Luteolin absorption in *Rhizobium meliloti* wild-type and mutant strains

C. HUBAC,1* J. FERRAN,1 D. GUERRIER,1 A. TRÉMOLIÈRES2 and A. KONDOROSI1,3

1Institut des Sciences Végétales and 2Laboratoire de Biochimie Fonctionnelle des Membranes Végétales, CNRS, 91198 Gif-sur-Yvette Cedex, France
3Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6701 Szeged, Hungary

(Received 14 October 1992; revised 26 January 1993; accepted 17 February 1993)

*Author for correspondence. Tel 1 69 82 3603; fax 1 69 82 3695.

Luteolin is a flavonoid produced by plants which is required for induction of *nod* genes in *Rhizobium meliloti*. *R. meliloti* absorbed luteolin at higher rate than all other bacteria tested, including *R. leguminosarum*. The flavonoids naringenin and querce tin, which do not induce the expression of nodulation genes of *R. meliloti*, were absorbed at a lower rate by this species, suggesting a certain degree of species specificity of flavonoid absorption. Luteolin accumulated preferentially in the outer membrane, but a small amount was always found in the inner membrane. Luteolin strongly inhibited NADH oxidase, an enzyme of the respiratory chain, raising the possibility that the site of luteolin absorption in the outer membrane allows the protection of the respiratory chain located in the inner membrane from an excess of flavonoids. The incorporation of luteolin was found to be affected in some *exo* or *nod* mutants of *R. meliloti*. The *exoB* mutant, which does not produce exopolysaccharides, accumulated lower amounts of luteolin in the outer membrane than the *exo*+ parent. Among the *nod* mutants affected in nodulation genes, those not expressing any of the three *nodD* genes accumulated luteolin at a significantly lower level in both the outer and the inner membrane. A strain overexpressing the *nod* genes, particularly the *nodD* genes, absorbed luteolin at a higher level in both membranes. These results indicate that absorption of luteolin by *R. meliloti* involves several gene products, including the *NodD* protein.

Introduction

In rhizobia the expression of nodulation (*nod*) genes is induced by the regulatory *NodD* protein in conjunction with flavonoids produced by the host plants (for a review see Kondorosi, 1992). In general, the *nodD* genes are expressed constitutively, and genetic data indicate that upon binding of the flavonoids to the *NodD* proteins the activated *NodD* can induce the expression of the *nod* genes. However, the specific binding of flavonoids to the *NodD* proteins has not yet been directly demonstrated. The specific interaction between flavonoids of the host plant and *NodD* ensures the host-specific control of *nod* gene expression. For example, luteolin (3',4',5,7-tetrahydroxyflavone) isolated from *Medicago sativa* seed extracts was shown to be a potent *nod* gene inducer in *Rhizobium meliloti* (Peters et al., 1986), while naringenin (5,7,4'-trihydroxyxflavanone) isolated from *Vicia sativa* root exudate is an important *nod* gene inducer in *Rhizobium leguminosarum* biovar *viciae* (Zaat et al., 1988). This latter compound was shown to have no *nod* gene inducing ability in *R. meliloti* (Györgypal et al., 1991a). Isoflavonoids were found to be potent *nod* gene inducers in *Bradyrhizobium* but had no inducing activity in most *Rhizobium* species, or even inhibited induction of *nod* genes (for a review see Györgypal et al., 1991a).

Using antibodies against a *lacZ–nodD* gene fusion product, Schlaman et al. (1989) found that the *NodD* protein is located exclusively in the cytoplasmic membrane of wild-type *R. leguminosarum* biovar *viciae* cells. In a *R. leguminosarum* strain overproducing *NodD*, the protein was found both in the cytoplasmic membrane and in the cytosol, indicating an influence of the protein abundance on its subcellular localization. A model for *nod* gene induction was presented which combines the localization and the DNA-binding properties of the *NodD* protein as well as the observed association of flavonoids with the cytoplasmic membrane.

The accumulation of naringenin in the cytoplasmic membrane of *R. leguminosarum* biovar *viciae*, without apparent metabolic conversion, was reported by Recourt et al. (1989). The binding of naringenin was highly reversible and *in vitro* experiments showed that narin-
genin had a high, pH-dependent affinity for the cytoplasmic membrane.

