Effects of growth temperature on alginate synthesis and enzymes in *Pseudomonas aeruginosa* variants

JORGE H. LEITÃO, ARSÉNIO M. FIALHO and ISABEL SÁ-CORREIA*

Laboratório de Engenharia Bioquímica, Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal

(Received 21 October 1991; revised 22 November 1991; accepted 5 December 1991)

Spontaneous variation of the level of alginate synthesis in *Pseudomonas aeruginosa* was associated with changes in the activity of all four enzymes leading to synthesis of GDP-mannuronic acid, the activated precursor for polymerization. For the high-alginate-producing variant 8821M, alginate yield and properties, as well as the levels of alginate enzymes, were dependent on growth temperature. In contrast, levels of alginate and enzymes in the mucoid parent strain 8821 were very low and near temperature-independent. The difference in the specific activity of GDP-mannose dehydrogenase (GMD), encoded by the *algD* gene, between the two strains was associated with the alginate biosynthetic ability and with the degree of activation of the *algD* promoter, measured using the *algD*-xylE transcription fusion on plasmid pVD2X. Maximal activity of the four enzymes was observed in strain 8821M grown at 30 °C, a temperature below the optimum for growth (35 °C). The effect of temperature on GMD activity could not be explained by the regulation of the *algD* promoter by temperature, since expression of pVD2X appeared to be more active at 35 °C, when the decrease of pVD2X copy number with increasing temperature was taken into account. The involvement of enzymes that catalyse steps downstream from the formation of the activated precursor should also be considered, as suggested by differences in the molecular mass of alginates synthesized by the two strains at various temperatures. Acetyl content of alginates increased as temperature decreased and strain 8821M produced the highest levels of acetylated polymers. The degree of acetylation appeared to be related to growth rate and could reflect acetyl-CoA availability.

Introduction

During synthesis of exopolysaccharides at the cell membrane, there is a requirement for activated precursors formed in the cytoplasm (Sutherland, 1990). For alginate synthesis in *Pseudomonas aeruginosa*, GDP-mannuronic acid is thought to be the precursor (DeVault et al., 1989). Transcriptional activation of the *algD* gene, encoding GDP-mannose dehydrogenase (GMD) which catalyses the irreversible oxidation of GDP-mannose to GDP-mannuronic acid, has been shown to be involved in the expression of the mucoid phenotype in *P. aeruginosa* (Deretic et al., 1991; DeVault et al., 1989). The very low activities of the enzymes leading to GDP-mannuronic acid in *P. aeruginosa* are difficult to assay (Sá-Correia et al., 1987). Nevertheless, comparison of the specific activity of GMD in the mucoid cystic fibrosis isolate *P. aeruginosa* 8821 with the activities in non-mucoid (8821N or 8822) and highly mucoid (8821M) spontaneous variants (Sá-Correia et al., 1987; Martins et al., 1990, Alves et al., 1991) supports the role of *algD* in regulation of alginate production. The involvement of the other GDP-mannuronic acid biosynthetic enzymes in the expression of the mucoid phenotype has not been fully proved. These enzymes catalyse the conversion of fructose 6-phosphate to mannose 6-phosphate (phosphomannose isomerase, PMI), mannose 6-phosphate to mannose 1-phosphate (phosphomannomutase, PMM) and mannose 1-phosphate to GDP-mannose (GDP-mannose pyrophosphorylase, GMP). They were almost undetectable in mucoid (8821) and non-mucoid (8822) strains (Sá-Correia et al., 1987).

Recently we found that mucoid strain 8821 spontaneously produced not only the non-mucoid variants already reported (DeVault et al., 1989; Deretic et al., 1991), but also variants producing exceptionally large amounts of alginate (Alves et al., 1991). Among them, strain 8821M exhibited the highest GMD specific
activity while the lowest activity was detected in the non-mucoid variant 8821N (Alves et al., 1991). Temperature strongly influenced alginate production in these strains (Alves et al., 1991). In the present work, the specific activities of the four enzymes involved in GDP-mannuronic acid synthesis were compared in the two mucoid strains, 8821 and 8821M, grown at different temperatures. Differences in the activation of the algD promoter at the various temperatures were studied by using the algD-xylE transcription fusion (Deretic et al., 1987). The yield and characteristics of the alginites produced by both strains at the different temperatures were compared.

