Active transport of glucosylglycerol is involved in salt adaptation of the cyanobacterium Synechocystis sp. strain PCC 6803

Stefan Mikkat, Martin Hagemann and Arne Schoor

An active-transport system for the osmoprotective compound glucosylglycerol (GG) was found in the cyanobacterium Synechocystis sp. strain PCC 6803. Uptake assays with 14C-labelled GG showed that the GG transport was enhanced in cells adapted to increasing concentrations of NaCl. Kinetic studies indicated a Michaelis-Menten relationship. The uptake of GG was energy dependent and occurred against a steep concentration gradient. It was inhibited by uncouplers as well as by a combination of darkness and KCN. The affinity of the transporter seems to be restricted to osmoprotective compounds of cyanobacteria; from a variety of compounds tested only sucrose and trehalose competed with GG for uptake. A salt-sensitive mutant of Synechocystis 6803 unable to synthesize GG could be complemented to salt resistance by exogenous GG. Accumulation of GG from the medium was essential for the restoration of photosynthesis and growth in mutant cells under high-salt conditions. In wild-type cells, the GG transporter probably serves to prevent GG leaking out of salt-stressed cells.

Keywords: osmoprotective compound, glucosylglycerol transport, salt adaptation, cyanobacterium, Synechocystis sp.

INTRODUCTION

Salinity is an important abiotic factor in aquatic biotopes. Survival and growth in habitats with high or fluctuating salinities require prokaryotes to adjust their cytoplasmic water potential. Several archaeabacteria and anaerobic heterotrophic eubacteria accumulate inorganic ions to maintain osmotic equilibrium with their surroundings. However, high concentrations of inorganic ions are toxic for most eubacteria. During adaptation to salt stress, these bacteria achieve a balanced osmotic potential by the extrusion of excess inorganic ions from the cell and the accumulation of osmoprotective compounds (compatible solutes). These low-molecular-mass hydrophilic compounds do not interfere with cell metabolism because they are largely inert and carry no net charge (Brown, 1976; Galinski & Trüper, 1994). Besides reducing the osmotic potential of the cytoplasm, osmoprotective compounds apparently prevent denaturation by helping macromolecules to retain their natural configuration (e.g. Incharoensadaki et al., 1986). In salt-loaded cyanobacterial species, sucrose, trehalose, glucosylglycerol [2-O-(α-D-glucopyranosyl)-glycerol; GG], glycine betaine or glutamate betaine serve as the principal osmoprotective compounds (Reed & Stewart, 1988). Cyanobacteria synthesize these substances de novo mainly from CO2 by photosynthesis, although limited amounts may be synthesized from stored glycogen or exogenous glucose (Tel-Or et al., 1986; Erdmann et al., 1989).

Unlike cyanobacteria, many heterotrophic eubacteria prefer to accumulate osmoprotective compounds from their environment. Several active-transport systems for the osmoprotective compounds proline, glycine betaine and its precursor choline have been characterized in a variety of bacteria, e.g. Eschericia coli, Salmonella typhi-murium and Bacillus subtilis (Perroud & Le Rudulier, 1985; Csonka & Hanson, 1991; Boch et al., 1994). These systems are controlled by the osmolarity of the medium at the levels of both transport activity and gene expression (Lucht & Bremer, 1994; Boch et al., 1994).

E. coli under osmotic stress is able to synthesize trehalose de novo, but if glycine betaine is available trehalose synthesis is completely repressed and adaptation to high osmotic pressure is achieved by accumulation of glycine betaine alone (Larsen et al., 1987; Giaever et al., 1988). A
glycine betaine transport system has also been found in cyanobacteria. Interestingly, it was only present in strains which can synthesized this compound (Moore et al., 1987).

In the present study we have used the cyanobacterium Synechocystis sp. strain PCC 6803, which accumulates GG and tolerates up to 1·2 M NaCl (Reed & Stewart, 1985). The osmoprotective compound GG is characteristic of moderately halotolerant cyanobacteria. It is synthesized from ADP-glucose and glycerol-3-phosphate by a salt-activated enzyme system (Hagemann & Erdmann, 1994). We show here that Synechocystis 6803 has an active GG uptake system, which is involved in the process of salt adaptation.

