Micromonospora RNA polymerase activity changes during stationary phase

LUNG-SHEN LIN† and DAVID M. ROTHSTEIN∗

Department of Microbial Genetics, Lederle Laboratories, Pearl River, NY 10965, USA

(Received 30 March 1992; revised 8 May 1992; accepted 26 May 1992)

RNA polymerase was isolated from Micromonospora echinospora and from Streptomyces lividans. In vitro transcription of a DNA fragment containing multiple tandem promoters from Micromonospora followed the pattern of expression observed previously for in vivo studies. RNA polymerase was prepared from cultures of Micromonospora that were harvested during the growing phase and during the stationary phase. Promoters that were utilized in Micromonospora only during the stationary phase were utilized in vitro only when RNA polymerase was purified from a stationary-phase culture, and not when RNA polymerase was purified from growing cells.

Introduction

Micromonospora echinospora (NRRL 15839) is an actinomycete which grows as multicellular mycelia and is capable of forming spores after the growing phase (Maiese et al., 1989). This micro-organism has generated a great deal of interest, due to its production of the calicheamincs (Lee et al., 1989), a novel family of antitumour antibiotics that cause site-specific double-stranded cleavage of DNA (Zein et al., 1988). Because calicheamicin production is temporally regulated, not being made until stationary phase (Baum et al., 1988), we have been particularly interested in promoters of this species that are turned on at this time of the life cycle.

Multiple tandem promoters within a 0.4 kb DNA fragment from Micromonospora echinospora have previously been defined. An investigation in which RNA was isolated at different times of the life cycle revealed that three tandem promoters, called Pla, Plb and Plc, were utilized only during stationary phase, while another tandem promoter located downstream, called P2, was utilized during both the growing and stationary phases (Baum et al., 1988). A transformation system has been described for Micromonospora echinospora, but problems with plasmid maintenance and/or replication have subsequently proved difficult obstacles to conducting genetic studies in that organism (Love & Rothstein, 1992). Subsequent experiments have relied on the well-developed tools of S. lividans for genetic and biochemical studies, hoping that this related actinomycete would recognize the promoters from Micromonospora. In fact, all of the Micromonospora promoters on the 0.4 kb fragment (Pla, Plb, Plc, and P2) were utilized in vivo by Streptomyces lividans transformants carrying the 0.4 kb fragment on a plasmid. One additional promoter, Ptk, was utilized by S. lividans transformants but not by the native host (Baum et al., 1988, 1989).

There was a close correspondence between the in vivo results, and in vitro experiments with RNA polymerase isolated from S. lividans or S. coelicolor, in which runoff transcripts were primed with dinucleotides in order to precisely determine the in vitro start sites (Baum et al., 1989). Both the in vivo and in vitro experiments indicated that the three P1 promoters have unusual structural features. They are very closely spaced, in that Pla, Plb and Plc are each separated by 15 bp, and therefore their recognition sequences probably overlap. A very unusual aspect is the apparent lack of upstream sequence requirements for the Pla and Plb promoters; substituting DNA just 5 bp upstream of Pla and 20 bp upstream of Plb did not drastically alter the utilization of these promoters in S. lividans transformants, whereas the same substitutions had a more marked effect on promoter Plc, whose start site is 35 bp from the substitution (Baum et al., 1989).

The one disappointment in the Streptomyces experiments was the inability to study the turn-on of expression of the P1 promoters during stationary phase. Unlike Micromonospora, S. lividans did not exhibit strong temporal regulation of the P1 promoters, even when the
Pl promoters were carried on a low copy plasmid (Baum et al., 1988). It was therefore necessary to conduct experiments using the endogenous host to elucidate the mechanism of the temporal regulation of these promoters. In the current study the purification of RNA polymerase from growing and stationary Micromonospora cultures is described, and the in vitro RNA polymerase activity as a function of growth phase is examined.

Methods

Strains and plasmids. Micromonospora echinospora strain DR46, blocked in the production of calicheamicin (Rothstein & Love, 1991), and Streptomyces lividans strain TK54 (Hopwood et al., 1985) were used. Plasmid pEC14 (Baum et al., 1988), containing the 0.4 kb fragment from Micromonospora within a Streptomyces-<i>Escherichia coli</i> shuttle vector, was the source of templates for the in vitro runoff transcription assays.

Purification of RNA polymerase from Micromonospora and Streptomyces. Cells were diluted 1/100 into YEME broth (Hopwood et al., 1985) for Streptomyces and GER broth (Baum et al., 1988) for Micromonospora, and growth at 30 °C was monitored by measuring packed cell volume. Cells were harvested during the growing phase (approximately 20 h incubation) and during stationary phase (45–48 h incubation). RNA polymerase was isolated by Polymin P precipitation, ammonium sulphate precipitation, Sepharose 4B column chromatography, and DNA cellulose chromatography as described by Buttner & Brown (1985), with the following modifications. Streptomyces cells were disrupted by treating with lysozyme and sonication (MSE sonicator, 18 micron, 80 pulses of 12 s each on ice) as described by Buttner & Brown (1985). For Micromonospora cells, lysozyme treatment was not necessary, and cells were disrupted by sonication. Before DNA cellulose chromatography and after the Sepharose 4B column, RNA polymerase fractions were desalted using Amicon Centriprep 30 units (3 spins at 15000 g for 30 min at 4 °C). This method is easier and considerably faster than dialysis.