The flavonoids may have effects on rhizobia other than nod gene induction. The growth rate of *R. meliloti* was enhanced by flavonoids released naturally from *M. sativa* seeds, but only in a minimal medium that allowed rather poor growth and not in the presence of yeast extract and tryptone (Hartwig et al., 1989). An alternative approach, namely the control of soil microbes, was suggested that the mechanism which increases growth is distinct from its capacity to induce rhizobial nod genes and that luteolin may create ecochemical zones for controlling soil microbes.

We have undertaken a more extensive study of the mechanisms involved in luteolin absorption by *R. meliloti*. As a first step, we studied how luteolin was absorbed by *R. meliloti* and *R. leguminosarum* and by other Gram-negative bacteria, including *Agrobacterium tumefaciens*, *A. rhizogenes* A4TC24, *P. syringae* pv. *pisi* and *E. coli* K12. In addition, absorption of two flavones not inducing the nod genes in *R. meliloti*, namely naringenin and quercetin, was investigated. By incubating live bacteria with luteolin, the amount of flavonoid absorbed in the inner and outer membranes of wild-type and mutant strains affected in the nod region was determined.

Methods

Bacterial strains and plasmids.

These are listed in Table 1.

Media and culture conditions.

Liquid cultures were grown at 30 °C with aeration on different media for each bacterium: TA medium (Tryptone-yeast) (Kondorosi et al., 1977) for *R. meliloti* and *E. coli*, TY medium (Beringer, 1974) for *R. leguminosarum*, YEB medium (Alt-Moerbe et al., 1989) for *Agrobacterium*, YAD medium (Meng & Wang, 1987) for *P. syringae*. Growth of bacteria was followed spectrophotometrically by measuring the optical density at 540 nm. Samples were taken during the exponential phase of growth (OD₅₄₀ = 0.9).

Fractionation of membranes.

Overnight bacterial cultures were harvested by centrifugation at 5000 g for 30 min at 4 °C, washed twice in 0.9% NaCl. The cells were broken by two passages through a French press cell (about 70 MPa). Membranes were fractionated on a discontinuous sucrose density gradient (Hubac et al., 1992). The protein content of different fractions of the gradient was determined by the method of Bradford (1976). Two membrane markers, the KDO (2-ketodeoxyoctonate) content for the outer membrane and the NADH oxidase activity for the inner membrane (de Maagd et al., 1990), were used. By following the profile of the protein content, the outer membrane was found in the 55% (w/v) sucrose fractions, and the inner membrane in the 35% sucrose fractions (Hubac et al., 1992).

NADH oxidase activity measurement.

The pellet containing the membranes was suspended in 50 mm-Tris/HCl (pH 8) and incubated for 5 min at 30 °C in 0.2 mm-dithiothreitol (DTT) and 0.12 mm-NADH as substrate. Luteolin at different concentrations was added to the membrane suspension and the NADH oxidase activity was measured spectrophotometrically (Ravelan et al., 1982).

Luteolin analysis.

Samples (40 ml) of *R. meliloti* cultures growing in the presence of luteolin were taken at different time intervals and centrifuged at 5000 g for 30 min at 4 °C. The bacterial pellet was washed in 0.9% NaCl (pH 7.4), suspended, and boiled in 2 ml ethanol, then 2 ml chloroform was added. After a second centrifugation at 5000 g for 30 min, the supernatant was collected, evaporated under a nitrogen stream and resuspended in 1 ml ethanol. This extract was then analysed for luteolin content by TLC, spectrophotometry or HPLC. For the fractionation of membranes, the analyses were made from 500 ml of bacterial culture containing luteolin.

For TLC, the solvent used was chloroform/acetone/methanol/acetic acid/water (10:4:2:2:1, by vol.; Trémolières & Lepage, 1971).