METHODS

Organisms and culture conditions. Axenic cultures of Synechocystis 6803 were grown photoautotrophically under continuous illumination (20 W m⁻²) and bubbled with air containing 2·5 % (v/v) CO₂ at 29 °C in the growth medium of Allen & Arnon (1955). The cells were inoculated into fresh medium daily. The basal medium contained 2 mM NaCl. Cells grown at this NaCl concentration are hereafter referred to as control cells. To obtain salt-adapted cells, the cyanobacteria were precultured for at least 5 d in NaCl-enriched medium. In salt-shock experiments solid NaCl was added to the cultures. To obtain hypo-osmotically treated cells, a culture adapted to 684 mM NaCl was harvested by centrifugation, and the cells were resuspended and cultivated for 2 h in basal medium. This procedure was repeated twice. The salt-sensitive mutant 107 (unpublished) of Synechocystis 6803, which is unable to synthesize GG, was cultivated in the presence of 25 μg kanamycin ml⁻¹. GG was cultivated in the presence of 25 pg kanamycin ml⁻¹.

Methods for the generation and characterization of salt-sensitive mutants are described by Hagemann & Zuther (1992). The purity of the cultures was checked by spreading 0·2 ml culture onto LB plates and by microscopic examination.

Extraction and purification of GG. A culture of Synechocystis 6803 (1 l) adapted to 684 mM NaCl was harvested by centrifugation (6000 g at 4 °C for 10 min) and stored at −20 °C. GG was extracted from the cells with 200 ml 80 % (v/v) ethanol for 3 h at 65 °C. After centrifugation at 6000 g (20 °C for 15 min) the clear supernatant was evaporated in a rotary evaporator and redissolved in water. Insoluble particles (mainly pigments) were removed by centrifugation (48000 g at 4 °C for 30 min). To remove charged compounds, the clear water extract was passed through ion-exchange resins. It was applied to a column of Dowex 50Wx8 (H⁺ form), rinsed with water, and then passed through a column of Dowex 1x2 (formiat form). The effluent and rinse were collected, dried and again dissolved in water. These extracts were further purified by preparative TLC. TLC was performed in acetonitrile/water (85:15, v/v, three runs) on self-coated plates (cellulose MN 300, about 0·5 mm). GG was scraped off, eluted with water, and dried. The purity of the extracted GG was about 98 % as determined by HPLC.

Preparation of [¹⁴C]-labelled GG. A culture of Synechocystis 6803 (500 ml) adapted to 342 mM NaCl was shocked by adding 10 g NaCl (final NaCl concentration 684 mM) to achieve an in-100 % vertical visibility. The GG content was estimated after extraction of 415 pg ml⁻¹ and an OD750 of 1.09. For cells of Synechocystis 6803 adapted to 684 mM NaCl, a BV of 1 mm³ ml⁻¹ is equivalent to a protein content of 0·75 mg ml⁻¹, a dry mass of 458 pg ml⁻¹, and an OD750 of 0·89. Photosynthesis and respiration were determined polarographically using a Clark-type oxygen electrode (Erdmann et al., 1992).

RESULTS

Evidence for GG uptake

Cells of Synechocystis 6803 were able to accumulate [¹⁴C]GG. The rate of GG uptake was substantially higher in salt-adapted than in control cells (Fig. 1); it was linear
for at least 30 min. Therefore, we used an incubation time of 15 min to measure the initial velocities of GG transport in the standard assays. TLC of ethanolic extracts of control and salt-adapted cells incubated for 30 min with \[^{14}\text{C}\]GG showed a single \[^{14}\text{C}\]-labelled compound, which co-chromatographed with authentic GG. This indicates that the exogenous GG taken up by the cells was not metabolized (not shown).

GG transport in cells adapted to different salt concentrations was investigated. Increasing transport activity was found in cells grown in medium containing increasing amounts of NaCl (Fig. 2). Cells adapted to 856 mM NaCl showed a fivefold higher uptake rate than control cells. In salt-adapted cells GG was synthesized de novo and accumulated to concentrations corresponding to the external salinity (Fig. 2). Therefore, the GG uptake took place against a steep concentration gradient.

