Genetic relationships among rhizopine-producing Rhizobium strains

M. Wexler,† D. M. Gordon and P. J. Murphy

Author for correspondence: M. Wexler. Tel: +44 1603 592195. Fax: +44 1603 592250. e-mail: m.wexler@uea.ac.uk

Chromosomal and symbiosis-related genotypes of rhizopine-producing and non-producing isolates of Rhizobium meliloti and Rhizobium leguminosarum were examined by multilocus enzyme electrophoresis and RFLP. The distribution of rhizopine production in both species was found to be independent of host genotype. Conversely, rhizopine production was associated with particular symbiotic plasmid types. This association may explain the observed distribution of rhizopine production in R. leguminosarum and R. meliloti. Rhizopine synthesis (mos) genes showed greater sequence divergence than rhizopine catabolism (moc) genes in both R. meliloti and R. leguminosarum. Furthermore, mos and moc genes were less divergent in R. leguminosarum than R. meliloti, suggesting a more recent evolution in the former species.

Keywords: rhizopine, rhizobia, restriction fragment length polymorphisms (RFLP), multilocus enzyme electrophoresis (MLEE)

INTRODUCTION

The symbiosis between nitrogen-fixing Rhizobium and leguminous plants confers considerable economic benefit in a variety of agricultural environments. Rhizobia are commonly used as inoculants where legume crops or pastures are sown. In the search for better inoculants, natural or genetically modified rhizobia are selected for their efficient ability to fix nitrogen under specific environmental conditions. A drawback to these developments is that often inoculants do not persist when introduced into a new environment. It is therefore important to identify traits that enable a strain to compete successfully in the diverse microbial community of the rhizosphere.

The production of rhizopines by some species of Rhizobium is thought to be one of these traits (Tempé & Petit, 1983; Murphy et al., 1987, 1995). Rhizopines are inositol-like compounds synthesized by the bacteroid within the nodule. Only free-living rhizobia are able to catabolize these substances (Murphy et al., 1988; Saint et al., 1993). The abilities to synthesize and to catabolize rhizopines are co-occurring traits encoded by the symbiotic plasmid (Saint et al., 1993; Wexler et al., 1995). Although the exact nature of the competitive advantage conferred by rhizopine production is unknown, in vitro experiments, pot trials and field testing have shown that rhizopine-producing rhizobia tend to have a competitive advantage and persist in the environment longer compared to non-producers (Jensen, 1987; Evans & Howieson, 1993; Murphy et al., 1995; P. J. Murphy & D. M. Gordon, unpublished data).

Not all species of Rhizobium produce rhizopines. In a survey of over 330 Rhizobium isolates, Wexler et al. (1995) detected the ability to catabolize rhizopines in Rhizobium meliloti and Rhizobium leguminosarum bv. viciae. Rhizopine catabolism has not been detected in Rhizobium etli, Rhizobium tropici or R. leguminosarum bvs trifolii and phaseoli. Also, not all strains of a species produce rhizopines; 11% of R. meliloti strains and 12% of R. leguminosarum bv. viciae strains were found to produce rhizopines (Wexler et al., 1995).

Our goal in this study was to examine two issues related to the distribution of rhizopine genes in two species of Rhizobium. Is rhizopine production restricted to a closely related subset of strains within a species? Does the occurrence of rhizopine production correlate with the degree of similarity among symbiotic plasmids? To examine these issues, we investigated the chromosomal and symbiotic plasmid genotype of representative rhizopine-producing and non-producing strains of R. leguminosarum and R. meliloti. We also investigated the relationships between the genes responsible for rhizopine production.

Abbreviations: MLEE, multilocus enzyme electrophoresis; UPGMA, unweighted pair group method.

1 Department of Crop Protection, University of Adelaide, Glen Osmond, SA 5064, Australia
2 Division of Botany and Zoology, Australian National University, Canberra, ACT 0200, Australia

†Present address: School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
synthesis \((mos)\) and catabolism \((moc)\) in rhizopine-producing strains.

