Bacterial hopanoids from pink-pigmented facultative methylotrophs (PPFMs) and from green plant surfaces

M'hamed Knani,1 William A. Corpe2 and Michel Rohmer1

Six strains of pink-pigmented facultatively methylotrophic bacteria (PPFMs) isolated from phylloplane surfaces of different plants were analysed for the presence of triterpenoids of the hopane series. All of the cultures produced hopanoids in abundant quantities and contained the same compounds as the type strain of *Methylobacterium organophilum*: diplopterol, 2β-methyl-diplopterol, bacteriohopanetetrol, a tetrol glycoside and two tetrol ethers. The presence of a guanidinium group on the carbapseudopentose moiety of one of these ethers and/or of 2β-methyl-diplopterol seems to be restricted to the genus *Methylobacterium*. Small amounts of bacteriohopanepolyols were detected in three of seven plants studied. Since no bacterial C35 hopanoids have been reported in eukaryotes, we believe they are probably derived from eubacterial epibionts present on the phylloplane surfaces, the most numerous of which are *Methylobacterium* spp.

Keywords: hopanoids, isoprenoids, *Methylobacterium*, PPFMs, phylloplane

INTRODUCTION

Triterpenoids of the hopane series were first revealed by the wide distribution of their molecular fossils (Ourisson *et al.*, 1979) and they are considered important constituents of prokaryotes. They have been found in Gram-negative and Gram-positive bacteria scattered through numerous eubacterial taxonomic groups (Rohmer *et al.*, 1984). The ability to synthesize hopanoids may be interesting for taxonomic reasons, but the number of strains analysed to date is too restricted to draw any definitive conclusions about the importance of hopanoids in bacterial taxonomy. Typical triterpenoids of this class are bacterio-hopanepolyols. Their structure derives from the hopane skeleton linked to a Cα n-alkyl polyhydroxylated side-chain derived from a θ-pentose (Flesch & Rohmer, 1988; Rohmer *et al.*, 1989).

The pink-pigmented facultative methylotrophs (PPFMs) are ubiquitous Gram-negative bacteria, widely distributed in nature and regularly isolated from plant surfaces (Corpe, 1985). They have been assigned to species of the genus *Methylobacterium* (Green *et al.*, 1988). PPFMs grow on a variety of carbon sources (Green & Bousfield, 1982; Corpe & Basile, 1982) and possess great metabolic versatility. This has proved useful for the incorporation of 13C-labelled precursors in order to elucidate a novel non-mevalonate pathway for isoprenoid biosynthesis in eubacteria (Flesch & Rohmer, 1988; Rohmer *et al.*, 1993). In the course of our hopanoid screening, it appeared interesting to examine PPFMs isolated from plant sources and to compare their hopanoids for qualitative similarity with those from *Methylobacterium organophilum* (Renoux & Rohmer, 1985) and from whole-plant material, thus providing a basis for a specific chemical signature of bacterial epibionts.

METHODS

PPFM strains and cultivation. The PPFMs SAL (isolated from an aquatic fern and identified as *Methylobacterium fujisawense* by P. Green on the base of phenotype analysis), CONO (from a liverwort), Meso (*Methylobacterium mesophilicum*, ATCC 29983, from rye grass), MIM-2 (from a mimosa), CM (from a liverwort) and PC 1 (from white clover) have been described in previous papers (Corpe & Basile, 1982; Corpe *et al.*, 1986; Corpe & Rheem, 1989). In the present work, PPFMs were usually grown on a modification of the medium of Hestrin & Schramm (1954) in 2 litre Erlenmeyer flasks for 30 h at 30°C on rotatory tables. The SAL and CONO strains were also grown for biosynthetic studies on a synthetic ammonium/mineral salts medium supplemented with vitamins and using acetate or glucose as sole carbon source (Rohmer *et al.*, 1993).