Modulation of GG uptake by salinity

To test whether the enhanced transport activity of salt-adapted cells was due to a salt-dependent activation of pre-existing transporter molecules or to their de novo synthesis following an increase in salinity, GG uptake was measured after different shock treatments. If control cells were shocked with 684 mM NaCl, the uptake rate remained nearly unaltered for at least 5 h. Twenty-four hours after the shock treatment a two- to threefold increase was noticed in different experiments, while completely adapted cells took up GG about fourfold faster than control cells. In contrast, a shock of only 342 mM NaCl was followed by a shorter lag period, and the final uptake rate was reached after 24 h (data not shown). In inverse experiments, cells adapted to 684 mM NaCl were hypo-osmotically shocked using basal medium. In this case, the GG uptake remained at the high rate of salt-adapted cells for at least 5 h (data not shown). Therefore, the differences in GG uptake rates of control and salt-adapted cells, respectively, were the result of a long-term adaptation process including de novo synthesis of protein.

However, if hypo-osmotically treated cells were washed and resuspended in a buffer solution containing only traces of additional ions, the GG transport was immediately influenced by the addition of salts into the uptake assays (Fig. 3). The uptake rate was enhanced by increasing NaCl concentrations between 10 and 350 mM, while 700 mM NaCl led to some inhibition compared to
the optimal activation at 350 mM NaCl (Fig. 3a). Additions of NaBr, NaNO₃, and LiCl had about the same effect as NaCl, while KCl at a concentration of 200 mM was somewhat inhibitory (Fig. 3b). The same situation was found if control cells were washed and resuspended in buffer solution (Fig. 3). To exclude protein synthesis, chloramphenicol (40 μg ml⁻¹, 10 min preincubation time; Hagemann et al., 1990) was used. This treatment did not affect the activation of GG uptake by short-term changes of the salinity (data not shown). These data imply that an increase of the NaCl concentration is responsible for both de novo synthesis of transporter proteins in a long-term process and, to a lesser degree, immediate activation of pre-existing transporters.

The GG uptake system was not inducible by GG, since incubation of control cells with 1 mM GG for 24 or 72 h did not increase the transport activity (data not shown).

Kinetics of GG transport

The kinetics of GG uptake in *Synechocystis 6803* were studied in salt-adapted and control cells at various exogenous GG concentrations. Uptake of 10–4000 μM GG followed a typical Michaelis-Menten relationship (data not shown). The maximum velocity of substrate uptake was substantially higher in cells adapted to 684 mM NaCl than in control cells (269 ± 59 and 48 ± 6 pmol (mm³ BV)⁻¹ min⁻¹, respectively), as was expected from the transport experiments using cells adapted to different salinities (see Fig. 2). The apparent substrate affinity was also affected by the salinity; *Kₘ* values of 124 ± 17 and 52 ± 13 μM were estimated for cells adapted to 684 and 2 mM (control cells) NaCl, respectively. Beside the rather unlikely possibility of a decreased affinity for GG in salt-adapted cells, another explanation for this difference could be the leakage of intracellular GG into the medium or the periplasm. This leakage would increase the periplasmic GG concentration and decrease the specific activity of the exogenous [¹⁴C]GG, leading therefore to the apparently reduced affinity. Leakage of the osmoprotective compound trehalose into the periplasm has been reported for *E. coli* (Stryvold & Strøm, 1991).