METHODS

Bacterial strains. The \textit{R. meliloti} and \textit{R. leguminosarum} bv. \textit{viciae} strains selected for this study were a subset of those examined by Wexler et al. (1995). The non-rhizopine-producers were chosen such that the various geographic and host plant origins of the strains were represented. Details concerning the strains are given by Wexler et al. (1995). This study included all of the rhizopine-producing \textit{R. meliloti} strains and all but one of the \textit{R. leguminosarum} bv. \textit{viciae} strains. Strain numbers are shown in the figures. Forty-eight strains of \textit{R. meliloti}, of which 13 produced rhizopines, and 40 strains of \textit{R. leguminosarum}, of which 8 produced rhizopines, were studied.

Strain characterization. Multilocus enzyme electrophoresis (MLEE) was the technique used to determine the degree of genotypic similarity among the strains. It is generally assumed that this method detects allelic variation at chromosomally determined structural gene loci (Selander et al., 1986). Allelic profiles at 14 loci were determined for each species. Full details of the methods and results of the MLEE analysis are presented by Gordon et al. (1995). Only data for the unique electrophoretic types were presented in Gordon et al. (1995); in this study we have included all of the strains examined regardless of their MLEE genotype.

Symbiotic plasmid characterization. RFLP analysis of the \textit{nod} region was the method used to assess the genetic similarity of the symbiotic plasmids in each of the host strains. Genomic DNA was extracted (Wilson, 1991), digested with \textit{BamHI}, \textit{EcoRI}, \textit{HindIII} or \textit{SalI}, and subjected to electrophoresis on 0.7\% agarose gels. Southern blotting and hybridizations were performed using standard methods (Sambrook et al., 1989). Blots were washed under high stringency conditions \([0.1 \times \text{SSC} (1 \times \text{SSC} \text{is} 0.15 \text{M} \text{sodium chloride and} 0.015 \text{M} \text{sodium citrate}), 0.1\% \text{SDS at} 65 \text{°C}].\) Probe DNA was labelled using digoxigenin-labelled dUTP according to the manufacturer's instructions (Boehringer Mannheim). The \textit{R. meliloti} strains were probed with pGM1149, which contains a 29 kb insert (comprising \textit{nod} genes and flanking sequences) cloned into pRK290 (Truchet et al., 1985). The \textit{R. leguminosarum} bv. \textit{viciae} strains were probed with pIJ1089, which contains a 30 kb insert (comprising most of the \textit{nod}/\textit{nfj} region and flanking sequences) cloned into pLAFR1 (Downie et al., 1983).

Characterization of the rhizopine genes. RFLP analysis was used to determine the genetic relationships of the \textit{mos} genes and \textit{mos} gene regions of the rhizopine producers. Genomic DNA was digested with \textit{PstI}, \textit{BamHI}, \textit{EcoRI}, \textit{HindIII} or \textit{SalI}. The following probes were used. pPM1031 (Murphy et al., 1987) contains the \textit{R. meliloti} L5-30 \textit{mos} genes (151 kb) cloned into pLAFR1, and pPM1242 (Rao et al., 1995) contains a 5.7 kb \textit{Apal–NdeI} fragment carrying the L5-30 \textit{mos} genes cloned into pGEM-7Zf(\(+\)). These probes were hybridized to all rhizopine-producing strains. The probe pPM1215 (Wexler, 1994) contains the \textit{R. leguminosarum} strain 1a \textit{mos} genes (13.7 kb) cloned into pVK102. pPM1302 (Wexler, 1994) contains a 5.3 kb 1a \textit{HindIII} fragment cloned into pUCD2608 (this fragment has homology to the \textit{R. meliloti} L5-30 \textit{mos}B gene). These probes were hybridized to the \textit{R. leguminosarum} bv. \textit{viciae} strains.

Statistical analysis. The genetic distance between the isolates was estimated as \(2m_{xy}/(m_x+m_y)\), where \(m_{xy}\) is the number of restriction fragments (or alleles) shared by isolates \(x\) and \(y\), while \(m_x\) and \(m_y\) are the total number of fragments (or alleles) present in isolates \(x\) and \(y\). Phenograms were constructed from the distance matrices using the unweighted pair group method (UPGMA) and consensus trees were determined using the Strict method (Rohlf, 1993). The degree of DNA sequence divergence was calculated by the method of Nei & Li (1979).

