Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances?

Carlos Trigo and Andrew S. Ball

Department of Biology,
University of Essex,
Wivenhoe Park, Colchester
CO4 3SQ, UK

Three actinomycetes (Streptomyces sp. EC22, Streptomyces viridosporus T7A and Thermomonospora fusca BD25) were assessed for their ability to degrade ball-milled wheat straw. All gave maximum levels of solubilized lignocellulose products (APPL) at the beginning of the stationary phase of growth (72-96 h). Low-molecular-mass aromatic compounds extracted from the APPL were analysed by reverse-phase and gas chromatography. Although the number of chromatographic peaks detected made identification of the products difficult, p-coumaric acid (4-hydroxycinnamic acid), protocatechuic acid (3,4-dihydroxybenzoic acid), gallic acid (3,4,5-trihydroxybenzoic acid), gallic acid methyl ester (methyl-3,4,5-trihydroxybenzoate) and 4-methoxyphenol were recognized. The infrared spectra of the three strains were similar to the spectra of humic acids, with all APPL extracts showing carbonyl, amino, carboxyl, aliphatic and aromatic group vibrations. Also detected were peptide linkages of proteins. The results suggest a role for actinomycetes in the formation of humic substances in soils and composts.

Keywords: actinomycetes, acid-precipitable polymeric lignin, humic substances, lignocellulose degradation

INTRODUCTION

Lignocellulose, the main component of wheat straw, is composed of three polymers; lignin (10–30%, dry wt), cellulose (25–45%, dry wt) and hemicellulose (24–50%, dry wt) (Betts et al., 1992). Cellulose is the most abundant natural compound in nature. It is a homopolymer of glucose linked by β-1,4-glycosidic bonds. Unlike cellulose, hemicellulose is a non-linear heteropolymer composed mainly of xylose but also containing other carbohydrates such as galactose, mannose, arabinose, glucuronic acid, rhamnose and fucose linked together predominantly by β-1,4-glycosidic bonds. These two polymers are physically encrusted with lignin, to which they are covalently linked through lignin–saccharide bonds that provide mechanical strength and rigidity to plant tissues. In plant cell walls, monophenolic compounds such as β-coumaric and ferulic acids are known to link arabinoxylans to lignin via ester bonds (Shibuya, 1984; Gubler et al., 1985; Nishitani & Nevins, 1988). Lignin is synthesized in plants from coniferyl and coumaryl alcohols through radical coupling mediated by plant peroxidases. This random chemical coupling results in a complex three-dimensional phenolic polymer with a variety of bonding arrangements giving aryl glycercyl-β-aryl ether, non-cyclic benzyl aryl ether, biphenyl, diphenylether, phenylcoumaran, 1,2-diaryl-propane and other such structures (Crawford, 1981). As a result of this molecular complexity accentuated by covalent attachment to other plant polymers (e.g. cellulose and hemicellulose), lignin decomposition is the rate-limiting factor for the biological and chemical degradation of lignocellulose materials.

In natural terrestrial habitats (e.g. soils and composts), lignin is degraded by a complex microflora which includes both eukaryotic and prokaryotic organisms, such as white-rot fungi and actinomycetes, respectively. Most studies on the processes involved in lignin degradation have used the white-rot fungus Phanerochaete chrysosporium, because of the high ligninolytic activities which it exhibits. Mineralization of lignin by white-rot fungi is an established enzymic process which occurs during the secondary phase of growth under conditions of nitrogen or carbon starvation and is mediated by a number of different enzymes, of which lignin peroxidases and Mn²⁺-
dependent peroxidases are the most important (for a review, see Kirk & Farrel, 1987).

Actinomycetes are another group of organisms that can degrade lignin materials, although little is known about their lignocellulose-degrading mechanisms (Vicufia, 1988). Actinomycetes are Gram-positive bacteria which can be found on almost every natural substrate including soils and composts, fresh water basins, foodstuffs and the atmosphere (Waksman, 1967). Their hyphal growth is well suited for the colonization of plant biomass and they secrete a range of enzymes active against lignocellulose (McCarthy & Ball, 1991). Research on the biodegradation of lignin by actinomycetes has focused on the screening and detection of good lignocellulose degraders (Crawford, 1978; Crawford et al., 1983; McCarthy & Broda, 1984; Ball & McCarthy, 1988; Ball et al., 1989; Trigo & Ball, 1994). Even so, bacterial rates of lignin degradation compare poorly with the white-rot fungus (McCarthy, 1987). The primary product from the degradation of straw by actinomycetes is a soluble high-molecular-mass, lignocarbohydrate complex (APPL) (Crawford et al., 1983; Borgmeyer & Crawford, 1985; McCarthy et al., 1986; Pometto & Crawford, 1986).