Table 1: Genetic and symbiotic characteristics of strains used in this study

<table>
<thead>
<tr>
<th>Strains and plasmids</th>
<th>Relevant genotype</th>
<th>Symbiotic phenotype</th>
<th>Reference/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. meliloti</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rm41</td>
<td></td>
<td>Nod<sup>+</sup> Fix<sup>+</sup></td>
<td>Original isolate by K. Szende & F. Ordógh</td>
</tr>
<tr>
<td>Rm41 exoB</td>
<td></td>
<td>Nod<sup>+</sup> Fix<sup>+</sup></td>
<td>Kondorosi et al. (1989)</td>
</tr>
<tr>
<td>AK631 nolR:Th5</td>
<td></td>
<td>Nod<sup>+</sup> Fix<sup>+</sup></td>
<td>Kondorosi et al. (1989)</td>
</tr>
<tr>
<td>AK631</td>
<td></td>
<td>Nod<sup>+</sup> Fix<sup>+</sup></td>
<td>Obtained from E. Kondorosi</td>
</tr>
<tr>
<td>AK1672</td>
<td></td>
<td>Nod<sup>+</sup> Fix<sup>+</sup></td>
<td>Meade et al. (1982)</td>
</tr>
<tr>
<td>ZB138</td>
<td>nod<sup>-</sup>-<i>n</i>-deletion derivative of AK631</td>
<td>Nod<sup>-</sup></td>
<td>Banfalvi et al. (1981)</td>
</tr>
<tr>
<td>A2105</td>
<td>Rm1021 nodC<sup>-</sup>-lacZ nodD1D2D3</td>
<td>Nod<sup>-</sup></td>
<td>Honma et al. (1990)</td>
</tr>
<tr>
<td>Plasmid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pEK327</td>
<td>pLAFLR carrying nodEFEGHPD<sup>3</sup> and syrM</td>
<td>Nod<sup>+</sup> Fix<sup>+</sup></td>
<td>Schultz et al. (1992)</td>
</tr>
<tr>
<td>R. leguminosarum 248</td>
<td></td>
<td>Nod<sup>+</sup> Fix<sup>+</sup></td>
<td>Josey et al. (1979)</td>
</tr>
<tr>
<td>A. tumefaciens 82139</td>
<td>Wild-type strain</td>
<td>Nod<sup>+</sup> Fix<sup>+</sup></td>
<td>Michel et al. (1990)</td>
</tr>
<tr>
<td>A. rhizogenes A4TC24</td>
<td>Wild-type strain</td>
<td>Nod<sup>-</sup></td>
<td>Petit et al. (1983)</td>
</tr>
<tr>
<td>P. syringae pv. pisi</td>
<td>Wild-type strain</td>
<td>Nod<sup>-</sup></td>
<td>Schmit (1991)</td>
</tr>
<tr>
<td>E. coli K12</td>
<td>C600</td>
<td></td>
<td>Appleyard (1954)</td>
</tr>
</tbody>
</table>

* About 2 d delay in nodulation.
Luteolin gave a yellow spot in the first third of the chromatogram ($R_f = 0.72$).

For spectrophotometric measurement, the absorbance of luteolin (purchased from Carl Roth) was measured in ethanol at 351 nm against the same bacterial extract which had not been treated with luteolin. The amount of luteolin was calculated from a standard curve obtained with standard solutions. The absorbance of quercetin and naringenin (purchased from Extrasynthese) were measured at 373 nm and at 288 nm, respectively, in ethanol.

HPLC analysis was performed using a method adapted from Peters et al. (1986). Using a C18 ODS column (220 × 4.6 mm) a linear gradient was performed at 1 ml min$^{-1}$ starting from methanol (20%) and water (80%) with acetic acid (2%) to 100% (v/v) methanol. Luteolin was eluted at about 20 min and read at 351 nm; quercetin read at the same wavelength was eluted just before luteolin; naringenin eluted at 30 min was read at 280 nm. For quantitative measurements, standard flavonoids were used as references.

