Isolation and characterization of temperature-sensitive mutants of Streptomyces coelicolor A3(2) blocked in macromolecular synthesis

Fiona Flett,* Jacqueline Platt and Stephen G. Oliver

Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK

(Received 30 September 1991; revised 12 November 1991; accepted 22 November 1991)

A collection of temperature-sensitive mutants of Streptomyces coelicolor A3(2) was isolated. The majority of the mutants showed an osmotically remedial phenotype. Mutants defective in macromolecular synthesis were identified and characterized further. Four mutants were found in which DNA replication was defective, but which continued to synthesize RNA and protein at the restrictive temperature (39 °C). The kinetics of cessation of DNA synthesis allowed a tentative identification of slow (initiation) and fast (elongation) stop dna mutants. The inhibition of DNA replication in the four mutants was found to be reversible on returning to the permissive temperature (30 °C), but only after a delay of about 2 h. Three other mutants were identified which showed not only cessation of DNA replication at the restrictive temperature, but also defects in other macromolecular synthesis events.

Introduction

One approach to the study of essential cell functions is to use conditional-lethal mutants. The isolation of mutants which are defective in DNA synthesis in some restrictive environment, usually high temperature, was a prerequisite for the analysis of the complex events of DNA replication and the cell division cycle of E. coli (reviewed by McMacken et al., 1987). More recently, a similar strategy has been applied to investigate the novel problems posed by Caulobacter crescentus, a bacterium which undergoes cell differentiation; temperature-sensitive DNA replication and cell division mutants have been used to investigate the central role of the cell cycle in controlling morphogenesis (Newton & Ohta, 1990).

Our interest lies in the streptomycetes, a group of bacteria which have a complex life cycle exhibiting both morphological and metabolic differentiation. A substrate mycelium of branching hyphae, which results from vegetative growth, gives rise to aerial mycelium which subsequently forms spores. Aerial hypha formation is accompanied by physiological changes, in particular the production of a number of secondary metabolites.

Morphological and physiological differentiation appear to be temporally coordinated, and may be initiated in response to nutrient limitation (Braña & Demain, 1988; de los Reyes-Gavilan et al., 1991). Evidence for such interlinked regulation has come additionally from the study of pleiotropic mutants (bld and afs mutants) which are defective in sporulation and antibiotic production (reviewed by Chater, 1989).

It is an over-simplification to state that there is a clear demarcation between primary growth and the secondary metabolic phase in Streptomyces. However, since one criterion for primary growth of bacteria is an increase in cellular DNA content, it has been proposed that the cessation of DNA replication marks the end of this phase (Martin & Demain, 1980), at least in liquid culture. Defining the mechanisms that control chromosome replication may be important in understanding the onset of morphological and biochemical differentiation in Streptomyces.

Another challenging aspect of studying the control of DNA replication in Streptomyces is related to the mycelial nature of this organism. The branching hyphae are the result of growth without cell separation. Septa are not abundant, and each compartment of the vegetative hyphae contains multiple copies of the chromosome (Prosser et al., 1988); only the spores contain a single copy. This can be compared with events in E. coli, in which the cell cycle involves coordinated DNA replication, cell division and separation (Von Meyenburg & Hansen, 1987).

In the case of Streptomyces, our knowledge of macromolecular synthesis in general, and DNA replication in particular, is limited (Granozzi et al., 1990).
Moreover, the available data are mainly concerned with events occurring during spore germination (Hardisson et al., 1980). Our long term objective is to gain an understanding of the control of DNA replication in Streptomyces coelicolor A3(2), genetically the best characterized streptomycete (Hopwood et al., 1985). In this report we describe the isolation and characterization of a number of temperature-sensitive mutants of S. coelicolor which are defective in macromolecular synthesis.

Methods

Bacterial strains. Streptomyces coelicolor A3(2) strain MT1110 was used for the isolation of the ts mutants. This strain (isolated in this laboratory) is an SCP1+, SCP2− derivative of the wild-type prototrophic strain 1147 (Hopwood, 1959).

Growth media and culture conditions. Mannitol soya agar medium (MS) was used to prepare spore stocks as described by Hobbs et al. (1989). Auxotrophic mutants were detected using minimal medium (Hopwood et al., 1985). Oxoid nutrient agar was used when screening colonies for the ts phenotype. Difco nutrient agar, which contains no added NaCl, was chosen for testing the osmotic remediality of the ts mutants. The measurement of the uptake of radiolabelled compounds was carried out using liquid cultures in YPGS and YPG, which are modified YEME media (Hopwood et al., 1985). YPGS (3 g l−1 Difco yeast extract, 5 g l−1 Difco Bacto-peptone, 10 g l−1 glucose and 25% sucrose, w/v) was used for the non-osmotic remedial mutants and YPG (YPGS lacking sucrose) for the osmotic remedial mutants.