To differentiate between these two possibilities, kinetics of GG uptake were measured using washed and hypo-osmotically treated cells, respectively. Salt-adapted cells were washed with fresh medium of the same NaCl content to remove GG possibly present in the cultivation medium. This treatment did not reduce the apparent *Kₘ*. In accordance with this result, GG was not found in the medium by HPLC analysis. Hypo-osmotic treatment is supposed to completely remove GG accumulated in the cytoplasmic and periplasmic space (Reed et al., 1986; Fulda et al., 1990). Therefore, hypo-osmotically-treated cells were prepared as described in Methods. The treatment reduced the intracellular GG content to 3.5 nmol (mm³ BV)⁻¹, a level comparable to that observed in control cells. After continued cultivation for 2 h in medium containing 684 mM NaCl, these cells showed a *Kₘ* value of 58 μM, comparable to control cells. Therefore, the high apparent *Kₘ* value estimated for salt-adapted cells was related to the high GG content of these cells. Probably leakage of GG into the periplasm caused overestimation of the *Kₘ* in untreated cells adapted to 684 mM NaCl.

Effects of pH and metabolic inhibitors on the GG transport

GG uptake was also studied at various pH values. Acid pH inhibited GG uptake in salt-adapted cells of *Synechocystis 6803*. A linear increase in transport activity was observed between pH 4 and 7, while it remained unchanged at pH values above 7.5 (data not shown).

Several inhibitors and incubation in the light and dark were used to analyse the energetic basis of the GG uptake in salt-adapted cells of *Synechocystis 6803* (Table 1). Addition to a final concentration of 25 μM CCCP or FCCP, which uncouple phosphorylation from photosynthetic and respiratory electron transport, diminished GG uptake by about 50 %; very high uncoupler concentrations (100 μM) inhibited uptake by 80 %. Transport was not affected by DCCD or orthovanadate, inhibitors of H⁺-ATPases localized in the cytoplasmic membrane, or by KCN, an inhibitor of cytochrome oxidase. Treatments which inhibit photosynthesis [addition of DCMU, MV, darkness] showed only minor effects on GG transport. A combination of darkness and KCN led to about 85 % inhibition, which is comparable with the effects of the uncouplers. A combined treatment with MV (competes

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration</th>
<th>GG uptake (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCP</td>
<td>25 μM</td>
<td>54 ± 8 (4)</td>
</tr>
<tr>
<td>CCCP</td>
<td>100 μM</td>
<td>21 (1)</td>
</tr>
<tr>
<td>FCCP</td>
<td>25 μM</td>
<td>45 ± 5 (4)</td>
</tr>
<tr>
<td>FCCP</td>
<td>100 μM</td>
<td>20 (2)</td>
</tr>
<tr>
<td>DCCD</td>
<td>100 μM</td>
<td>95 ± 3 (3)</td>
</tr>
<tr>
<td>Orthovanadate</td>
<td>100 μM</td>
<td>97 (1)</td>
</tr>
<tr>
<td>DCMU</td>
<td>10 μM</td>
<td>81 ± 5 (4)</td>
</tr>
<tr>
<td>DCMU</td>
<td>50 μM</td>
<td>73 (1)</td>
</tr>
<tr>
<td>2,4-DNP</td>
<td>1 mM</td>
<td>76 ± 6 (3)</td>
</tr>
<tr>
<td>KCN</td>
<td>1 mM</td>
<td>96 ± 14 (7)</td>
</tr>
<tr>
<td>MV</td>
<td>1 mM</td>
<td>88 (2)</td>
</tr>
<tr>
<td>Darkness</td>
<td></td>
<td>77 ± 12 (5)</td>
</tr>
<tr>
<td>Darkness + KCN</td>
<td>1 mM</td>
<td>14 ± 2 (5)</td>
</tr>
<tr>
<td>MV + KCN</td>
<td>each 1 mM</td>
<td>51 (2)</td>
</tr>
<tr>
<td>DCMU + KCN</td>
<td>10 μM/1 mM</td>
<td>88 ± 7 (3)</td>
</tr>
</tbody>
</table>

Table 1. Effect of metabolic inhibitors and incubation in the dark on the uptake of GG by Synechocystis 6803
with cyclic photosynthetic electron transport) and KCN causes intermediate inhibition of about 50%, while the combination of DCMU (blocks non-cyclic photosynthetic electron transport) and KCN had almost no effect (Table 1).