Protein gels. SDS-PAGE was conducted by the method of Laemmli (1970).

Transcription studies. In vitro runoff experiments were performed as described by Buttner et al. (1987). Activity was determined using calf thymus DNA (Buttner et al., 1987), and 0-1 units were added to each reaction tube. Each runoff assay was repeated at least three times, and representative experiments are shown in Figs 2 and 3. Templates containing the 0.4 kb region from Micromonospora were obtained by digesting plasmid pEC14 as described in Fig. 2(a).

Results and Discussion

Isolation of Micromonospora and Streptomyces RNA polymerase

To study the temporal regulation of Micromonospora promoters, it was necessary to study Micromonospora echinospora, rather than <i>S. lividans</i> transformants carrying Micromonospora DNA, which do not exhibit strong temporal regulation of expression of the Pl promoters (Baum et al., 1988). We therefore adapted the methods previously used to purify RNA polymerase from Streptomyces to isolate RNA polymerase from Micromonospora. We found in particular that lysing by sonication without lysozyme was a more effective way to solubilize RNA polymerase from Micromonospora mycelia.

Composition of Micromonospora RNA polymerase

The RNA polymerase preparations were subjected to gel electrophoresis (Fig. 1). The β, β', and α subunits of Micromonospora enzyme, whether from stationary cells (lane 3) or growing cells (lane 4), were similar in size to the Streptomyces subunits (lane 2), rather than those of <i>E. coli</i> RNA polymerase (lane 1). This is consistent with the close phylogenetic relationship of <i>Streptomyces</i> and Micromonospora.

Comparison of RNA polymerase activities isolated from Streptomyces and Micromonospora

Previous in vitro runoff experiments with <i>Streptomyces</i> RNA polymerase and Templates A and B, containing
Fig. 2. \textit{In vitro} runoff transcription of \textit{Streptomyces} and \textit{Micromonospora} RNA polymerases, using \textit{Micromonospora} DNA as template. (a) Templates for \textit{in vitro} transcription experiments were derived by digesting plasmid pEC14 with \textit{HindIII} and \textit{BamHI} restriction enzymes (Template A) or by digesting plasmid pEC14 with \textit{HindIII} and \textit{AvaI} enzymes (Template B). The thick lines indicate \textit{Micromonospora} DNA from the 0.4 kb fragment containing the promoters Pla, Plb, Plc, Ptk and P2. The transcription products initiating from these promoters are indicated by arrows. The number next to each arrow is the size of the transcript in nucleotides, determined previously (Baum et al., 1989). The size of each template is listed next to the thick line. Restriction sites are AvaI (A), BamHI (B), HindIII (H), HincII (Hc), and Sau3A I (S). (b) \textit{In vitro} runoff transcription products. DNA templates derived from the 0.4 kb fragment of \textit{Micromonospora} were incubated with the RNA polymerases isolated from \textit{Streptomyces} or \textit{Micromonospora} cells in stationary phase, and prepared as described. To each transcription was added 0.1 units of activity, determined by assaying with calf thymus DNA. Lanes: 1, Template A + \textit{Streptomyces} enzyme; 2, Template A + \textit{Micromonospora} enzyme; M, molecular mass markers (32P end-labelled \textit{HpaI}II fragments of pBR322 plasmid) with sizes in bp listed; 3, Template B + \textit{Streptomyces} enzyme; 4, Template B + \textit{Micromonospora} enzyme. End-to-end transcripts (e) and artificial transcripts (u; see Baum et al., 1989) are indicated.

the 0.4 kb fragment from \textit{Micromonospora}, established the sizes of transcripts initiating from this region. Furthermore, dinucleotide priming experiments (Fig. 2a) with \textit{Streptomyces} RNA polymerase and Template B indicated precise start sites for promoters Pla, Plb, Plc, Ptk and P2 (Baum et al., 1989). To compare the transcripts directed by the RNA polymerase preparations from \textit{Streptomyces} and \textit{Micromonospora}, the same templates were employed. \textit{Streptomyces} RNA polymerase isolated from stationary cells synthesized \textit{in vitro} runoff products, utilizing Template A (Fig. 2b, lane 1), that correspond to the products from the P1 region, from P2, and from Ptk observed previously for this enzyme. The same pattern was observed when \textit{Micromonospora} RNA polymerase isolated from stationary cells transcribed Template A, except that the Ptk transcript was missing (lane 2). Thus in this respect, the \textit{in vitro} experiments mirrored transcription \textit{in vivo}, in that
Streptomyces transformants recognized all of the *Micromonospora* promoters, and the additional promoter, Ptk. When the shorter Template B was used, the *Streptomyces* RNA polymerase transcribed from the P1 promoters and from P2 and Ptk (lane 3), whereas the *Micromonospora* enzyme again transcribed from all the promoters except for Ptk (lane 4). Thus the *in vitro* transcription of these *Micromonospora* templates agreed with the transcription observed *in vivo*, in terms of start sites and species-specific differences in transcription.