Distance matrices were compared using a Mantel test. The comparison of distance matrices, in essence, asks the following question: do pairs of chromosomally similar strains (MLEE) also have genetically similar symbiotic plasmids (RFLP)? The statistical significance of the resulting matrix correlation coefficients was determined using a permutation approach, i.e. the observed coefficient was compared to the distribution of coefficients generated when one matrix is repeatedly compared with the other matrix. For each comparison, every element of the second matrix is randomly replaced by another element. Phenograms were compared by first calculating the matrix of cophenetic values for each phenogram produced by the UPGMA analysis. The similarity of the resulting cophenetic matrices was then quantified using a Mantel test and the significance of the correlation was determined in the same manner as for the distance matrix comparisons. Comparisons between cophenetic matrices ask a similar question to that asked when distance matrices are compared. In the case of the cophenetic matrices it is the phenograms produced by the UPGMA analysis of the distance matrices that are being compared and not the distance matrices themselves. Analyses were carried out with the software NTYSYS (Rohlf, 1993).

Randomization tests were performed in order to determine whether rhizopine producers were, on average, significantly more similar than other isolates regardless of their rhizopine status (Sokal & Rohlf, 1981), e.g. to determine whether the symbiotic plasmids of the 13 \textit{R. meliloti} rhizopine producers were, on average, more alike than the symbiotic plasmids of the other 35 isolates the following steps were performed. First, from the RFLP distance matrix the observed mean pairwise genetic distance between the rhizopine producers was calculated. There are 78 such distances \([13(13-1)/2]\). A random sample of size 78 was then drawn from the entire distance matrix of 1128 \([48(48-1)/2]\) values between all 48 strains of \textit{R. meliloti} and the mean of these 78 distances was calculated. This procedure was repeated 250 times and the probability of drawing a sample as extreme as the observed estimate was determined. In essence, this procedure poses the question: does any set of 78 distance estimates produce a mean genetic distance as small as that observed for the 13 rhizopine strains?

RESULTS

Rhizopine production in relation to chromosomal and symbiotic plasmid genotypes

Analysis of the MLEE data partitioned the 48 \textit{R. meliloti} isolates into two divisions (A and B) with a further subgrouping occurring within division A (subgroups A1 and A2; Fig. 1a) (Gordon et al., 1995). All the rhizopine-producing isolates were in subpopulation A1. The mean genetic distance between the 13 rhizopine-producing isolates, together with the mean genetic distance between all strains, division A strains and group A1 strains is presented in Table 1. In terms of chromosomal similarity, the rhizopine isolates were more similar, on average, than division A strains but were about as similar as the group A1 strains.
Genetic relationships among rhizobia

Fig. 1. Phenograms depicting the genetic relationships among *R. meliloti* strains in terms of (a) chromosomal genotypes and (b) the genotypes of the symbiotic plasmids. Chromosomal genotypes were identified by MLEE at 14 loci (Gordon et al., 1995). The symbiotic plasmid genotypes were identified by RFLP analysis of *nod* gene regions and phenograms were constructed from the distance matrices using the UPGMA method. Asterisks indicate the rhizopine-producing isolates.

Table 1. Genetic similarity of rhizopine-producing isolates in relation to all isolates in *R. meliloti* and *R. leguminosarum* bv. *viciae*

Estimates of chromosomal similarity are based on MLEE (Gordon et al., 1995). Estimates of symbiotic plasmid similarity are based on RFLP analysis of the *nod* region.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Chromosome mean genetic distance</th>
<th>Symbiotic plasmid mean genetic distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. meliloti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizopine producers</td>
<td>0.179</td>
<td>0.372</td>
</tr>
<tr>
<td>All isolates</td>
<td>0.465*</td>
<td>0.568*</td>
</tr>
<tr>
<td>Division A isolates</td>
<td>0.294*</td>
<td>0.556*</td>
</tr>
<tr>
<td>Group A1 isolates</td>
<td>0.190†</td>
<td>0.485*</td>
</tr>
<tr>
<td>R. leguminosarum bv. viciae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizopine producers</td>
<td>0.600</td>
<td>0.667</td>
</tr>
<tr>
<td>All isolates</td>
<td>0.501†</td>
<td>0.779*</td>
</tr>
</tbody>
</table>

* Mean genetic distance of the rhizopine producers is significantly lower than expected by chance, *p* = 0.005.

