.6 mm internal diameter x 25 cm (Rainin Instrument), using 60 % (v/v) acetonitrile as the mobile phase and a flow rate of 1 ml min⁻¹. Radioactivity was monitored with a Radiomatics flow detector (United Packard).

Characterization of cell walls

Cells from 20 ml culture were mixed with an equal volume of acid-washed 0.5 mm glass beads and broken by vortexing four times for 1 min. Walls were collected by centrifugation, resuspended in 3 ml 2 % (w/v) SDS in 10 mM Tris/HCl (pH 7.5) and heated to 100 °C for 5 min. Walls were centrifuged as above and the pellets were washed twice with 5 ml H₂O to remove the SDS. Walls (0.5 ml; 2 mg dry wt in 20 mM ammonium acetate, pH 5.6) were digested with 100 units Zymolyase 100T in 0.02 %

Table 1. C. albicans strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAF2</td>
<td>Δura3::imm434/URA3</td>
<td>W. A. Fonzi (Georgetown University Medical Center, Washington, DC, USA)</td>
</tr>
<tr>
<td>CAI-4</td>
<td>Δura3::imm434/Δura3::imm434</td>
<td>As above</td>
</tr>
<tr>
<td>CACW-0</td>
<td>bg2::hisG–URA3–hisG/BGL2, Δura3::imm434/Δura3::imm434</td>
<td>This study</td>
</tr>
<tr>
<td>CACW-1</td>
<td>bg2::hisG–ura3::hisG–ura3::hisG, Δura3::imm434/Δura3::imm434</td>
<td>This study</td>
</tr>
</tbody>
</table>
to inactivate the Zymolyase enzymes. Particulate matter was removed by centrifugation and the supernatants were frozen at -20 °C for subsequent total hexose determination using the phenol–sulfuric acid method (Dubois et al., 1956). Zymolyase-soluble material was fractionated on Sephadex G50 columns (10 ml bed volume in 20 mM ammonium acetate, pH 5.6), collecting 0.75 ml fractions. The material from peak 1 (void volume) was pooled, lyophilized and resuspended in 300 μl 25 mM sodium acetate (pH 4.2).

Each peak 1 sample was digested with 0.04 units (1 unit = 1 μmol reducing sugar released min⁻¹) of endo-1,6-β-exoglucanase for 1 h at 50 °C, followed by an additional 0.04 units for another 1 h digestion. Each sample was centrifuged through a Microcon 3 membrane (Millipore; 3000 Da cut-off) to near-dryness and the membrane was washed three times with 100 μl 25 mM sodium acetate (pH 4.2). The filtrates were combined and assayed for hexose content. In addition, the retentate was resuspended in 1 ml buffer and assayed for hexose content. The amount of hexose passing through the membrane as filtrate was used to quantify the amount of material in peak 1 which was susceptible to 1,6-β-exoglucanase digestion.

Virulence studies. Cells were grown overnight in Sabouraud broth at 37 °C with shaking. Cultures were diluted in phosphate buffer and groups of ten mice (CF-1) were inoculated with 0.2 ml of each dilution via a lateral tail vein. Mice were monitored for 28 d. Colonization and survival in kidney tissue were monitored by inoculating mice as above. At days 1 and 4 post-inoculation, kidney homogenates from 10 mice from each group were plated on Sabouraud Dextrose Agar (Difco) and colony counts were determined after 24 h incubation at 37 °C.

Reagents. Cilofungin was obtained from Eli Lilly & Co.; fuscardin A was isolated at Abbott Laboratories; Calcofluor white and miconazole were purchased from Sigma. Nikkomycin Z, tunicamycin and staurosporine were purchased from CalBiochem. Amphoterocin B was purchased from Gibco-BRL. Zymolyase 100T was from Seikagaku America. Anti-β-glucanase from Eupenicillium brefeldianum were kindly provided by Dr P. A. Sullivan, Massey University, New Zealand.