The standard growth temperature was 30°C. A permissive temperature of 30°C and a restrictive temperature of 39°C were used when screening for the ts mutants.

Mutagenesis and isolation of ts and auxotrophic mutants. Spores of strain MT1110 were treated with N-methyl-N′-nitro-N-nitrosoguanidine (NTG) at a concentration of 2 mg ml−1 at pH 8 (Hopwood et al., 1985). Single colonies arising from mutared spores were grown to sporulation at 30°C on MS then 'tooth-picked' onto the appropriate test media. Duplicate Petri dishes were incubated at 30°C and 39°C; colonies which failed to grow at 39°C but grew at 30°C were rechecked. The putative ts mutants were subjected to two further rounds of single colony isolation, sporulation and temperature-sensitivity testing before being designated as ts mutants. Auxotrophic mutants were screened at 30°C.

Measurement of macromolecular synthesis. DNA, RNA and protein syntheses were monitored by measuring, respectively, the incorporation into acid-insoluble material of [methyl-3H]thymidine [specific activity 100 Ci mol−1 (37 TBq mmol−1); 1.0 pCi ml−1], [2-14C]uracil (specific activity 1486 mCi mol−1) and [35S]methionine (specific activity 1000 Ci mol−1 (37 TBq mmol−1); 1.0 μCi ml−1) in the growth medium. Spores were inoculated into 250 ml baffled flasks containing 50 ml liquid medium (YPGS or YPG) supplemented with the required radioactive precursors and incubated at 30°C on an orbital shaker. Growth was monitored as OD600 (Cecil spectrophotometer); the temperature shift was carried out when cultures reached OD600 = 0.02−0.05. At this stage, flasks were transferred to a 39°C water bath for 15 min, with shaking (the culture reached a temperature of 39°C after approximately 5 min), and were then placed in a 39°C orbital shaker.

To measure the radioactive incorporation, four 0.5 ml samples were taken at each time point, the samples being dealt with as two pairs. One pair was added to 0.5 ml aliquots of cold 10% (w/v) trichloroacetic acid (TCA) and cooled on ice for 2 h then washed (see below). The other samples were added to 0.5 ml aliquots of 2 M-NaOH and incubated overnight at 37°C. After incubation, 0.5 ml cooled 50% (w/v) TCA was added, and the samples cooled on ice for 2 h before washing. All the samples were washed with cold 5% (w/v) TCA on glass-fibre filters (Whatman GF/C). After drying the filters, the radioactivity in the acid-insoluble fraction was counted in a RackBeta II liquid scintillation counter (LKB) using Optiphase ‘HiSafe’ 3 scintillation fluid (LKB).

Results and Discussion

Isolation of temperature-sensitive (ts) mutants

All of the mutants described here were obtained by N-methyl-N′-nitro-N-nitrosoguanidine treatment of spores. 50000 spore clones, which grew at the permissive temperature of 30°C, were screened for ts growth at 39°C and/or auxotrophy at 30°C. 102 mutants which were ts on nutrient agar were identified. This frequency (0.2%) was comparable to the observed frequency of non-ts auxotrophs in this experiment (0.3%).

Growth medium suppression of ts phenotype

The temperature-sensitive phenotype of these mutants was tested on several different media. No differences were observed between minimal and complex media; however, on the addition of sucrose (25%, w/v) to the media, only 12 of the 102 ts mutants failed to grow at 39°C. Replacement of the sucrose with iso-osmolar KCl (4·1%, w/v) gave similar results. The ability of sucrose or KCl to suppress the ts phenotype suggests that the majority of the ts mutants are osmotically remedial. Osmotic suppression occurs with ts mutants of many bacteria and fungi (reviewed by Csonka, 1989), including ts dna mutants of E. coli (Chu et al., 1977; Ricard & Hirota, 1969). This remediality probably reflects the fact that the structures of such mutant proteins are unusually sensitive to the solute composition of the cytoplasm, which is in part determined by the external osmolarity.