Results

Characteristics of luteolin absorption by whole bacteria

We first verified that luteolin did not affect the growth of bacteria in TA medium. The kinetics of luteolin absorption by *R. meliloti* strain Rm41 was then followed at different concentrations of luteolin in the culture medium. Fig. 1 shows that the uptake of luteolin increased with increasing concentrations of the flavonoid in the medium. The luteolin absorption was rapid; when a bacterial culture was mixed with luteolin-containing medium, a high level of absorption was recorded immediately. It was verified that this rapid absorption did not result from contamination during the centrifugation of the bacterial pellet with the culture medium by washing the pellet several times in 0.9% NaCl without significant loss of luteolin. At 10 and 20 μM, the two highest concentrations of luteolin in the medium, a transitory decrease of the bacterial flavonoid content was observed after the first rapid incorporation step (Fig. 1). This leakage of luteolin was observable only for high concentrations of luteolin (10 μM). The significance of this decrease is unknown. In further experiments, we always used luteolin at a concentration of 10 μM. When the concentration of luteolin was measured in the culture medium, only a very small decrease of this concentration (from 2.5 to 2.0 mg ml$^{-1}$) was observed at the beginning of the incubation, and after that it remained constant (data not shown). Under the conditions used, luteolin always remained in excess in the medium.

Resorption of luteolin

Bacteria incubated for 4 h in the presence of luteolin were pelleted, washed with NaCl (0.9%) and transferred into fresh medium without luteolin. Leakage of luteolin from the bacteria was observed immediately (Fig. 2) and only a low but significant amount of luteolin (about 10% of the original content) remained absorbed by the bacteria. After 10 min, the bacterial luteolin content slowly increased for several hours, probably because newly formed bacteria incorporated the luteolin leaked out into the medium. This rapid leakage could be attributed to a partitioning effect between the aqueous phase of the medium (where ionized luteolin can be dissolved) and the lipid phase of the bacterial membrane (where luteolin in non-ionized form remains absorbed), as proposed by Recourt et al. (1989). In our conditions (9.5 mg fresh bacteria per ml incubation medium), bacteria occupied less than 1% of the volume; in this case, the simple equilibrium process in a new medium devoid of luteolin would normally lead to a bacterial luteolin concentration ten times lower than that found in our experiment. Partitioning alone cannot explain such a result.

Absorption of luteolin by other Gram-negative bacteria and absorption of other flavonoids by *R. meliloti*

For all Gram-negative bacteria studied other than *R. meliloti*, a low rate of luteolin absorption was observed (Table 2). For *A. tumefaciens* and *A. rhizogenes*, *P. syringae* and *E. coli*, the absorption was about 10-fold less than for *R. meliloti*. With *R. leguminosarum* biovar *viciae*, a *Rhizobium* species where the nod genes are not induced by luteolin but by other flavones, such as naringenin (Recourt et al., 1989), the absorption was also significantly lower than in *R. meliloti*. In this case, there
was a rapid and weaker incorporation which always remained at the same level and did not exhibit kinetics similar to that of *R. meliloti* (Table 3). When *R. meliloti* was grown in the presence of naringenin or quercetin, which allow a normal rate of growth at the concentration used, but do not induce the expression of the nodulation genes in *R. meliloti* (Györgypal et al., 1991b), only weak absorption was observed (Table 4).

Comparison of luteolin absorption between wild-type strains and mutants of *R. meliloti*

Using wild-type and mutant *R. meliloti* strains, luteolin absorption was measured for 4 h at a luteolin concentration of 10 μM for a starting bacterial OD₅₆₀ of 0.3, increasing to a final OD of 0.7. As shown in Table 5, the exopolysaccharide-producing wild-type strains Rm41 and Rm1021 had high levels of absorption. In strain AK631, an exoB derivative of Rm41, the absorption was reduced to about 30% of that of Rm41. In AK1672, a nodC mutant derivative of AK631, the luteolin absorption did not differ from AK631, while in a nodD1D2D3 mutant (A2105) and in a derivative carrying a large deletion in the nod-nif region of the megaplasmid (ZB138), the absorption of luteolin was much lower. On the other hand, strain EK1261, which overexpresses the nod genes, showed a higher level of luteolin absorption than the