† Not significant.
Fig. 2. Phenograms depicting the genetic relationships among R. leguminosarum bv. viciae strains in terms of (a) chromosomal genotypes and (b) the genotypes of the symbiotic plasmids. Chromosomal genotypes were identified by MLEE at 14 loci (Gordon et al., 1995). The symbiotic plasmid genotypes were identified by RFLP analysis of the nod gene regions. Asterisks indicate the rhizopine-producing isolates.

The phenogram depicting the genetic similarity of the R. meliloti symbiotic plasmid genotypes shows that there is less clustering among plasmid genotypes than among host genotypes (Fig. 1b). Those strains designated as group A2 on the basis of the MLEE data analysis are also seen to cluster in the analysis of the symbiotic plasmid RFLP data. There is, however, no obvious clustering of division B symbiotic plasmids. On average, the symbiotic plasmids of the rhizopine-producing strains are significantly more alike than the symbiotic plasmids of any other division or group of isolates (Table 1).

No pronounced clustering of the 40 R. leguminosarum bv. viciae isolates was observed based on the analysis of their chromosomal genotypes (Fig. 2a). The eight rhizopine producers were no more genetically similar than any other group of eight isolates (Table 1). There is also little structure in the phenogram depicting the genetic relationships of the symbiotic plasmids of the R. leguminosarum bv. viciae isolates (Fig. 2b). The symbiotic plasmid genotypes of the rhizopine producers were significantly more similar than those of other isolates (Table 1).

For R. meliloti and R. leguminosarum bv. viciae, low but significant correlations were detected in comparisons of the MLEE (chromosome) and RFLP (symbiotic plasmid) genetic distance matrices (Table 2). Similar results were obtained in comparisons of the MLEE and RFLP cophenetic matrices for each species (Table 2).

Relationships between the mos and moc gene regions of rhizopine producers

Some homology was detected when the R. meliloti L5-30 moc and mos region probes were hybridized to genomic DNA from the R. leguminosarum bv. viciae rhizopine producers. However, under high stringency washing conditions, many of these hybridization bands were of low intensity and this precluded any between species comparisons in the moc and mos gene regions.

Estimates of the degree of sequence divergence between the isolates of each rhizopine-producing species are presented in Table 3. Estimated sequence divergence is greater for the mos gene region than for the moc gene region in both species. On average, there is greater sequence divergence in the regions associated with rhizopine synthesis and catabolism in R. meliloti rhizopine producers than in R. leguminosarum bv. viciae. R. meliloti strain Rm220-3 contains a large deletion within the mos genes (Rao et al., 1995). As the method for estimating sequence divergence assumes that differences in RFLP patterns are due to single base changes and not deletions or insertions (Upholt, 1977), Rm220-3 was not included in
Table 2. Genetic distance and cophenetic matrix correlations between the different levels of analysis for *R. meliloti* and *R. leguminosarum* bv. *viciae*

Significance tests are based on those described by Rohlf (1993).

<table>
<thead>
<tr>
<th>Distance matrices/phenogram correlations*</th>
<th>Chromosome</th>
<th>Symbiotic plasmid</th>
<th>mos region†</th>
<th>moc region†</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. meliloti</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromosome</td>
<td>0·318‡</td>
<td>0·402‡</td>
<td>0·463‡</td>
<td></td>
</tr>
<tr>
<td>Symbiotic plasmid</td>
<td>0·212‡</td>
<td>0·601‡</td>
<td>0·655‡</td>
<td></td>
</tr>
<tr>
<td>mos region</td>
<td>0·428‡</td>
<td>0·519‡</td>
<td></td>
<td>0·660‡</td>
</tr>
<tr>
<td>moc region</td>
<td>0·411‡</td>
<td>0·635‡</td>
<td>0·631‡</td>
<td></td>
</tr>
<tr>
<td>R. leguminosarum bv. viciae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromosome</td>
<td>0·154‡</td>
<td></td>
<td>-0·319</td>
<td>-0·095</td>
</tr>
<tr>
<td>Symbiotic plasmid</td>
<td>0·130‡</td>
<td></td>
<td>0·041</td>
<td>0·298</td>
</tr>
<tr>
<td>mos region</td>
<td>-0·315</td>
<td>-0·078</td>
<td></td>
<td>0·179</td>
</tr>
<tr>
<td>moc region</td>
<td>-0·134</td>
<td>0·237</td>
<td>0·222</td>
<td></td>
</tr>
</tbody>
</table>

* The upper two rows of the matrix for each organism present the cophenetic matrix correlations and the lower half the genetic distance matrix correlations.
† These correlations are based on the data for the rhizopine-producing isolates only.
‡ Significance at the 0·01 level.