Methods

Bacterial strains, plasmids, media and inocula. The alginate-producing P. aeruginosa strains 8821 and 8821M, and their recombinants harbouring plasmid pVD2X (with the algD-xylE transcription fusion) were used. Mobilization of pVD2X from E. coli into P. aeruginosa was performed by triparental filter matings (Martins et al., 1990) using E. coli HB101( pRK2013) as the helper strain (Figszurski & Helinski, 1979). Transconjugants were selected on PIA (Pseudomonas Isolation Agar, Difco) plates with tetracycline (300 mg l\(^{-1}\), Sigma). Phenotypically well-defined colonies grown on PIA plates (supplemented with tetracycline in the case of recombinant cells) were used to inoculate LB (Gibco) medium (supplemented with 50 mg tetracycline l\(^{-1}\) for recombinant cells) and the cultures were grown overnight with agitation. Bacteria were recovered by centrifugation and were resuspended in 100 ml growth medium, in a 250 ml Erlenmeyer flask to an initial OD\(_{640}\) of 0-30 \pm 0-02. Growth medium consisted of LB with an initial OD\(_{640}\) of 0-30 \pm 0-02. Growth medium consisted of LB with the addition of 1% (w/v) glucose, MgCl\(_2\) and MnCl\(_2\) (0.5 mM each) (Martins et al., 1990).

Growth and alginate production. Growth was monitored by measuring the OD\(_{640}\) of the culture. Specific growth rates were calculated by least-square fitting to the linear part of semi-log growth plots. Alginate was measured in stationary-phase cultures after ethanol precipitation from cell-free supernatants, by the modified carbazole method (Knutson & Jeanes, 1968) using sodium alginate from Laminaria hyperborea (BDH-Merck) as standard. Results are means of three independent analyses.

Characterization of alginites. The viscosity of aqueous solutions (3 g l\(^{-1}\)) of alginate, isolated from cultures in which alginate production had just reached the maximal value, was measured at 30 °C using a cone and plate Brookfield Viscometer, model LVTII, at a shear rate of 24 s\(^{-1}\). Results are median values of determinations using two or three independently prepared alginate solutions. The acetyl content of the various alginites, expressed as acetic acid content, was determined by McComb & McCready (1957) using beta-glucose penta-acetate (Sigma) as standard. Results are median values of at least two independent determinations.

Enzyme assays. Alginate enzymes. PMI, PMM, GMP and GMD were assayed in crude cell extracts by the methods of Sá-Correia et al. (1987) as modified by Martins et al. (1990). Crude extracts were prepared from bacteria grown for alginate production and harvested at an OD\(_{640}\) of 1.55 \pm 0.05 (late exponential phase), by the method of Sá-Correia et al. (1987) as modified by Martins et al. (1990). One unit of activity was defined as the amount of enzyme that converted 1 \(\mu\)mol catechol into 2-hydroxyxymuconic semialdehyde per min.

Catechol 2,3-dioxygenase (CDO). CDO was assayed as described by Nozaki (1970) at 24 °C in extracts prepared from cells of strains 8821 and 8821M harbouring pVD2X grown in the presence of tetracycline and harvested at an OD\(_{440}\) of 1.55 \pm 0.05. One unit of activity was defined as the amount of enzyme that converted 1 \(\mu\)mol catechol into 2-hydroxyxymuconic semialdehyde per min.