<p>	Table 5. Rate of luteolin absorption by wild-type and mutant R. meliloti strains
Bacterial luteolin content [μg (g fresh bacterial pellet)⁻¹]	</p>
<table>
<thead>
<tr>
<th>Strain</th>
<th>Rm41</th>
<th>Rm1021</th>
<th>EK1261</th>
<th>AK631</th>
<th>AK1672</th>
<th>A2105</th>
<th>ZB138</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. meliloti Rm41</td>
<td>18.8±1</td>
<td>18.8±1</td>
<td>24.1±2</td>
<td>13.7±1.5</td>
<td>14.5±1.4</td>
<td>9.6±1</td>
<td>5.8±0.6</td>
</tr>
<tr>
<td>R. leguminosarum biovar viciae</td>
<td>10.9±0.6</td>
<td>10.9±0.6</td>
<td>10.9±0.6</td>
<td>10.9±0.6</td>
<td>10.9±0.6</td>
<td>10.9±0.6</td>
<td>10.9±0.6</td>
</tr>
</tbody>
</table>

Table 4. Rate of flavonoid absorption by *R. meliloti* (Rm41)

Bacteria were incubated for 4 h with luteolin, naringenin or quercetin, each at a concentration of 10 μM. Values are means of five experiments ± se.

<table>
<thead>
<tr>
<th>Flavonoid</th>
<th>Bacterial flavone content [μg (g fresh bacterial pellet)⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luteolin</td>
<td>18.8±1</td>
</tr>
<tr>
<td>Naringenin</td>
<td>8.3±0.3</td>
</tr>
<tr>
<td>Quercetin</td>
<td>7.3±0.5</td>
</tr>
</tbody>
</table>

Table 3. Rate of luteolin absorption by *R. meliloti* (Rm41) and *R. leguminosarum biovar viciae*

Bacteria were incubated for 30 s, 10 min and 240 min with 10 mM-luteolin. Values are means of five experiments ± se.

<table>
<thead>
<tr>
<th>Strain</th>
<th>30 s ±SE</th>
<th>10 min ±SE</th>
<th>240 min ±SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. meliloti Rm41</td>
<td>26.5±1</td>
<td>11.4±0.4</td>
<td>18.8±1</td>
</tr>
<tr>
<td>R. leguminosarum biovar viciae</td>
<td>13.5±0.5</td>
<td>10.9±0.3</td>
<td>10.9±0.3</td>
</tr>
</tbody>
</table>

Table 2. Rate of luteolin absorption*

E. coli and *A. rhizogenes* were incubated with luteolin for 30 s, 10 min and 240 min with 10 mM-luteolin. Values are means of five experiments ± se.

<table>
<thead>
<tr>
<th>Strain</th>
<th>30 s ±SE</th>
<th>10 min ±SE</th>
<th>240 min ±SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. meliloti Rm41</td>
<td>18.8±1</td>
<td>10.9±0.4</td>
<td>18.8±1</td>
</tr>
<tr>
<td>R. leguminosarum biovar viciae</td>
<td>10.9±0.6</td>
<td>10.9±0.6</td>
<td>10.9±0.6</td>
</tr>
<tr>
<td>A. rhizogenes</td>
<td>4.1±0.4</td>
<td>4.1±0.4</td>
<td>4.1±0.4</td>
</tr>
<tr>
<td>A. tumefaciens</td>
<td>0.9±0.2</td>
<td>0.9±0.2</td>
<td>0.9±0.2</td>
</tr>
<tr>
<td>P. syringae</td>
<td>2.2±0.2</td>
<td>2.2±0.2</td>
<td>2.2±0.2</td>
</tr>
<tr>
<td>E. coli</td>
<td>2.2±0.2</td>
<td>2.2±0.2</td>
<td>2.2±0.2</td>
</tr>
</tbody>
</table>

Fig. 2. Kinetics of luteolin resorption by *R. meliloti* strain Rm41. Bacteria were incubated with luteolin (10 μM) for 4 h, washed and then reincubated in a fresh medium without luteolin (arrow). Luteolin absorption is expressed as μg (g fresh bacterial pellet)⁻¹. Values are means of five experiments ± se.
incubation period. These characteristics of luteolin
Nevertheless, it is difficult to be sure that the luteolin
inner membranes remained almost constant during the
binding were consistent with a two-step process
most of the luteolin was found in the supernatants (Table
6). Then, the luteolin content decreased in the super-
natant and increased progressively in the two mem-
branes. The ratio of luteolin absorbed to the outer and
inner membranes remained almost constant during the
incubation period. These characteristics of luteolin
binding were consistent with a two-step process: first, a
rapid fixation on the external site of the bacterial
envelope and then a slower accumulation in the
membranes themselves and especially in the outer one.
Nevertheless, it is difficult to be sure that the luteolin
distribution found between isolated membranes repre-
sents the true situation in the living bacteria and that no
cross-contamination occurred during the isolation
process.