Crawford et al. (1983) first reported APPL production in culture supernatants of Streptomyces viridosporus T7A. While 14C isotopic techniques confirmed the lignin origin of APPL (McCarthy et al., 1986), other analyses showed chemical differences between APPL of inoculated cultures and uninoculated control samples (Crawford et al., 1983). These differences included an increase in the number of phenolic hydroxyl and carboxyl groups in APPL, suggesting oxidative cleavage of p-hydroxy ether linkages and methoxyl groups in the lignin structure (Crawford et al., 1983). Additional hydroxyl and carboxyl groups were also detected in APPL from Streptomyces sp. EC1 (Ball et al., 1990). Analysis of APPL by solid-state 13C-NMR spectroscopy (McCarthy et al., 1986) showed an increase in the carbonyl groups. Although McCarthy et al. (1986) found no solubilization of radiolabelled lignocellulose by Thermomonospora mesophila and Streptomyces cyanescens (suggesting that APPL was an end-product), Crawford and co-workers showed that S. viridosporus T7A, Streptomyces griseus and the eukaryotic lignin-degrader P. chrysosporium could significantly degrade APPL produced by S. viridosporus T7A. Among the products formed by these organisms were p-coumaric acid (4-hydroxycinnamic acid), ferulic acid (4-hydroxy-3-methoxycinnamic acid), p-hydroxybenzoic acid, p-hydroxybenzaldehyde, protocatechuic acid (3,4-dihydroxybenzoic acid), vanillic acid (4-hydroxy-3-methoxybenzoic acid) and vanillin (4-hydroxy-3-methoxybenzaldehyde) (Pometto & Crawford, 1986). In addition, syringic acid (3,5-dimethoxy-4-hydroxybenzoic acid), ferulic acid (4-hydroxy-3-methoxycinnamic acid), vanillin and vanillic acid were detected in culture supernatants of Streptomyces sp. EC1 (Godden et al., 1992). These data suggest that APPL is not simply an end-product but can be further modified. Furthermore, HPLC analysis of extracts from APPL in culture supernatants obtained at different times from Streptomyces sp. EC1 growing on wheat straw showed that modifications of APPL do occur during growth of the organism (Ball et al., 1990).

The work described above is not conclusive regarding the fate of APPL in culture supernatants. These studies were carried out in vitro. In natural habitats, production of APPL by actinomycetes may be part of a more complex process, with other bacteria and fungi using APPL as substrates. In natural environments, APPL may serve as an intermediate in the formation of humic substances in soils and composts (Donnelly & Crawford, 1988; Senesi et al., 1987; Fuscaldo et al., 1989). Humic substances are not defined in specific chemical terms, but as the fraction of organic matter that is not soluble in water at pH < 2 but soluble at neutral and alkaline pH (Amalifito et al., 1992). In natural terrestrial environments, several enzymes, including phenoloxidases and peroxidases, have been found associated with humic substances through covalent and hydrogen bonds (Martin & Haider, 1980; Sulfita & Bollag, 1980; Sjoblad & Bollag, 1981). Similarly, Ball et al. (1990) detected veratryl alcohol and peroxidase activities in the APPL fraction extracted from supernatants of Streptomyces sp. EC1. The association of proteins with lignocellulose degraded products results in protection of the tertiary structure of proteins, which increases resistance to long term denaturation (Skujins & McLaren, 1969; Pettit et al., 1977). This long term action of native enzymes may meet the requirements for lignin degradation.

In this work we describe the characterization of APPL during growth on wheat straw of three previously used (Trigo & Ball, 1994) lignocellulolytic actinomycetes, and examine the relationship between APPL and humic substances.