Plant material. Two samples of the aerial parts of the moss *Abietinella abietina* (Hedm.) Fleisch. were examined: the first one

Abbreviation: PPFM, pink-pigmented facultative methylotroph.
(9 g, dry weight) was collected near Osenbach, the second one (2.5 g) near Village Neuf (both from Haut-Rhin, France). Leaves of the following plants were collected where indicated (9 g, dry weight) was collected near Osenbach, the second one (2.5 g) near Village Neuf (both from Haut-Rhin, France). Leaves of August 1990 and were freeze-dried before extraction; they were healthy and showed no signs of rotting.

Analytical methods and isolation of hopanoids. Hopanoid extraction and derivatization, qualitative GLC, quantitative GLC, GLC/MS, HPLC, 1H- and 13C-NMR were performed as previously described (Peiseler & Rohmer, 1991; Stampf et al., 1991). As the amounts of hopanoids found during these investigations were expected to be low in the plant material examined, we utilized the most sensitive method, i.e. side-chain H_2O_4 or NaBH$_4$ degradation of the bacteriohopanepolys and derivatization for GLC analysis (Rohmer et al., 1984); the detection limit of this method for hopanoids lies around 0.1 µg for each analysed fraction (Jürgens et al., 1992).

In order to obtain hopanoids with intact side-chains the crude chloroform/methanol extract was acetylated overnight at room temperature with acetic anhydride/pyridine (1:1, v/v) (Renoux & Rohmer, 1985). After removal of excess reagents under vacuum, the residue was thoroughly washed with toluene in order to selectively dissolve the acetylated hopanoids from poly-β-hydroxybutyric acid, which is not soluble in this solvent. The toluene extract containing the peracetylated triterpenoids was separated by preparative TLC (hand-made Merck 7744 silica gel plates, 1 mm thickness, cyclohexane/ethyl acetate, 2:8, v/v) giving less polar compounds ($R_p > 0.80$) were further separated by TLC (methylene chloride) into tetra-acetate of bacteriohopanetetrol IV ($R_p = 0.32$) and a fraction containing diplopterol II and 2β-methyl diplopterol III ($R_p = 0.44$). The two latter compounds could be separated from one another by reverse-phase HPLC on a Dupont Zorbax ODS column (250 x 3.9 mm, methanol/water, 96:4, v/v, 1 ml min$^{-1}$). Pure octa-acetate of the other bacteriohopanetetrol ether V could be obtained after a similar reverse-phase HPLC (methanol/water, 98:2, v/v, 1.2 ml min$^{-1}$).

All hopanoids were identified by comparison of their 1H- and 13C-NMR spectra and/or GLC or HPLC retention times with those of reference compounds previously synthesized or isolated in this laboratory from M ethylobacterium organophilum and Zymomonas mobilis (Renoux & Rohmer, 1985; Bisseret et al., 1985; Flesch & Rohmer, 1986).

RESULTS AND DISCUSSION

Hopanoid content of the PPFMs.

Quantitative GLC analysis of the fractions arising from the chloroform/methanol extract, treated according to our side-chain cleavage procedure (Rohmer et al., 1984) showed that all the PPFMs contained appreciable amounts of hopanoids: diploptene I, diplopterol II, 2β-methyl diplopterol III (Fig. 1) and bacteriohopanepolypeptide derivatives as indicated by the presence of the acetate of the C$_{32}$-bis-homohopanol (Table 1). From the acetylated chloroform/methanol extract hopanoids with intact side-chains could be isolated. Whereas the bacteriohopane derivative content of the SAL, CON0 and CM strains (bacteriohopanetetrol IV, tetrrol ethers V and VI and tetrrol glycoside VII) was qualitatively identical with that reported from M ethylobacterium organophilum (Renoux & Rohmer, 1985), only tetrrol IV could be detected in the MIM-2 and M DSO strains (Fig. 1). Furthermore if the
Table 1. Hopanoid content (µg g⁻¹, freeze-dried material) in PPFMs and plants as determined by weighing (I to VII) or GLC (I and C32 acetate obtained after H2IO₆/NaBH₄ treatment of the bacteriohopanepolyols)