Luteolin incorporation in outer and inner membranes of
mutant strains

After 8 h growth of different mutant strains in the
presence of luteolin (10 μM), the bacteria were pelleted,
disrupted in the French press, the outer and inner membranes were separated and the luteolin content was
determined. As shown in Fig. 3, the luteolin content was
reduced to about 30% in both the outer and inner
membranes of AK631 not producing exopolysaccharides,
but in those of the nodC mutant derivative of AK631
(AK1672) it was not further affected. In the two mutant
strains which produce no NodD protein (A2105, ZB138)
the luteolin accumulation was reduced in the two
membranes, although a small amount of luteolin was
always found in the inner membrane. The inner
membrane was never completely devoid of luteolin in
two latter mutants; nevertheless contamination by the
outer membrane cannot be completely ruled out. Strain
EK1261, which overexpresses the nod genes,
contained high amounts of luteolin in the two
membranes.
The differences in luteolin content between the
different strains were greater at the membrane level than
when the luteolin content of whole cells was measured.
This difference can be explained by the fact that luteolin
found in the supernatant fraction was not taken into
account when luteolin content in the isolated membranes
was determined.

Effect of luteolin on NADH oxidase activity

Flavonoids can inhibit photosynthetic or respiratory
electron transfer in chloroplasts or in plant mitochondria
(Moreland & Novitzky, 1988; Ravanel et al., 1982,
1990). Preferential accumulation of luteolin in the outer
membrane might allow the protection of the respiratory
chain located in the inner membrane against an excess of
flavonoid. In order to test this possibility, we measured
the effect of luteolin on NADH oxidase, one of the main
enzymes of the respiratory chain.

When total membrane fractions of strain Rm41 were
treated with luteolin, a significant inhibition of NADH
oxidase activity was observed (Fig. 4a). The same result
was obtained when isolated inner membranes containing
NADH oxidase were treated with luteolin: 50 μM-
luteolin inhibited NADH oxidase activity by 65% and
this activity was totally suppressed with luteolin at
100 μM (Fig. 4b). No NADH oxidase activity was found
in the outer membrane.
Table 6. Repartition of luteolin in outer and inner membranes and in the supernatant fraction after different times of incubation of R. meliloti (Rm41) in medium containing 10 μM-luteolin

Washed bacteria were resuspended in Tris/HCl, broken by passage through French press, then centrifuged at 130000 g for 2 h. The luteolin content was determined in the supernatant. The membrane pellet was resuspended in 1 ml Tris/HCl and outer and inner membranes were separated on sucrose gradient. Luteolin content was then determined in the separated membranes.

<table>
<thead>
<tr>
<th>Incubation time</th>
<th>Supernatant</th>
<th>Outer membrane</th>
<th>Inner membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>0.29</td>
<td>0.45</td>
<td>0.048</td>
</tr>
<tr>
<td>2 h</td>
<td>0.21</td>
<td>1.07</td>
<td>0.090</td>
</tr>
<tr>
<td>4 h</td>
<td>0.04</td>
<td>2.90</td>
<td>0.220</td>
</tr>
</tbody>
</table>

Fig. 4. Effect of luteolin on the activity of NADH oxidase. (a) Total membranes; (b) inner membranes from Rm41 isolated by centrifugation (130000 g, 2 h) of the cells broken by French press. Membranes were fractionated on a discontinuous sucrose density gradient. Samples (25 μg) of membrane protein were incubated at 30 °C in Tris (pH 8.0), 0.2 mM-DTT and 0.12 mM-NADH with or without luteolin: 1, 0 μM; 2, 50 μM; 3, 100 μM. Oxidation of NADH was followed at 340 nm for 16 min.