METHODS

Organisms and growth conditions. Three strains of selected mesophilic and thermophilic actinomycetes were used: Streptomyces sp. EC22 (thermophilic), Streptomyces viridosporus T7A (mesophilic) and Thermomonospora fusca BD25 (thermophilic). They were obtained from W. Amner, University of Liverpool, D. L. Crawford, University of Idaho and A. J. McCarthy, University of Liverpool, respectively, and were maintained as suspensions of spores in 20% (v/v) glycerol at −20°C. Distilled water suspensions of sporulating growth on L-agar plates (Hopwood et al., 1985) were used to inoculate shake flasks containing basal salts medium and 0.6% (w/v) yeast extract (McCarthy & Broda, 1984) supplemented with 0.2% (w/v)
ball-milled wheat straw. After inoculation, cultures were incubated at 37 or 50 °C with shaking at 200 r.p.m.

Measurement of acid precipitated polymer of lignin (APPL). Lignocarbohydrate solubilizing activity was determined by acidifying culture supernatants to pH 1–3 with HCl. The amount of APPL present was measured by recording the increase in absorbance at 600 nm over a 5 min period following acidification (Ball et al., 1990; Trigo & Ball, 1994).

Extraction and analysis of APPL. Supernatants (100 ml) were acidified to pH 1–3 with HCl. After a 30–60 min interval, the APPL was extracted twice with ethyl acetate (40 ml) and once with ethyl ether (40 ml). The organic extracts were evaporated overnight (Pometto & Crawford, 1990).

(i) **Reverse-phase chromatography.** Low-molecular-mass organic-soluble compounds were extracted from APPL by leaching the sample with 500 µl 10% (v/v) acetonitrile in water. Following clarification by centrifugation, these solutions were chromatographed in a Beckman HPLC system composed of a programmable solvent module (Module 126) and a scanning detector (Module 167) equipped with a reverse-phase column (25 cm × 4.6 mm i.d.) of Spherisorb ODS2 (Anachem) and a 20 µl injection loop. The mobile phase was a gradient of acetonitrile in water adjusted to pH 1–3 with H2SO4. The acetonitrile concentration in the mobile phase started at 10% (v/v), increased to 50% (v/v) over 2 min and then to 100% (v/v) acetonitrile over the following 10 min. The flow-rate was 0.8 ml min⁻¹. Peaks were scanned for their UV spectra, and their retention time was recorded. Their spectral properties were compared to the standard compounds gallic acid, protocatechuic acid, p-coumaric acid (Sigma), 4-methoxyphenol and 2,6-dimethoxyphenol (Aldrich).

(ii) **Gas-chromatography.** The following procedure was used to extract low-molecular-mass organic-soluble compounds from APPL fractions: samples were derivatized with 300 µl dioxane, 20 µl pyridine and 10 mg trimethylsilylacetamide (TMSA, Sigma) for 2 h at 37 °C. After centrifugation to clarify the reaction mixture, samples (1 µl) were injected in a Hewlett-Packard 5890 gas chromatograph with a flame ionization detector and an OV-1 capillary column (30 m x 0.32 mm). The oven temperature was maintained at 120 °C for 5 min, followed by a 10 °C min⁻¹ gradient to 260 and 280 °C. The carrier gas was helium.

Aromatic compounds extracted from APPL fractions were identified by comparing their retention times with 12 standard compounds (p-coumaric acid, ferulic acid, protocatechuic acid, gallic acid, gallic acid methyl ester, caffeic acid, syringic acid (Sigma), acetovanillone, 3,5-dimethoxybenzoic acid, 2,6-dimethoxyphenol, isoavanic acid (3-hydroxy-4-methoxybenzoic acid) and 4-methoxyphenol (Aldrich).

(iii) IR spectroscopy. Infrared spectra of the APPL fractions were recorded for the wavelength range 4000–600 cm⁻¹ with a Perkin-Elmer infrared spectrophotometer model 1576. Samples were prepared by mixing with KBr and compressing the mixture into a disc (Kendall, 1966).

RESULTS AND DISCUSSION

Analysis of extracted solubilized degradation product from the growth of actinomycetes on wheat straw

During growth up to stationary phase, *Streptomyces viridosporus T7A, Streptomyces* sp. EC22 and *Thermomonospora fusca* BD25 produced APPL on ball-milled wheat straw. Maximum levels of APPL were recorded at the beginning of the stationary phase (72–96 h) for all the strains examined (data not shown). Although all strains were able to solubilize straw, *T. fusca* BD25 produced the highest levels of APPL (OD₆₀₀ = 0.11). To investigate the composition and the variability of the solubilized product, APPL from the three strains was harvested after 72–96 h and low-molecular-mass organic-soluble compounds were extracted. These compounds were separated by reverse-phase HPLC and gas-chromatography. The HPLC chromatographic profiles of APPL produced by the three actinomycetes are shown in Fig. 1. All three strains were capable of solubilizing lignocellulose material in excess of the control (uninoculated flask). However the chromatographic profiles of the organisms examined were distinct. Although the intensities of chromatographic peaks for APPL extracts from the three strains were different, most peaks eluted between 2.5 and 9.0 min. The differences in chromatographic profiles may support the view that lignin is degraded by different mechanisms in different species of actinomycetes (Borgmeyer & Crawford, 1985; Mason, 1988).