During the course of the media testing, it was noted that 48 h growth at 30°C in the presence of KCl or sucrose resulted in enhanced production of the red pigment, undecylprodigiosin, when compared with the results obtained on non-supplemented solid media. This phenomenon was apparent with the parent strain as well as the mutants. It is likely that the overproduction of
undecylprodigiosin is due to a 'proline effect'. Measures (1975) found that osmotic stress resulted in large increases in the intracellular levels of proline in a variety of bacteria; more recently, this has been shown with Streptomyces griseus as well (Killham & Firestone, 1984). A study of the synthesis, uptake and breakdown of proline by S. coelicolor has demonstrated that the intracellular concentration of this amino acid can directly influence the level of synthesis of undecylprodigiosin; excess proline can be shunted into the production of this secondary metabolite (D. A. Hodgson, personal communication). Thus a high salt concentration in the growth medium may result in the intracellular accumulation of proline and enhanced production of undecylprodigiosin.

Identification of macromolecular synthesis mutants

In order to identify any mutants defective in macromolecular synthesis, liquid culture experiments were carried out at the permissive and restrictive temperatures to follow the incorporation of $[^3H]$thymidine, $[^{14}C]$uracil and $[^{35}S]$methionine into DNA, RNA and protein, respectively.

DNA synthesis mutants

Four mutants were found in which DNA replication is defective, but which continue to synthesize RNA and protein at 39 °C. None showed a cold-sensitive growth phenotype at 20 °C. In ts-38, a non-osmotically remedial ts mutant, the incorporation of $[^3H]$thymidine into DNA continued for 2 h after the shift from 30 °C to 39 °C but then ceased, whereas the incorporation of $[^{14}C]$uracil and $[^{35}S]$methionine proceeded for at least 5 h after switching to the restrictive temperature (Fig. 1a). Cessation of DNA synthesis was not observed in cultures maintained at 30 °C (data not shown). The effect of the culture temperature on DNA synthesis of the wild-type strain in YPGS medium is shown in Fig. 1(b). The doubling time of the wild-type strain in this medium at 39 °C is about 90 min. The growth kinetics of ts-38 in YPGS medium were also monitored by optical density readings; the OD$_{600}$ continued to increase for a minimum of 5 h after transfer to the restrictive temperature. This pattern of cessation of DNA replication has been described as 'slow stop' for ts mutants of other bacterial species (Hirota et al., 1970; Wechsler & Gross, 1971) and implies that ts-38 may be defective in the initiation of DNA replication. Samples of YPGS cultures of the wild-type parent and ts-38 were examined by phase contrast microscopy. Two hours after the switch to 39 °C, the mycelium of both strains exhibited an increased frequency of branching as compared to that seen in 30 °C cultures.

The three other ts DNA replication mutants isolated in this study (ts-66, ts-102 and ts-114) all showed an osmotic remedial ts phenotype, necessitating the use of media without sucrose (YPG) for the labelling studies. Initial experiments determined whether the temperature shift to 39 °C had any observable effect on DNA replication of the wild-type strain in YPG medium. After the switch to 39 °C, DNA synthesis was found to be impaired for up to 3 h, then the incorporation of $[^3H]$thymidine started to increase again as in the 30 °C control culture (Fig. 2). Similar results were obtained in experiments monitoring protein synthesis. This behaviour may reflect a heat shock response by the organism. In a recent study, E. Barratt (personal communication) has demonstrated that a high sucrose concentration in the medium protects S. lividans against the effects of thermal shock. It seems possible that this effect, like the suppression of the ts mutations, is due to a decreased level of protein denaturation at high osmotic pressures.

![Graph](image-url)
the incorporation of \([^{14}\text{C}]\text{uracil}\) and \([^{35}\text{S}]\text{methionine}\) levelled off. \([^{3}\text{H}]\text{thymidine}\) incorporation continued for about 30 min after switching ts-114 to 39 °C. Protein and RNA were synthesized for a few hours, but at a reduced linear rate.

The kinetics of cessation of DNA synthesis observed for ts-66 and ts-114 contrasts with those for ts-38 and we propose, by analogy with other systems (Wechsler & Gross, 1971), that the former two mutants are defective in the elongation step of DNA replication. The pattern of macromolecular synthesis shown by these mutants is markedly different from that of the ts mutant of *Streptomyces hygroscopicus* described by Süss et al. (1988), which showed an immediate cessation of both DNA and RNA synthesis on transfer to the restrictive temperature.

In the fourth mutant, ts-102, DNA synthesis continued for about an hour after transfer to the restrictive temperature, then stopped. The incorporation of \([^{35}\text{S}]\text{methionine}\) was maintained for 2.5 h, and that of \([^{14}\text{C}]\text{uracil}\) for about 3.5 h before reaching a plateau (Fig. 3b). This mutant exhibits a phenotype which is intermediate between those of ts-38 and ts-66, and the nature of the lesion in DNA replication is unclear. *E. coli* ts mutants collected by Kohiyama et al. (1966) also contained examples with such behaviour. The mutation in ts-102 appears to have an effect independent of temperature, since the doubling time of this strain in YPG at 30 °C was about 100 min, whereas under the same growth conditions the wild-type, ts-66 and ts-114 had doubling times of about 80 min.