RESULTS AND DISCUSSION

Sequential disruption of the BGL2 gene in C. albicans CAI-4

A homozygous ura3 mutant clinical isolate, C. albicans CAI-4, was used to sequentially disrupt the BGL2 loci using the method described by Fonzi & Irwin (1993). A 3.9 kb DNA fragment containing the Candida URA3 gene flanked by repeats of the Salmonella hisG gene was first inserted into the EcoRI site located in the coding region of the C. albicans BGL2 gene. The restriction map of the wild-type BGL2 gene containing the insertion of the hisG–URA3–hisG cassette at the EcoRI site is shown in Fig. 1. The parental strain CAI-4 was then transformed with the BglII–SalI fragment containing the hisG–URA3–hisG cassette flanked by BGL2 sequences. Southern analysis of three URA⁺ transformants indicated that one transformant, CACW-0, contained a disruption of one of the two BGL2 genes by insertion of the hisG–URA3–hisG DNA construct.

ura3 mutant derivatives were obtained from CACW-0 by first growing in non-selective (YEPD) medium to saturation and then plating on SD medium containing 5-fluoroorotic acid plus uridine to select for uridine auxotrophs. Southern analysis of six uridine auxotrophs showed that all contained bg12::hisG, which should have arisen by intragenic recombination between the two copies of the hisG sequences. A homozygous disruption at the BGL2 locus was obtained by transformation with the same BglII–SalI fragment containing the hisG–URA3–hisG sequences inserted into the BGL2
gene. Only two out of 28 URA+ transformants contained insertion of the cassette at the second BGL2 locus as determined by Southern analysis (Fig. 1). One of the transformants, CACW-1, was used for further studies.

Biochemical characterization of CACW-1

Bgl2p protein was missing from walls of CACW-1, as assayed by SDS-PAGE and Western blot analysis (Fig. 2). The Bgl2p from *S. cerevisiae* runs slightly faster on SDS-PAGE compared to the homologous protein from *C. albicans* CAI-4 (Fig. 2, lanes 2 and 3, respectively). No comparable band was found in the extract prepared from CACW-1. Antibody raised against Bgl2p from *S. cerevisiae* cross-reacted with Bgl2p from *C. albicans* (Fig. 2, lanes 6 and 7). No Bgl2p cross-reacting material was detected in the extract from CACW-1 (Fig. 2, lane 5). Consistent with these findings, G₆ and G₁₁ transferase products were not detected when G₆ (laminaripentaose) was incubated with cell wall extracts from *C. albicans* CACW-1 (Table 2). As expected, G₆ and G₁₁ transferase products were detected when extracts of parental strain CAI-4 were incubated with G₆. However, transferase products of unknown structure, which did not comigrate with G₆ or G₁₁, were detected as reaction products using extracts of both CAI-4 and CACW-1.

The growth rate of CACW-1 (g = 1.23 ± 0.039 h⁻¹, k = 0.563 ± 0.018) was slightly lower than the growth rate of CAF2 (g = 1.13 ± 0.019 h⁻¹, k = 0.613 ± 0.010) when grown in SD medium plus 0.5% glucose. We noted that the OD₄₉₀ value of overnight cultures of CACW-1 was always lower by 30–40% compared to CAF2. Although there was a slight tendency for CACW-1 to aggregate during growth at 37 °C, extensive aggregation of stationary-phase cells occurred (Fig. 3). Aggregation was observed microscopically, and followed by monitoring the OD₄₉₀ value of cells incubated in phosphate buffer (pH 7.5). Vigorous mixing or mild sonication disrupted aggregates, i.e., aggregation as observed microscopically was reduced, and the OD₄₉₀ reading increased. However, no significant difference in cell aggregation was observed when CAI-4 and CACW-1 were grown to stationary phase in Sabouraud Dextrose Broth (Fig. 4), nor were any observable hyphae formed by either strain under these conditions. There was no difference in the number of yeast (2.96 ± 0.13 × 10⁹ yeast ml⁻¹) or the number of hyphal forms (2.14 ± 0.93 × 10⁶ ml⁻¹) produced when two individual colonies of