UV spectra of the major peaks obtained during chromatography of compounds extracted from the APPL of each actinomycete and the peaks' retention times, were compared with those of commercially available standards. Only the product with a retention time of 2.8 min was found in cultures of all three strains; this was not identified. Although most of the other products were unique to each actinomycete strain, p-coumaric acid (retention time 7.9 min) was identified in *T. fusca* BD25 and *S. viridosporus* T7A. Also, gallic acid (retention time 5.7 min) was identified in *Streptomyces* sp. EC22 (Table 1). Analysis of the solubilized products present in APPL was also performed by gas-chromatography. Chromatographic profiles of the extracts from APPLs of the three strains showed an increase in the number of peaks compared to the control (uninoculated flask) (Fig. 2). Although most of the peaks on chromatograms were not conclusively identified, some of them matched the retention times of the standards used. On the basis of retention times, 4-methoxyphenol (retention time 1.48 min) was present in extracts of APPL from all strains, as were protocatechuic acid (retention time 9.86 min), 2,4-dimethoxybenzoic acid (retention time 7.72 min) and gallic acid methyl ester (retention time 10.76 min). Table 1 summarizes the compounds detected. Several aromatic products of straw degradation, including p-coumaric acid, were previously detected in *Streptomyces* sp. EC1 (Godden et al., 1992), *Streptomyces badius*, *Streptomyces suttoni* and *S. viridosporus* T7A (Pometto & Crawford, 1986). Esterified p-coumaric acid comprises a high percentage of the total weight of lignocellulose materials and is associated with lignin through ester linkages to the terminal y-carbon of the phenylpropanoid unit of lignin (Shimada, 1972). These results favour the idea suggested by Pometto & Crawford that APPL is an intermediate that is further degraded to polymeric aromatic units, rather than the view that APPL is an end-product of a process by which cellulolytic and hemicellulolytic enzymes gain access to plant polysaccharides (Crawford et al., 1984).
Table 1. Compounds identified by HPLC and gas-chromatographic analysis of solubilized fractions from selected actinomycete strains

(T) Denotes thermophile; + indicates product was present in the chromatographic profile; – indicates product was absent from the chromatographic profile.

<table>
<thead>
<tr>
<th>Structural formula</th>
<th>Standard compound</th>
<th>Streptomyces sp. EC22 (T)</th>
<th>S. viridosporus T7A</th>
<th>T. fusca BD25 (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p-Coumaric acid</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Protocatechuic acid</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Gallic acid</td>
<td>+*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Gallic acid methyl ester</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2,4-Dimethoxy benzoic acid</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>4-Methoxyphenol</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

The product was identified by reverse-phase HPLC. All other products were identified by gas-chromatography.

Fig. 1. HPLC reverse-phase chromatograms of low-molecular-mass organic-soluble extracts from APPL recorded at 270 nm after 72–96 h of growth for *S. viridosporus* T7A, *Streptomyces* sp. EC22 and *T. fusca* BD25.
Solubilization of straw by actinomycetes

1. Solubilization of straw by actinomycetes

Streptornyces viridosporus T7A

Fig. 2. Gas chromatography analysis of low-molecular-mass organic-soluble extracts from APPL for S. viridosporus T7A, Streptomyces sp. EC22 and T. fusca BD25. Peaks identified on the basis of their retention times (min) are indicated (1.48, 4-methoxyphenol; 7.72, 2,4-dimethoxybenzoic acid; 9.86, protocatechuic acid; 10.76, gallic acid methyl ester).