Table 3. Hybridization results and estimates of between isolate sequence divergence in the mos and moc gene regions of *R. meliloti* and *R. leguminosarum* bv. *viciae* rhizopine-producing isolates

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Probe</th>
<th>No. of fragments</th>
<th>No. of genotypes</th>
<th>Sequence divergence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>R. meliloti</td>
<td>5·7 kb mos region</td>
<td>61</td>
<td>12</td>
<td>4·5 % 0·74 %</td>
</tr>
<tr>
<td></td>
<td>15·1 kb mos region</td>
<td>45</td>
<td>7</td>
<td>1·6 % 0·27 %</td>
</tr>
<tr>
<td>R. leguminosarum bv. viciae</td>
<td>5·3 kb mos region</td>
<td>10</td>
<td>3</td>
<td>1·6 % 0·45 %</td>
</tr>
<tr>
<td></td>
<td>13·7 kb mos region</td>
<td>29</td>
<td>6</td>
<td>0·5 % 0·11 %</td>
</tr>
</tbody>
</table>

the calculation of between isolate divergence. The relatedness of the isolates based on genetic distance estimates for the mos and mos regions of both rhizobial species are depicted in Figs 3 and 4.

Comparisons of the genetic distance and cophenetic matrices of the *R. meliloti* rhizopine producers revealed significant correlations for all comparisons (Table 2). The strongest correlations were observed for the mos versus mos region comparisons and for the comparisons of the mos and mos regions versus the nod region of the symbiotic plasmids. For *R. leguminosarum*, no significant correlations between chromosome, symbiotic plasmid, mos or moc region genetic distance or cophenetic matrices were detected (Table 2).

DISCUSSION

The analyses presented by Eardly *et al.* (1990), Segovia *et al.* (1993), Gordon *et al.* (1995) and Rosbach *et al.* (1995) all reveal that *R. meliloti* sensu lato consists of two major divisions of strains (A and B). In addition, two subgroups are found within the division A strains. Group A1 isolates have a cosmopolitan distribution and can be isolated from a variety of annual and perennial medicks, while group A2 strains are unusual in that they are able to initiate an effective symbiosis with *Trigonella suavisima*, an endemic Australian species. Division B strains have only been isolated from annual medicks growing in the eastern Mediterranean basin (Eardly *et al.*, 1990; Gordon *et al.*, 1995). Eardly *et al.* (1990) suggest that the differences between division A and B isolates are sufficient to warrant assigning division B strains separate specific status. Less clear cut is the taxonomic status of division A2 strains. Their status as a distinct group of strains is supported by our RFLP analysis, as the nod regions of their symbiotic plasmids tend to be more similar than the nod regions of symbiotic plasmids from group A1 or division B strains (Fig. 1b). However, there is insufficient information to
Fig. 3. Phenograms depicting the genetic relationships among R. meliloti rhizopine producers based on RFLP analyses of the mos and moc gene regions.

Fig. 4. Phenograms depicting the genetic relationships among R. leguminosarum bv. viciae rhizopine producers based on RFLP analyses of the mos and moc gene regions.

decide whether group A2 isolates are sufficiently distinct from A1 isolates to justify separate specific status or whether they represent two ‘biovars’ of R. meliloti sensu stricto.

At present the available data suggest that rhizopine production does not occur in division B or group A2 strains, although relatively few strains have been examined (Wexler et al., 1995; Rossbach et al., 1995). The observed distribution of rhizopine production cannot be explained on the basis of host plant specificity, as rhizopine-producing strains have been isolated from

Medicago sativum and Medicago littoralis (Wexler et al., 1995). Furthermore, in planta tests have shown that the rhizopine-producing strain L5-30 can synthesize 3-O-methyl-syllo-inosamine within a variety of host annual and perennial medick species and in T. savissima (Wexler et al., 1995).