Specificity of the GG transporter

In order to study the specificity of the GG transport, various unlabelled potential competitors were used in 10-fold excess (Table 2). Transport was not affected by the monosaccharides glucose or fructose, nor by phenyl or methyl glucosides. The structural analogue floridoside (galactosylglycerol), an osmoprotective compound of red algae (Kirst, 1990), showed no interference with the GG uptake. However, the disaccharide sucrose inhibited the transport of [14C]GG to nearly the same extent as galactose (Table 2). Transport was not affected by the disaccharides raffinose, galactosylglycerol, an osmoprotective compound of red algae (Kirst, 1990), showed no interference with the GG uptake. However, the disaccharide sucrose inhibited the transport of [14C]GG to nearly the same extent as galactose (Table 2). Transport was not affected by the disaccharides raffinose, galactosylglycerol, a trisaccharide consisting of a surose molecule bound by an α-1,6-glycosidic bond to galactose) did not affect GG uptake (Table 2).

Cells of Synechocystis 6803 took up [U-14C]sucrose, and the time course and rates of uptake with cultures adapted to 2 or 684 mM NaCl were similar to those for GG uptake (data not shown). With control cells, measurements of sucrose uptake at various exogenous sucrose concentrations ranging from 15 to 960 μM gave the following kinetic parameters: $K_m = 106 \pm 12 \mu$M, $V_{max} = 51 \pm 7$ pmol (mm3 BV)$^{-1}$ min$^{-1}$ in the presence of GG or trehalose at concentrations 10 times that of sucrose, the sucrose uptake was inhibited 88% or 67%, respectively.

The kinetics of GG and sucrose uptake were studied in the absence and presence of the inhibitory compounds (Table 3). Their addition did not decrease V_{max} while the K_m values were apparently increased. These results clearly indicate the competitive nature of inhibition. From the increased K_m values the inhibitor constants (K_i) were estimated. The inhibitor constants for GG and sucrose were in good coincidence with the corresponding K_m values for these compounds (Table 3).

Complementation of the salt-sensitive mutant 107 by exogenously supplied GG

Mutant 107 of Synechocystis 6803 has a salt resistance limit at about 0.5 M NaCl (about 40% of the wild-type) caused by a defect in GG synthesis. Preliminary experiments showed that the ability to transport GG remained intact and mutant 107 grew like the wild-type in basal medium. Therefore, the mutant 107 was chosen to test whether the GG transport activity is sufficient for the accumulation of high amounts of GG to compensate a lethal salt shock. Cells of mutant 107 were shocked with 513 mM NaCl (final concentration 600 mM NaCl) in the presence or absence of 0.75 mM GG in the medium. The salt shock led to a substantial drop in photosynthetic O_2 production (Fig. 4a). In absence of GG, photosynthesis was completely inhibited after 24 h. No regeneration of photosynthesis, no growth and no accumulation of GG could be observed during the 96 h of the experiment. In cultures of mutant 107 supplemented with GG, photosynthetic activity started to increase about 24 h after the salt shock. At the same time significant amounts of GG were already accumulated.

Table 2. Effect of various compounds on the uptake of GG by Synechocystis 6803

<table>
<thead>
<tr>
<th>Compound</th>
<th>Salt-adapted cells</th>
<th>Control cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
<td>22 ± 2 (4)</td>
<td>16 ± 5 (3)</td>
</tr>
<tr>
<td>Sucrose</td>
<td>28 ± 4 (4)</td>
<td>19 ± 5 (3)</td>
</tr>
<tr>
<td>Trehalose</td>
<td>61 ± 4 (3)</td>
<td>53 ± 7 (3)</td>
</tr>
<tr>
<td>Maltose</td>
<td>102 ± 4 (3)</td>
<td>104 (1)</td>
</tr>
<tr>
<td>Methyl α-d-glucoside</td>
<td>101 ± 6 (3)</td>
<td>ND</td>
</tr>
<tr>
<td>Phenyl α-d-glucoside</td>
<td>93 ± 4 (4)</td>
<td>93 (1)</td>
</tr>
<tr>
<td>Floridoside</td>
<td>98 (2)</td>
<td>101 (1)</td>
</tr>
<tr>
<td>Raffinose</td>
<td>99 ± 12 (4)</td>
<td>102 (1)</td>
</tr>
<tr>
<td>Glucose</td>
<td>96 ± 4 (4)</td>
<td>89 (1)</td>
</tr>
<tr>
<td>Fructose</td>
<td>100 ± 5 (3)</td>
<td>ND</td>
</tr>
<tr>
<td>Glycerol</td>
<td>97 (2)</td>
<td>ND</td>
</tr>
</tbody>
</table>