Quoted specific activities are median values of at least three enzyme assays and three protein determinations. Protein concentration in crude cell extracts was estimated by the method of Bradford (1976) with BSA Fraction V (Merck) as standard.

pVD2X copy number. The copy number of pVD2X in cells of strain 8821M grown at different temperatures was determined by a modification of the method of Koizumi et al. (1985). Whole-cell lysates were subjected to agarose gel electrophoresis and ethidium-bromide-stained gels were analysed by fluorescence densitometry. The plasmid copy number \((N_p)\) per chromosome equivalent was calculated from the equation \(N_p = M_c/M_p\), where \(K_p\) and \(K_c\) are the proportionality constants for the linear relationship between peak area and dilution of the whole-cell lysates for the plasmid and the chromosome, respectively. \(M_c\) is the molecular mass of the chromosome [taken as 3624 kb (Pemberton, 1974)] and \(M_p\) is the molecular mass of the plasmid [32-2 kb (Deretic et al., 1987)].

Whole-cell lysates for electrophoretic analysis were prepared by a modification of the method of Goldberg & Ohman (1984). Bacteria from 20 ml of culture were harvested at an OD\(_{440}\) of 1.55 \pm 0.05. The DNA concentration of lysates averaged 400 \pm 50 pg ml\(^{-1}\), as determined by \(A_\text{sca}^0\). Dilutions of these lysates were carried out in order to obtain between 0-3 and 1-25 \(\mu\)g or between 1 and 25 \(\mu\)g DNA in 50 \(\mu\)l in order to calculate \(K_p\) and \(K_c\) respectively. Electrophoresis in agarose gels (0-4% w/v) was carried out at room temperature for 14-16 h at 25 mA in TAE buffer (Sambrook et al., 1989). Gels were stained with ethidium bromide (1 \(\mu\)g ml\(^{-1}\) in TAE) for 30 min and destained in TAE buffer for an additional 30 min. The fluorescent bands were photographed using Polaroid type 665 film. The negatives were scanned along the lane axis for plasmid and chromosome bands using a densitometer (Hoeffer Scientific Instruments, GS300) and peak areas were integrated using an integrator (Hewlett Packard HP3944A) connected to the densitometer.

Results

Effects of temperature on the yield and characteristics of the alginites synthesized by P. aeruginosa

The temperature dependence of growth and alginate production by the mucoid P. aeruginosa 8821 and its spontaneous highly mucoid variant 8821M (Fig. 1) was similar to that reported by Alves et al. (1991) who had used a production medium lacking the Mg\(^{2+}\) and Mn\(^{2+}\) supplementation necessary for higher levels of production (Martins et al., 1990). At all temperatures studied, the specific growth rate of strain 8821M was lower than that of 8821, suggesting competition for precursors and energy between alginate synthesis and growth. As reported by Alves et al. (1991), the optimal temperature for alginate production (20–25 °C) was lower than the optimal temperature for growth (35 °C) in the case of strain 8821M, but not for 8821 (Fig. 1). Cultures of strain 8821M grown at 30 °C produced alginate with the
Effects of temperature on alginate enzymes

Fig. 1. Temperature profiles of (a) specific growth rates ($\mu$) (●, ○) and alginate production (●, □) of strains 8821 (●) and 8821M (○, ■), (b) viscosity (centipoise, cP) of solutions of alginates (3 g l$^{-1}$) synthesized by strains 8821 (●) and 8821M (○), and (c) acetyl content of strains 8821 (●) and 8821M (○).

Fig. 2. Acetyl content of the alginates synthesized by $P._{aeruginosa}$ 8821 (●) and 8821M (○) as a function of their specific growth rates (μ) calculated at different growth temperatures.

Highest viscosity in aqueous solution (3 g l$^{-1}$). Strain 8821 produced, over the range of temperatures, lower concentrations of alginate, and the polymer synthesized had a lower viscosity, than strain 8821M (Fig. 1). For this low-alginate producer, the optimal temperatures for production, growth and high viscosity (displayed by solutions of isolated alginate) were coincident (35°C).