Activity of *Micromonospora* RNA polymerase isolated from vegetative and stationary phase cells

The P1 promoters are turned on *in vivo* in *Micromonospora* during the stationary phase (Baum et al., 1988). To determine whether a change in RNA polymerase activity might account for this difference in expression, *Micromonospora* RNA polymerase was prepared from growing cells (vegetative enzyme) and from stationary cells (stationary enzyme), and tested for activity using Templates A and B, shown in Fig. 2(a). The same amount of activity of vegetative or stationary enzymes was added to each reaction, using calf thymus DNA as the standard template.

Fig. 3 shows a comparison of transcription by the vegetative and stationary enzymes. The vegetative enzyme synthesized the P2 transcripts of Template A, but very little of the P1 transcripts (lane 1), whereas the stationary enzyme synthesized less of the P2 transcripts, but considerably more of the P1 transcripts (lane 2). Similarly, when Template B was used, the vegetative enzyme synthesized the P2 transcripts but almost no P1 transcripts (lane 3), whereas the stationary enzyme synthesized less of the P2 transcripts and more of the P1 transcripts (lane 4). The change in the transcription pattern was unambiguous; only the stationary enzyme had the capacity to transcribe the P1 promoters.

Concluding remarks and future directions

The *in vitro* experiments showed that the temporal regulation exhibited in *Micromonospora in vivo* (Baum et al., 1988), was reflected as changed *in vitro* transcriptional activity during stationary phase. Our favoured hypothesis is that the shift in promoter utilization is due to a new sigma factor(s) present in the stationary RNA polymerase preparation. This possibility is consistent with the presence of alternative sigma factors in species of the actinomycete *Streptomyces* (Buttner, 1989; Buttner et al., 1988, 1990; Chater et al., 1989; Westpheling & Browner, 1989; Westpheling et al., 1985), in *B. subtilis* during sporulation (Losick & Pero, 1981), and in *E. coli*

![Fig. 3. Temporal changes in RNA polymerase activity isolated from *Micromonospora*. RNA polymerase was isolated from *Micromonospora* cells harvested during the growing phase (vegetative enzyme), or from stationary-phase cells (stationary enzyme) as described. These preparations were assayed for runoff transcripts, utilizing Template A and Template B (Fig. 2a). Each reaction contained 0·1 units RNA polymerase, determined by assaying with calf thymus DNA as template. Lanes: 1, Template A + vegetative enzyme; 2, Template A + stationary enzyme; M, molecular mass markers (32P end-labelled HpaII fragments of pBR322 plasmid) with sizes in bp listed; 3, Template B + vegetative enzyme; 4, Template B + stationary enzyme. End-to-end transcripts (e) and artificial transcripts (u; see Baum et al., 1989) are indicated.](image)
(Gralla, 1991; Grossman et al., 1984). Conclusive evidence awaits a thorough study of the appearance and effect of subunit proteins on promoter specificity of RNA polymerase, as a function of growth stage in Micromonospora.

To our knowledge, this study is the first biochemical evidence to suggest a change in RNA polymerase promoter selection as a function of growth phase in actinomycetes. It is possible that Micromonospora echinospora confers advantages for studies concerning the temporal regulation of gene expression compared to S. lividans. Consider the case of differentiation. In most Streptomyces species, the development of aerial and substrate mycelia is distinct, suggesting a complex process and a mixed population of cells. Spores, for example, develop only from aerial mycelia which are distinct from substrate mycelia. Sub-populations of cells undergoing distinct developmental paths may well contain different RNA polymerase forms. If a subpopulation regulated the P1 promoters, so that P1 transcripts were only produced after the growing phase, it might not be detected if the culture also contained another sub-population(s) that expressed the P1 promoters constitutively. In Micromonospora, differentiation may be a simpler and more uniform process. In contrast to S. lividans, spores can form in liquid media. In Micromonospora, including GER broth, within approximately seven days of incubation (D. M. Rothstein, unpublished results). The ability of Micromonospora to sporulate in liquid culture suggests that the population of cells is differentiating more uniformly. This may account for our observations that a clear change in expression of the P1 promoters occurred during stationary phase in Micromonospora, but not in Streptomyces.

We thank Bill Maiuse for his continued support of the Micromonospora project, and Marcia Osborne for critical reading of the manuscript.

References