Table 3. Kinetic parameters for competition of GG, sucrose and trehalose for uptake by Synechocystis 6803

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GG uptake</th>
<th>Sucrose uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_m</td>
<td>52</td>
<td>120</td>
</tr>
<tr>
<td>K_i (GG)</td>
<td>-</td>
<td>77</td>
</tr>
<tr>
<td>K_i (sucrose)</td>
<td>96</td>
<td>-</td>
</tr>
<tr>
<td>K_i (trehalose)</td>
<td>332</td>
<td>298</td>
</tr>
</tbody>
</table>

Glucosylglycerol transport
S. MIKKAT, M. HAGEMANN and A. SCHOOR

DISCUSSION

The studies presented here demonstrate the existence of an active-transport system for exogenous GG in the cyanobacterium *Synechocystis* 6803. The following results are evidence for the active nature of GG uptake: 14C-labelled GG was transported into salt-adapted cells containing GG in high concentrations against a remarkable concentration gradient; the same concentration gradient was established in a mutant which is unable to synthesize GG (in this case by means of the transport system); and furthermore, the inhibition of energy supply (by incubation under darkness and in the presence of specific inhibitors) decreased GG uptake substantially and indicated its dependence on metabolic energy.

Because of their primary photoautotrophic growth mode, little information is available on the transport of sugars and related compounds by cyanobacteria. However, *Synechocystis* 6803 does possess an active-transport system for glucose (Flores & Schmetterer, 1986; Joset et al., 1988). Therefore, exogenous GG could be hydrolysed outside the cell followed by uptake of glucose and glycerol. The latter might enter the cell by passive diffusion. In *E. coli*, where trehalose is used as an osmoprotective compound, utilization of exogenous trehalose under conditions of high osmolarity takes place by hydrolysis to glucose and subsequent uptake via the phosphoenolpyruvate:sugar phosphotransferase system (Boos et al., 1990). Since glucose did not interfere with GG uptake in *Synechocystis* 6803, hydrolysis of GG and subsequent uptake of glucose can be excluded. Furthermore, separation by TLC of ethanolic extracts of cells incubated with 14C GG indicate that GG entered the cells unaltered. It was not metabolized in control or in salt-adapted cells, indicating that GG showed no turnover. The absence of a GG turnover was also postulated for salt-adapted cells of the cyanobacterium *Microcystis firma* (Hagemann et al., 1987).

The transport system for GG seems to be involved in the process of salt adaptation because its activity corresponded with the external salt concentration. Compared to other processes involved in salt adaptation of *Synechocystis* 6803 (Erdmann et al., 1992), the increased level of GG transport activity was reached after a rather long time following a salt shock of 684 mM NaCl. After hypotonic shock it remained at the high level of salt-adapted cells for several hours. Changes of the activity of GG uptake probably represent both increased and decreased amounts of transporter protein in response to the salinity of the growth medium. Therefore, the protein(s) of this transport system seemed to have a slow turnover rate. In addition to the enhanced synthesis, the GG uptake system was activated by increasing NaCl concentrations up to 350 mM. However, activation did not increase the transport rate by more than 50%. The GG-synthesizing enzyme system was more affected by short-term changes of the salinity (Hagemann & Erdmann, 1994). Summarizing, the GG transport system seems to be regulated by the salinity at the level of both gene expression and, to a lesser degree, activity of pre-existing transport proteins.