Table 2. Analysis of 1,3-β-glucosyltransferase activity in *C. albicans*

<table>
<thead>
<tr>
<th>HPLC run</th>
<th>CAI-4 (parent)</th>
<th>CACW-1 (BGL2 disruptant)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G₆ c.p.m.*</td>
<td>G₁₁ c.p.m.*</td>
</tr>
<tr>
<td>Run 1</td>
<td>50725 (4-10)</td>
<td>25144 (1-48)</td>
</tr>
<tr>
<td>Run 2</td>
<td>47645 (3-85)</td>
<td>25160 (1-48)</td>
</tr>
<tr>
<td>Mean</td>
<td>49185 (3-98)</td>
<td>25125 (1-48)</td>
</tr>
</tbody>
</table>

* Values in parentheses are nmol product produced.
‡ Value in parentheses is the percentage of total labelled G₆ converted to product.
† No G₆ or G₁₁ product was detected within the nmol limits given.
A. V. SARTHY and OTHERS

Fig. 3. Aggregation of CACW-1 cells. Cells grown in SD medium plus 0.5% glucose were washed and resuspended in phosphate buffer (pH 7.5) at 37 °C. Aggregation of CAF2 and CACW-1 exponential- and stationary-phase cells was measured over time by monitoring the OD₆₀₀ value. (a) Exponential- and stationary-phase cells of both strains were compared. □, CAF2 exponential-phase cells; ○, CACW-1 exponential-phase cells; ■, CAF2 stationary-phase cells; ●, CACW-1 stationary-phase cells. (b) Two independent colonies of CAF2 (○) and CACW-1 (●) were grown to stationary phase and aggregation was examined. Stationary-phase cells of CACW-1 were prone to aggregation.

Fig. 4. Aggregation profile of stationary phase cells in Sabouraud Dextrose Broth. Cells were grown overnight to stationary phase at 37 °C, and analysed microscopically using a slide counting chamber. Triplicate preparations were analysed for aggregation state by counting 100–150 aggregates, and the mean and standard deviation are given. □, CAF2; ●, CACW-1.

...each strain were compared by growth in glucose-limited SD (0.1% glucose).

In addition, preliminary analysis of the 1,3-β- and 1,6-β-glucan and mannan fractions did not reveal any significant differences (Table 3 and Fig. 5). Equivalent amounts of hexose were released by Zymolyase 100T treatment of walls isolated from exponential- or stationary-phase cells of CAF2 and CACW-1 (Table 3). Zymolyase-released material separated into two fractions by size exclusion chromatography on Sephadex G50 (Fig. 5). Peak 1 (void volume) material contained approximately equal amounts of 1,6-β-glucan (glucose) and mannan (mannose) as assessed by gas chromatographic analysis of peracetylated alditol acetates, and methylation analysis (data not shown). Peak 2 contained 1,3-β-oligosaccharides as assessed by TLC, HPLC, methylation analysis and NMR (data not shown). Between 60 and 80% of the hexose in peak 1 samples was digested by endo-1,6-β-glucanase. Thus the levels of 1,3-β- and 1,6-β-glucan and mannan in cell walls of CACW-1 are equivalent to the parent CAF2. Stationary-phase cells were slightly more sensitive to Zymolyase 100T lysis on several occasions of testing, but we are not confident that the slight increase (5–10% in increased lysis rate) is significant (data not shown).