The acetyl content of the alginates increased as growth temperature decreased and alginate from strain 8821M had the higher acetyl content (Fig. 1). The acetyl content showed an inverse linear relationship with the specific growth rate over the range 20–35°C (Fig. 2). The only exception was observed at 40°C, above the optimal temperature (Alves $et al.$, 1991). The relationship between acetylation and growth rate was similar for the two mucoid strains, but the acetyl content exhibited for identical growth rates was lower in alginate synthesized by the low-alginate-producing strain, 8821 (Figs 1 and 2). Although other explanations cannot at present be eliminated, this discrepancy could be based on the methodology used to calculate the specific growth rates. This growth parameter was calculated during the first 3–4 h of batch growth and most of the alginate, produced in large amounts by strain 8821M, was synthesized after this period. It is therefore expected that the specific growth rate of the cells that synthesize most of the alginate during the batch growth was lower than calculated, due to the increase of medium viscosity and consequent decrease of the oxygen transfer rate. No relationship was found between the degree of acetylation of the alginates and the viscosity exhibited by their aqueous solutions (Fig. 1).

Relationship between growth temperature and the activity of alginate enzymes

Enzymes that led to GDP-mannuronic acid synthesis were assayed in crude extracts prepared from cells of strains 8821 and 8821M grown at various temperatures. The specific activities of all the enzymes were higher in the 8821M highly mucoid strain than in 8821 (Fig. 3). In bacteria grown at 37°C (Sá-Correia $et al.$, 1987; Martins $et al.$, 1990) the specific activities are very low, even in cells of the high-alginate-producing strain 8821M (Fig. 3 and Martins $et al.$, 1990). Growth at 30°C significantly increased the levels of the four alginate enzymes in cells of strain 8821M but not in 8821 (Fig. 3), which exhibited very low levels of alginate enzyme activity, almost independent of the growth temperature. In order to correlate the level of alginate enzyme activities with the alginate yield at various temperatures, the specific activities of the alginate enzymes were determined at the same temperatures as those used for growth (Fig. 3). Maximal activity of all four enzymes in strain 8821M
was also observed in cells grown at 30 °C when enzymes were assessed at the standard temperature of 30 °C. The optimal temperature for GMD activity is 50 °C (Roychoudhury et al., 1989), while for PMI and GMP it is in the range 35–40 °C (J. H. Leitão, unpublished). It was also at 30 °C that 8821M synthesized alginate leading to solutions with the highest viscosity, although the maximal alginate yield was observed for lower temperatures (20–25 °C). Both the yield and viscosity of the alginates synthesized by the low-alginate-producing strain, 8821, slightly increased at 35 °C and this was correlated with enzyme activities (Figs 1 and 3).

**Activation of the algD promoter at different growth temperatures**

The level of expression of the algD–xyLE transcription fusion, measured as the activity of CDO, was associated with the ability of strains 8821 and 8821M to produce alginate. A correlation was observed between the transcriptional activation of algD–xyLE in 8821 or 8821M and the specific activity of GDP-mannose dehydrogenase in the two backgrounds (Fig. 4).

However, when the copy number of pVD2X carrying the algD–xyLE gene fusion was taken into account, the results suggested that the effect of growth temperature on the specific activity of GMD in strain 8821M could not be explained by the transcriptional regulation of the algD promoter by temperature. Since copy number is strongly influenced by growth conditions (Zabriskie & Arcuri, 1986), the number of copies of pVD2X per cell of strain 8821M grown at the various temperatures was measured. There were four copies at 25 °C, three at 30 °C and one at 35 °C. The specific activities of CDO at different temperatures were therefore divided by the respective copy number in order to take into consideration the different number of copies of the gene coding for CDO present in cells grown at the various temperatures (Fig. 4). The values calculated suggested that algD transcription was greatest at 35 °C, although the maximal specific activity of GMD was observed in cells grown at 30 °C.

**Discussion**

Variation of the level of alginate synthesis in *P. aeruginosa* was associated with changes in the activity of all four enzymes that led to GDP-mannuronic acid formation and not only of GMD (DeVault et al., 1989; Deretic et al., 1991). The model of transcriptional activation of algD in the mucoid versus the non-mucoid variants (Deretic et al., 1987) was here extended to mucoid variants capable of producing different yields of alginate.