Discussion

This paper demonstrates that luteolin absorption by R. meliloti is a far more complex process than previously postulated. We demonstrated some species-specificity of luteolin absorption in that another Rhizobium species, R. leguminosarum biovar vicieae, or other Gram-negative bacteria, Pseudomonas, Agrobacterium or E. coli do not incorporate this flavonoid at the same level. Moreover, two other flavonoids which do not induce the nodulation process in R. meliloti are poorly absorbed by this bacterium. The biochemical basis of this specificity remains unknown. Nevertheless it can be supposed that some specific sites for this binding may exist in R. meliloti which are not found in the other bacteria.

The first step of luteolin absorption appears to be a rapid and reversible process of equilibrium of the flavonoids between the medium and the bacterial cell surface as previously suggested for the absorption of naringenin by R. leguminosarum biovar vicieae (Recourt et al., 1989). The second step, allowing the accumulation of luteolin in the two membranes of Rhizobium, seems to be more progressive and we could not prove that this step is purely passive. Much work has to be done to establish the energetic basis of this accumulation. The binding of luteolin is only partly reversible since, after transfer of the bacteria into a medium without luteolin, a small but significant amount of the flavonoid remained firmly bound to the bacteria.

Studying absorption of naringenin to isolated membranes of R. leguminosarum biovar vicieae in vitro, Recourt et al. (1989) reported that naringenin could be bound to the membrane only at acidic pH and, in this condition, the flavonoid accumulated exclusively in the inner membrane. Our studies on the absorption in vivo of luteolin by R. meliloti cells led to different observations. Accumulation of luteolin was detected principally in the outer membrane, while only low (but significant) amounts were bound to the inner membrane. According to previous reports (Ravanel et al., 1982, 1990; Moreland & Novitzky, 1988) flavonoids can inhibit photosynthetic or respiratory electron transfer in plant chloroplasts or mitochondria. We found that luteolin at a concentration of around 50 μM inhibited the activity of NADH oxidase, which is located in the inner membrane. According to our results, R. meliloti can incorporate around 20 μg luteolin (g of fresh bacteria)⁻¹. Thus the molar concentration of luteolin in the whole bacteria can be estimated as 70 μM. If we consider that most of this luteolin remained located in the membranes, that means that a concentration higher than 100 μM (which is sufficient to totally inhibit NADH oxidase activity), can be found in this compartment. Based on these results, we can speculate that in R. meliloti there might be a specific system for the binding of large amounts of luteolin in the outer membrane, allowing the protection of the respiratory chain against this flavonoid.

Measurements of luteolin absorption by different mutant strains of R. meliloti have led to several conclusions. First, the incorporation into the exoB derivative of Rm41 was reduced to about 30%. This strain is Nod⁺ and was able to absorb luteolin and to incorporate it into the two membranes. The nodC mutant had a normal level of luteolin absorption. However, in the mutants where the three nodD genes are inactivated or deleted, the incorporation rate was significantly reduced. In contrast, the strain overexpressing the nod genes bound large amounts of luteolin.

The work of Horvath et al. (1987) and Spaink et al. (1989), and several further studies (Györgypal et al., 1991a; Kondorosi, 1992), suggested direct interaction...
between inducing compounds and the nodD gene product. Schlaman et al. (1989) presented a model for nod gene regulation based on the amphipathic NodD protein localized in the cytoplasmic membrane and its interaction with nod box DNA and flavonoids. From our results, it is difficult to firmly conclude that the NodD protein itself is the only site of binding for luteolin in the inner membrane. Luteolin was always found in the inner membrane of the triple nodD mutants and absorption by the outer membrane was also drastically reduced. This low level of absorption might be due to insufficient stabilization of luteolin in the bacterial membrane when NodD protein is lacking.

It is probable that only a small fraction of the luteolin pool interacts with the NodD protein. At present, nothing is known about the kinetic parameters and the stability of this interaction. It is likely that a relatively high level of luteolin per bacterium might be necessary to maintain the activity of the nod regulon. For the better understanding of the interactions between luteolin and NodD more suitable methods have to be developed which could allow the measurement of very small amounts of luteolin and also to determine the cytosolic luteolin content.

We thank Dr E. Kondorosi for construction of bacterial strains used in this work. We wish also to acknowledge C. Deforret for typing, and J. C. Barbet and A. Bennardo-Connan for helpful technical assistance.

References