<table>
<thead>
<tr>
<th>Biological material</th>
<th>C30</th>
<th>C35</th>
<th>C32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diploptene I</td>
<td>Diplopteral II and 2β-methyl diplopteral III</td>
<td>Tetrol IV</td>
</tr>
<tr>
<td>PPFMs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAL</td>
<td>200</td>
<td>4300 (80%)*</td>
<td>2300</td>
</tr>
<tr>
<td>CONO</td>
<td>700</td>
<td>3900 (85%)*</td>
<td>1600</td>
</tr>
<tr>
<td>CM</td>
<td>500</td>
<td>2400 (90%)*</td>
<td>1500</td>
</tr>
<tr>
<td>MIM</td>
<td>700</td>
<td>3600 (55%)*</td>
<td>1000</td>
</tr>
<tr>
<td>MEO</td>
<td>500</td>
<td>2800 (60%)*</td>
<td>1000</td>
</tr>
<tr>
<td>PCI†</td>
<td>200</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abietinella abietina</td>
<td>6</td>
<td>+ ‡</td>
<td>6</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>17</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Viola odorata</td>
<td>6</td>
<td>ND</td>
<td>6</td>
</tr>
<tr>
<td>Solanum</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>J uncus</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Fragaria vesca</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Amurillus sp.</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND, Investigated but not detected.

* Relative amount of 2β-methyl diplopteral in the mixture of diplopteral and 2β-methyl diplopteral as determined by HPLC.
† Composite hopanoids of the PCI strain have not been investigated.
‡ Diplopteral and methyl diplopteral were detected by GLC/MS in the Osenbach sample only.

quantitative data obtained by the two methods of determination (GLC determination after H2IO₆/NaBH₄ side-chain derivatization or weighing of the intact acetylated bacteriohopanepolyol fractions) fit well together for the three former strains, isolation of intact acetylated hopanoids yields an apparent underestimation compared with the side-chain cleavage method (Table 1). This discrepancy between the values was reproducible. Even when larger amounts of cells (15 g instead of 7 g dry weight for the MEO strain; 6 g instead of 2 g for the MIM-2 strain) were utilized for a second determination in order to minimize experimental errors, the same concentrations of diploptene, diplopteral, 2β-methyl diplopteral and bacteriohopanetetrol were found. This might point to the possible presence of hopanoids which are not extracted and/or not detected by our methods. Such forms, insoluble in organic solvents, are for instance known for carotenoids which form complexes with proteins (Thirkell & Hunter, 1969; Schwencker et al., 1974) and hopanoids (Herrmann & Rohmer, unpublished results). A bacteriohopanetetrol ether similar to ether VI could not be directly extracted from freeze-dried cells of an Acetobacter species, even after repeated treatment with chloroform/methanol (2: 1) under reflux. Finally in PPFMs, as already observed for other bacteria, bacteriohopanepolyol content is largely dependent on the growth conditions and the composition of the culture medium (Renoux & Rohmer, 1985; Bisseret et al., 1985; Zundel & Rohmer, 1985; Rohmer & Ourisson, 1986). After ten transfers, during three weeks, of the SAL and CONO strains from a complex to a minimal medium, the bacteriohopanepolyols IV, V, VI and VII could no longer be detected, the slightly higher diplopteral concentration (5.7 instead of 4.3 mg per g dry weight) not compensating the loss of the composite hopanoids. Further transfer from minimal to complex medium restored the initial hopanoid composition where all bacteriohopane derivatives were present, showing that these changes were fully reversible.

Taxonomic implications

The taxonomic position of the PPFMs was for a long time rather uncertain and confused. Generic assignment to the genus Methylobacterium was finally made on the basis of DNA:DNA homologies and phenotypic data (Green & Bousfield, 1982, 1983; Bousfield & Green, 1985; Hood et al., 1987). Corpe & Jensen (1991) studied the distribution and localization of PPFMs on plant leaf surfaces. They used a specific antiserum prepared in rabbits against whole cells of the PPFM strain PCI isolated from clover. Only cells of Methylobacterium strains isolated from diverse
sources developed an immunoreaction against this antiserum. Representative bacteria of other genera did not produce such reactions.