Although critical for alginate synthesis, the formation of GDP-mannuronic acid cannot be considered the only rate-limiting step since the levels of the enzymes assayed only partially explained differences observed in alginate synthesis by both variants at the various temperatures. The highest viscosities were observed with the alginates produced by strain 8821M, particularly at 30 °C. This combination of strain and temperature led to the highest levels of the enzymes involved in GDP-mannuronic acid synthesis, suggesting that polymerization activity might possibly be under a similar control and/or dependent on the GDP-mannuronic acid pool. Although no information is available about the molecular mass of the alginates produced, the biopolymers that led to higher viscosity solutions probably had the higher degree of polymerization (Sutherland, 1990). Viscosity was not proved to be dependent on the acetyl content of the polymer and it is likely that the mannuronic acid content of all the alginates was close to 100% (Sutherland, 1990).

The optimal temperatures for alginate production, high levels of enzyme activity and high viscosity were coincident for the low-alginate-producing strain 8821. Strain 8821M, however, produced higher alginate yields within the range 20–25 °C, below the optimal temperature for growth (35 °C), while the alginates that led to the highest viscosity were synthesized at 30 °C. The temperature for maximal activity of GDP-mannuronic acid biosynthetic enzymes was also 30 °C. Competition between growth and alginate synthesis could possibly explain these results, since alginate production was growth-associated. Therefore, the yield of biopolymer might be higher at temperatures suboptimal for cell growth, although exhibiting lower molecular mass.

The acetyl content of the alginates appeared to be related to the maximal specific growth rate. Since the slower growing cells exhibited the higher acetyl content,
and considering the activated precursor acetyl-CoA as the probable source of acetyl in the final polymer (Sutherland, 1990), the degree of acetylation might reflect acetyl-CoA availability.

The synthesis of alginate enzymes was nearly independent of temperature in strain 8821, in which algD transcription was repressed. In contrast, temperature significantly affected the synthesis of all four enzymes in strain 8821M, which were stimulated at temperatures below the optimum for growth. A similar pattern of temperature regulation for extracellular proteases and periplasmic phosphatases was recently observed in the psychrotrophic Pseudomonas fluorescens, where growth temperature rather than growth rate regulated synthesis (Gugi et al., 1991). The control exerted by growth temperature on GMD synthesis could not be explained by regulation of the algD promoter. In fact, considering the decrease of recombinant plasmid pVD2X copy number with increasing temperature, the transcription of algD appeared to be more active at higher temperatures (35°C). The activation at high temperatures of the transcription of the glutamine transport system (glnQH) operon of Bacillus stearothermophilus was also recently reported (Wu & Welker, 1991). The dependence of alginate enzyme synthesis on growth temperature should be considered as the result of temperature effects on the transcription rate of the alginate genes on the chromosome (Deretic et al., 1991).

Although the number of plasmids per chromosome is primarily a function of the plasmid genetic make up, it can be strongly influenced by host strain physiology and growth conditions (Zabriskie & Arcuri, 1986). Several authors have reported that the plasmid copy number decreased with increasing growth rate (Zabriskie & Arcuri, 1986). The number of recombinant plasmids derived from pMMB24 was also found to increase in P. aeruginosa when growth temperature decreased (J. H. Leitão, A. M. Fialho and I. Sá-Correia, unpublished results), consistent with the pattern of dependence reported here for pVD2X copy number. Temperature effects on plasmid copy number are possibly related to growth kinetics; decreasing copy number accompanying growth rate increases with increasing temperature. These results show that caution should be taken in the interpretation of results obtained under different environmental conditions when using transcription fusions in plasmids.

This work was supported by Grant BIO/913/90 from Junta Nacional de Investigação Científica e Tecnológica (JNICT) and by Instituto Nacional de Investigação Científica (INIC). J. H. L. acknowledges a BM grant from JNICT. We thank Dr A. M. Chakrabarty for the gift of recombinant plasmids pAD4038, pVD211 and pVD2X.

References