The kinetics of the GG transporter are characteristic of bacterial uptake systems, which involve specific transport proteins. The estimated *Km* value of about 50 μM is comparable to values of the sugar uptake systems in several cyanobacterial strains, which generally exhibit weak affinities (between 100 and 1400 μM; Smith & Moore, 1988; Joset et al., 1988; Schmetterer & Flores, 1988). In contrast, the glycine betaine transporter of the cyanobacterium *Aphanotoce halophytica* exhibited a higher affinity for its substrate (*Km* 2 μM; Moore et al., 1987). Furthermore, this transport system showed about a 170-fold higher *Vmax* than the GG transporter of *Synechocystis* 6803.

The energy dependence of the GG uptake was confirmed by the inhibitory effects of the uncouplers CCCP and FCCP in the light, as well as by KCN in the dark. KCN was ineffective in the light, and incubation in the dark without this inhibitor diminished GG uptake only slightly. Inhibition of both photosynthetic and respiratory electron transport (by the combination of darkness and KCN) or their uncoupling from phosphorylation (by CCCP or FCCP) was necessary to inhibit the GG uptake.
transport. Therefore, both processes can provide energy for uptake. It should be noted that in cyanobacteria the respiratory and photosynthetic electron transport chains are closely linked by sharing plastoquinone and cytochrome b_{56} (e.g. Mi et al., 1994). No conclusions concerning the mechanism of GG transport could be drawn from the inhibitor data.

The competition experiments indicated that sucrose is accepted by the GG transport system with a somewhat lower affinity. This was confirmed by uptake experiments with [U-14C]sucrose. Using control cells, uptake showed about the same V_{max} as for GG, but the K_m value was doubled compared to GG. To a lesser extent trehalose also seems to be transported by this system, since both GG and sucrose uptake were competitively inhibited by trehalose. The inhibitor constants for GG, sucrose and trehalose together with the K_m values for GG and sucrose confirm that the transport system displays the highest affinity towards GG, about half this affinity for sucrose, and a substantially lower affinity for trehalose. Surprisingly, floridoside, which is structurally closely related to GG, and all other compounds tested did not compete in uptake experiments. Interestingly, the transport system showed affinity only to substances (GG, sucrose, and trehalose) used as osmoprotective compounds by cyanobacteria. E. coli is also able to take up different osmolytes using its ProU and ProP systems (Csonka & Hanson, 1991; Luch & Bremer, 1994).

The rather low activity of the GG transport was sufficient for the adaptation of the salt-sensitive mutant 107 of Synechocystis 6803 to a lethal salt concentration of 600 mM NaCl in the presence of 0.75 mM exogenously supplied GG. In the absence of GG, salt adaptation was not possible. The cells needed about 75 h to accumulate GG in concentrations comparable to the amount contained by wild-type cells at this salinity. De novo synthesis of GG in the wild-type strain reached a final value 12 h after a salt shock of 684 mM NaCl. The complementation of mutant 107 to salt tolerance by adding GG provides for the first time direct evidence that accumulation of GG is osmoprotective for the cellular metabolism of cyanobacteria. Furthermore, the kinetics indicate that GG accumulation is a prerequisite for adaptation to high salinities, since photosynthesis and growth were restored only after GG was accumulated to significant levels.

The primary function of the GG transporter in salt-adapted cells of Synechocystis 6803 may be the uptake of GG that has leaked out of the cell into the periplasm. Experiments carried out to estimate the K_m value gave evidence that GG is present in the periplasm of salt-grown cells. In these cells a high internal GG level has to be maintained. The avoidance of losses would save carbon and energy for the cells. This presumption is supported by the low activity of the GG uptake compared to the GG synthesis found in Synechocystis 6803. In natural habitats GG should be present only in traces. Significant amounts of extracellular GG may only occur in microbial mats exposed to changing salinities where GG has been detected in natural populations (Stal & Reed, 1987). Further studies should be carried out to investigate the presence and the function of GG transport in cyanobacterial species with different salt tolerances.

ACKNOWLEDGEMENTS

This work was partly supported by a grant from the Deutsche Forschungsgemeinschaft, FRG, SFB 305, A13. We thank Thomas J. Buckhout for providing floridoside and Annelise Schmidt for technical assistance.

REFERENCES

Received 21 August 1995; revised 30 November 1995; accepted 13 February 1996.