Qualitative changes in the solubilized product during growth and solubilization of straw by T. fusca BD25

To examine changes in APPL during growth of T. fusca BD25 on ball-milled wheat straw, samples of APPL were taken from cultures at regular intervals. The composition of low-molecular-mass organic-soluble compounds was determined by HPLC (Fig. 3). After 3 d growth, significant amounts of aromatic material were present in APPL extracts. After 6 d incubation, the composition of these extracts showed distinct changes. After 9 d the composition of the APPL extracts stabilized and remained unchanged during the following 7 d incubation. Similar results were obtained with APPL from S. viridosporus and S. badizis (Borgmeyer & Crawford, 1985). Streptomyces sp. EC1 also changed in chromatographic profile when sampled at intervals during growth (Ball et al., 1990). The latter authors suggested that depolymerization–polymerization occurs implying that APPL could serve as an intermediate in the formation of humic substances in composts.

Infrared spectroscopy analysis

Infrared spectral analysis of APPL from actinomycete culture supernatants (Fig. 4) showed considerable similarity between the products from the three strains. The spectra of all preparations displayed a strong band at 3400–3200 cm⁻¹, probably due to stretching vibrations of H-bonded OH, COOH and NH₂ groups (Stevenson & Goh, 1971). In the case of T. fusca BD25, this band is shifted towards a lower wave number, perhaps reflecting the increased presence of H-bonded OH and NH₂ groups in the humic-type APPL polymers (Senesi et al., 1987). Common to these three spectra were weak bands at 1740–1710 cm⁻¹ attributed to numerous C=O containing groups (Russel et al., 1983). Aliphaticity is shown by bands at 2850 cm⁻¹ (aliphatic C–H stretch) and 1430 (aliphatic C–H deformation) and 1000 cm⁻¹ (skeletal vibration of aliphatics) (Senesi et al., 1987). A broad band of medium intensity at 1660 cm⁻¹ and small bands at 1530–1510 cm⁻¹, shown by all three spectra, can be attributed to the peptide linkage in proteins (Stevenson & Goh, 1971; Filip et al., 1974; Russel et al., 1983), supporting previous reports that proteins are bound to APPL (Ball et al., 1990). Also, there is evidence of adsorption of active enzymes to humic substances (Claus & Philip, 1988). Generally, the spectra from all APPL preparations showed a high degree of similarity with spectra of humic substances (Boyd et al., 1979; Russel et al., 1983; Senesi et al., 1987), consistent with suggestions that actinomycetes contribute to humification (Ball et al., 1990; McCarthy et al., 1986).

In conclusion, the three strains examined were able to grow and solubilize ball-milled wheat straw. Further, the solubilized product from all three strains contained aromatic monomers, such as p-coumaric acid, protocatechuic acid, gallic acid, gallic acid methyl ester, 2,4-dimethoxybenzoic acid and 4-methoxyphenol. Phenolic acids are considered to play a major role in humification in soils (Morita, 1965; Katase, 1981). In fact, humic substances are predominantly formed by humic acid polymers which are synthesized from phenolic acids, amino acids and other large molecules through enzymic and oxidative reactions (Felbeck, 1971; Haider et al., 1975; Martin & Haider 1980). Oxidative polymerization is thought to be mediated by phenoloxidases and peroxidases through the formation of phenoxy-radicals which are converted to stable compounds by self- or cross-coupling to other molecules (Bollag et al., 1980, 1981; Martin & Haider, 1980). Production of extracellular peroxidase is common...
amongst actinomycetes (Trigo & Ball, 1994), suggesting that this enzyme may be involved not only in degrading lignin (Ramachandra et al., 1988, Trigo & Ball, 1994), but also in polymerizing the resulting phenolic acids, proteins and sugars to yield a humic acid type polymer, APPL. This suggestion is also supported by the depolymerization-polymerization of lignin reported here for \textit{T. fusca} BD25 and observed in several actinomycete strains (Borgmeyer & Crawford, 1985; Ball et al., 1990). Finally, infrared spectroscopy confirmed the similarity of APPL to humic acids. These results suggest that the lower levels of lignin degradation by actinomycetes compared to fungi may allow this group of organisms to play a significant role in humification processes in natural soils and composts.

\section*{ACKNOWLEDGEMENTS}

C. T. was the recipient of a studentship from JNICT-Portugal and its support is gratefully acknowledged. The authors also thank John Green (Essex University, UK) and Ana Simplicio (IBET, Portugal) for help with chromatographic analysis. This work was partly funded by the NERC (Grant no. GR9 303).

\section*{REFERENCES}

Solubilization of straw by actinomycetes

Received 3 March 1994; revised 20 June 1994; accepted 15 July 1994.