Analysis of the other PPFM hopanoids and comparison with those of the type culture of Methyllobacterium organophilum were in accord with the classification of PPFMs within the genus Methyllobacterium. Indeed, M. organophilum and the other PPFMs were found to be good hopanoid producers. They represent the only bacteria found to date that contain high concentrations of diplopterol II and/or 2β-methylidiplopterol III. The amounts found are usually around several mg per g dry weight. All other bacteria investigated show diplopterol concentrations of at least one order of magnitude lower (Rohmer et al., 1984; M. Rohmer, unpublished results). Furthermore, although 2β-methylbacteriohopaneopolys are common in cyanobacteria (Bisseret et al., 1985; Simonin, 1993), the presence of 2β-methylidiplopterol III seems to be restricted to M. organophilum and the other PPFMs. The bacteriohopanetetrol ether VI bearing a guanidium group on its carbapseudopentose moiety has been found only in M. organophilum and another three PPFMs. All results at the level of the triterpenic composition of these bacteria suggest they may be related, within or close to the genus Methyllobacterium.

Bacterial hopanoids in plant samples

A major ecological niche of PPFMs is the phylloplane, i.e., the plant leaf surface. Leaves from several plant species and a moss were investigated for the presence of bacterial hopanoids. 3-Deoxysphingolipids have never been reported to occur in higher plants. Diploptene has been found in some mosses in amounts as high as 1 mg g⁻¹, as reported by Marsili et al. (1972), but not bacteriohopanediol derivatives. In our results (Table 1) bacterial hopanoids (diploptene and bacteriohopanetetrol derivatives) were detected in two higher plant species: Trifolium repens, which was already known to possess numerous PPFMs on its phylloplane (Corpe & Rheem, 1989), and Vicia faba. Two samples of the moss Abietinella abietina, which was already known to contain diploptene I (Marsili et al., 1972), both contained bacterial hopanoids (Table 1). This is the first report of bacterial triterpenoids being isolated from eukaryotic plants, but most probably not synthesized by these plants. The detection of derivatives with the C₃₃ bacteriohopane skeleton characteristic for eubacteria, should represent the signature of symbiotic or epibiotic bacteria. In the other plants studied, no hopanoids could be detected. The hopanoid concentration might have been too low and/or their GLC and GLC/MS detection hampered by the large amounts of plant metabolites present in the hopanoid-containing fractions. Indeed the chromatograms of the fractions containing diploptene or the bacteriohopanepolys derivatives showed large peaks in the region corresponding to hopanoid retention times. We are left to conclude that hopanoid producers are simply absent or present in very small numbers in the samples investigated. At this stage of our knowledge of hopanoid distribution, the presence of bacterial hopanoids in plant extracts cannot be correlated with specific bacterial epibionts, but this method might prove to be useful for the detection of such hopanoid-producing micro-organisms from plant tissues or from other natural habitats.

ACKNOWLEDGEMENTS

This work was supported by the Centre National de la Recherche Scientifique (Unité de Recherche Associée 138). We acknowledge gratefully our debt to Dr P. Green (NCIMB, Aberdeen, UK) for the identification of the SAL strain, to Professor A. Gagnieux and M. V. Rastetter for the identification of the Abietinella abietina samples, and to Dr D. Le Nouen for all NMR measurements.

REFERENCES

Green, P. N. & Bousfield, I. J. (1983). Emendation of Methyllobacterium (Patt, Cole and Hanson, 1976); Methyllobacterium rhodinum (Heumann, 1962) comb. nov. corrug; Methyllobacterium radiotherans (Ito and Izuka, 1971) comb. nov. corrug., and Methyllobacterium mesophilicum (Austin and Goodfellow, 1979) comb. nov. Int J Syst Bacteriol 33, 875-878.

Received 1 March 1994; revised 19 May 1994; accepted 25 May 1994.