Virulence studies on CACW-1

The virulence of CACW-1 was slightly attenuated (Fig. 6) when compared to the isogenic parental strain CAF2 (experiment performed twice with similar results, and one set of data is depicted in Fig. 6). In addition, fewer c.f.u. were recovered from the kidneys of animals infected with CACW-1 compared to CAF2 (Table 4). It is difficult to predict what effect the slight decrease in generation time of CACW-1 (see above) might play in attenuating virulence, as compared to some alteration in the cell wall due to lack of the Bgl2p glucosyltransferase (see below). Regardless, the lack of Bgl2p glucosyltransferase reproducibly attenuated virulence in the standard mouse model. There was no significant difference in the aggregation state of CACW-1 compared to CAF2 when grown to stationary phase (Fig. 4, and see above) in the Sabouraud Dextrose Broth used to grow infecting inoculums. Thus it is unlikely that differences in aggregation caused the attenuation in virulence.

MIC profiles

The MIC values of several antifungal drugs, especially those acting by way of perturbation of cell wall synthesis or assembly, were measured on strains CAF2 and
Table 3. Analysis of wall glucan

Walls prepared from exponential- and stationary-phase cells were digested with Zymolyase 100T and released material was fractionated on Sephadex G50.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Zymolyase-released hexose (µg glucose equivalents)*</th>
<th>Hexose in peak 1 (%)†</th>
<th>Hexose in peak 2 (%)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAF2 exponential</td>
<td>1116 ± 120</td>
<td>49.1</td>
<td>50.9</td>
</tr>
<tr>
<td>CAF2 stationary</td>
<td>1303 ± 147</td>
<td>43.4</td>
<td>56.6</td>
</tr>
<tr>
<td>CACW-1 exponential</td>
<td>1453 ± 87</td>
<td>45.2</td>
<td>54.8</td>
</tr>
<tr>
<td>CACW-1 stationary</td>
<td>1133 ± 108</td>
<td>48.8</td>
<td>51.2</td>
</tr>
</tbody>
</table>

* Assayed in triplicate with mean and standard deviation given.
† Peak 1 (void volume) contained 1,6-β-glucan and mannan as assessed by gas chromatography of peracetylated alditol acetate derivatives and methylation analysis. Data are the mean of two measurements.
‡ Peak 2 (included fraction) contained 1,3-β-oligosaccharides as assessed by methylation analysis. Data are the mean of two measurements.

Fig. 5. Analysis of wall glucan and mannan by size exclusion chromatography. SDS-extracted walls from exponentially growing cells were digested with Zymolyase 100T and the released hexose was fractionated on Sephadex G50. Peak 1 (void volume) contained mannan and 1,6-β-glucan; peak 2 (included volume) contained 1,3-β-oligosaccharides released by the 1,3-β-glucanases in Zymolyase 100T. □, CAF2; ○, CACW-1. Profiles for CAF2 and CACW-1 stationary-phase cells gave similar patterns (data not shown).

Fig. 6. Virulence of CAF2 (□) and CACW-1 (○) in the mouse model. Mice (10 for each group) were inoculated with (a) 1×10^7, (b) 1×10^6 or (c) 1×10^5 c.f.u. of each strain via the tail vein, and the time of death was recorded. Mean survival times (d) are: (a) 1.0 (CAF2) and 1.4 (CACW-1); (b) 2.3 (CAF2) and 9.1 (CAW-1); (c) 10.5 (CAF2) and 12.6 (CACW-1).

CACW-1 (Table 5). The most striking observations were: (1) the 30–250-fold increase in sensitivity of CACW-1 to the chitin synthase inhibitor nikkomycin Z compared to CAF2 at 37 and 42 °C; and (2) the increased sensitivity of both CAF2 and CACW-1 to nikkomycin Z when compared over the incubation temperatures 30, 37 and 42 °C. CACW-1 also showed a slight increase in sensitivity to Calcofluor white, which perturbs cell wall synthesis and assembly. In contrast, no significant differences were observed in the MIC values for cijfungin and fusacandin A (inhibitors of glucan synthesis), staurosporine (inhibitor of wall synthesis via protein
Table 4. Colonization of mouse kidney tissue following intravenous inoculation