There are no reports which demonstrate that the symbiotic mega-plasmids of R. meliloti are naturally self-transmissible. Given the apparent absence of plasmid transfer, it might be expected that the genetic relationships among the symbiotic plasmid isolates would reflect the genetic relationships observed at the host level. Such a result was not observed, as there is little concordance between the relationships of the strains based on the MLEE analysis and those observed for the RFLP analysis (Fig. 1). Although significant, only very low correlations were detected between either the genetic distance matrices or phenograms generated from the MLEE or RFLP data (Table 2). The presence and absence of rhizopine production in strains with identical MLEE genotypes provides an obvious illustration of the lack of concordance between the chromosomal relationships of the strains and the genetic relationships of their symbiotic plasmids.

The strains that show the most similar mos and moc gene regions also have symbiotic plasmids with very similar nod regions (Fig. 5). Almost half (6/13) of the rhizopine producers form a closely related group, showing a mean genetic distance of 0.372. As these six strains were collected from four continents, geographic origin cannot explain this result.

Cluster analysis of the MLEE data for the R. leguminosarum bv. viciae isolates failed to reveal any significant isolate associations (Gordon et al., 1995). This is the expected result given that no evidence for linkage disequilibrium can be detected in this data set (Maynard Smith et al., 1993; Gordon et al., 1995). The chromosomal genotypes of the rhizopine producers were no more similar than any other sample of strains (Table 1). The biovars of this species cannot generally be distinguished on the basis of chromosomally determined characters (Roberts et al., 1980; Young, 1985; Segovia et al., 1991; Dooley & Harrison, 1993; Laguerre et al., 1993b). This suggests
that, for the species as a whole, rhizopine producers are not a chromosomally similar subset of strains. As was found in R. meliloti, the symbiotic plasmids of the rhizopine-producing R. leguminosarum strains were, on average, more similar than would be expected by chance. The absence of any significant associations between the moc and mos region RFLP data or between these gene regions and the RFLP data for the symbiotic plasmids is probably due to the small number of rhizopine-producing strains and the low degree of variation detected in the rhizopine genes.

The results of this analysis suggest that the distribution of rhizopine production in R. meliloti and R. leguminosarum is independent of the genotype of the host. Rhizopine synthesis and catabolism appear to be traits associated with particular symbiotic plasmid genotypes (as defined by their nod/nif region). This is consistent with the observation that the rhizopine genes of all isolates examined in this study are found on the symbiotic plasmid (Wexler, 1994). The absence of rhizopine production in group A2 R. meliloti strains may not be so much due to the uniqueness of this group of strains as determined by chromosomal genotype, but may be due to the observation that this group of strains also has similar symbiotic plasmids. The association of rhizopine traits with particular symbiotic plasmids may also explain why these traits have only been detected in the biovar viciae of R. leguminosarum. These biovars are defined on the basis of the host harbouring particular symbiotic plasmids and not on the basis of chromosomally determined characters (Laguerre et al., 1993b).

The results indicate that the moc and mos genes of R. leguminosarum strains are less divergent than those of R. meliloti strains, suggesting that the moc/mos genes may have transferred from the symbiotic plasmid of R. meliloti to a biovar viciae symbiotic plasmid in R. leguminosarum. Wexler et al. (1995) found the ability to catabolize 3-O-methyl-scyllo-inosamine in one other species of Rhizobium, genomic species 2 (Phaseolus) (Laguerre et al., 1993a), but we do not know whether these traits arose in the genus Rhizobium or were acquired through horizontal transfer from non-Rhizobium species, although the trait has not been detected in any other genus of bacteria (D. M. Gordon, unpublished data; Rossbach et al., 1995).

We are currently unable to explain the extent distribution of rhizopine synthesis and catabolism in the genus Rhizobium. No real understanding of the evolutionary forces responsible for the occurrence of this trait will be gained without additional survey and sequence studies of the mos and moc loci both within and between species. Perhaps more significantly, we may be unable to interpret the distribution of this trait until we fully understand its function and potential ecological role.

ACKNOWLEDGEMENTS

We thank Natalie Cavanagh and Nicki Featherstone for excellent technical assistance, J. A. Downie for pJ1089 and J. Batut for pGM1149. This work was supported by the Australian Wool Research and Development Corporation.

REFERENCES

Received 16 November 1995; revised 5 February 1996; accepted 9 February 1996.