Twenty female CF-1 mice were inoculated with C. albicans strains, and at days 1 and 4 kidney homogenates from 10 mice from each group were plated on Sabouraud Dextrose Agar. C. albicans colony counts were determined after 24 h incubation.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Inoculum dose (c.f.u.)</th>
<th>c.f.u. recovered from kidneys/c.f.u. inoculated*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Day 1</td>
</tr>
<tr>
<td>CAF2</td>
<td>9.3 × 10⁴</td>
<td>0.796 (±0.334)</td>
</tr>
<tr>
<td></td>
<td>9.3 × 10³</td>
<td>0.161 (±0.075)</td>
</tr>
<tr>
<td>CACW-1</td>
<td>5.0 × 10⁴</td>
<td>0.070 (±0.026)</td>
</tr>
<tr>
<td></td>
<td>5.0 × 10³</td>
<td>0.074 (±0.028)</td>
</tr>
</tbody>
</table>

* Mean values with standard deviation in parentheses.

Table 5. Effect of antifungal agents on CAF2 and CACW-1 strains at 30, 37 and 42 °C

MIC values were determined by micro broth dilution in SD medium plus 0.5% glucose at the indicated incubation temperatures, and results were scored on days 1, 2 and 4. Values in parentheses are the fold difference in MIC between CAF2 and CACW-1 under the given conditions.
chitinase activity and chitin repair during cell septation or cell separation, but also endoglucanase activity, perhaps activated during bud glucosyltransferase in that it catalyses a 7.8 reducing 1,3-P-glucan strand (Goldman ‘joining’ reaction using a free reducing and a free non-reducing end). In conclusion, we have described several phenotypic effects on the CAF2 or CACW-1 strains. However, a higher ratio of hyphal/pseudo-hyphal growth (20–30%) was seen in both untreated strains at 42 °C.

The dramatic increase in sensitivity to nikkomycin Z is of particular interest, and indicates that loss of Bgl2p glucosyltransferase renders cells more dependent on chitin as a structural element in the wall. We have previously proposed repair functions for the Bgl2p glucosyltransferase in that it catalyses a ‘strand-rejoining’ reaction using a free reducing and a free non-reducing 1,3-β-glucan strand (Goldman et al., 1995). Free ends would be generated not only by the action of endoglucanase activity, perhaps activated during bud emergence or cell septation/cell separation, but also following initiation and completion of new 1,3-β-glucan strands. There is a well-known relationship between chitinase activity and chitin repair during cell septation and separation (Kuranda & Robbins, 1991; Cabib et al., 1992). Loss of chitin repair (CHS1) function leads to lysis of separating cells due to chitinase action at the septum. Similar biochemical events probably balance glucan synthesis and hydrolysis during bud emergence and cell septation/separation. Thus it is feasible that some aspect of bud emergence and or septation/separation is compromised in the Bgl2p-deficient CACW-1 strain (perhaps strand rejoining of glucan nicked by endoglucanase), rendering the cells more dependent on chitin when grown at 37 and 42 °C.

In conclusion, we have described several phenotypic changes in a C. albicans strain lacking the Bgl2p glucosyltransferase due to disruption of the two BGL2 alleles. This strain lacks cell-wall-associated Bgl2p glucosyltransferase activity, but contains glucosyltransferase activity of an as yet unknown type. Changes indicating that cell wall alterations have occurred in strain CACW-1 include (1) extensive aggregation of CACW-1 stationary-phase cells, (2) increased sensitivity of CACW-1 to nikkomycin Z, and possibly (3) the attenuated virulence in the mouse infection model. The function of other non-BGL2-encoded glucosyltransferase activities in C. albicans and S. cerevisiae is currently being investigated.

ACKNOWLEDGEMENTS

We thank John Capobianco and Dorothy Zakula for running the Bglp2 transferase reactions, and W. Fonzi and P. Sullivan for kindly providing strains, plasmids and other reagents.

REFERENCES

Received 27 June 1996; revised 30 September 1996; accepted 1 October 1996.