The absence of sucrose, which is used to produce more dispersed growth, from the liquid medium YPG made detailed microscopic examination of the cultures problematic. Moreover, after transfer to the restrictive temperature, the mycelium of these three ts mutants formed dense clumps, whereas in the 30 °C control cultures, the mycelium formed loose clumps with numerous freely extending hyphae. The wild-type strain underwent a similar but transient morphological response to the increased temperature, which corresponded to the period of impaired macromolecular synthesis described above. After about 3 h at 39 °C, the appearance of the mycelium 'reverted' to that of the 30 °C culture.

In *Streptomyces*, hyphal extension occurs by tip growth (Prosser et al., 1988), whereas DNA synthesis appears to take place throughout the vegetative mycelium (Kummer & Kretschmer, 1986; Prosser et al., 1988). Aggregations of nucleoids increase in frequency and size with increasing distance from the hyphal tip and they occur close to branching points, supplying lateral branches with nucleoids (Kretschmer, 1987; Prosser et al., 1988). Correct segregation of nucleoids into branches would appear to be essential if exponential growth of the organism is to be maintained. Understanding mycelial growth and the development of a regulated branching mycelium requires knowledge of the mechanisms controlling cell wall synthesis, septation, branching and normal DNA replication in *Streptomyces*; the ts DNA synthesis mutants described here may be useful in this context.
Double temperature shift experiments

Double temperature shift experiments were undertaken to determine whether or not the block in DNA synthesis observed in the four ts mutants was reversible. Cultures were incubated at 30 °C for 18 h, transferred to 39 °C for 3 h and then returned to 30 °C. The inhibition of DNA replication in all four mutants was found to be reversible on returning to the permissive temperature, but only after a delay of about 2 h. Fig. 4 shows the effect for mutant ts-66. The majority of DNA initiation mutants of *E. coli* show a delayed resumption of DNA synthesis in the same type of experiments (Hanna & Carl, 1975); the results with ts-38 are thus comparable. However, ts-66 and ts-114 did not show the rapid reinitiation of DNA synthesis which is typical of *E. coli* DNA elongation mutants (Chu *et al.*, 1977); instead DNA replication recommenced about 2 h after the return to the permissive temperature.

Data from double temperature shift regimes are potentially important when considering reciprocal shift experiments which can provide insight into the timing and hierarchy of successive cell cycle events. This concept was developed by Hereford & Hartwell (1974) in their analysis of the yeast cell cycle, and has been applied subsequently to *Caulobacter crescentus*. Osley & Newton (1980) examined how the steps required for DNA replication and cell division, which appear to regulate differentiation in *Caulobacter*, are temporally controlled and organized. In the case of *S. coelicolor*, our aim would be to use reciprocal shift experiments to probe the possible inter-relationships between the control of DNA replication, the cell cycle and secondary metabolite formation.

Macromolecular synthesis mutants with more complex phenotypes

Three other mutants were identified which showed not only cessation of DNA replication at the restrictive temperature, but also defects in other macromolecular synthesis events.

In the case of ts-98, incorporation of [3H]thymidine and [14C]uracil stopped after 30 min at 39 °C, whereas [35S]methionine incorporation continued for 3 h, although at a reduced rate (Fig. 5a). One possible interpretation is that ts-98 is the equivalent of a dnaK mutant since these labelling kinetics are similar to those observed with a ts dnaK mutant of *E. coli* (Itikawa & Ryu, 1979).

Ts-60 showed rapid cessation of protein and RNA synthesis (within 15 min of transfer to 39 °C), DNA synthesis continued for about 1 h (data not shown). The most likely classification of ts-60 is as an RNA synthesis mutant, perhaps with the mutation affecting RNA polymerase (Ishihama *et al.*, 1980). However when ts-60 was tested in a double temperature shift experiment, no reversibility of the inhibition of macromolecular synthesis was observed, even 6 h after a return to 30 °C. This pattern does not correspond to that obtained with *E. coli* RNA polymerase mutants, which show a rapid recovery.
We believe this to be the first report of the isolation and preliminary characterization of a set of ts macromolecular synthesis mutants of *S. coelicolor*. The properties of these mutants are summarized in Table 1. Hopwood (1966) reported the isolation of ts mutants of *S. coelicolor* for gene mapping purposes; auxotrophic and 'indispensable' ts mutants were identified but the latter were not characterized further. More recently, a single ts *dna* mutant of *S. hygroscopicus* has been described (Süss et al., 1988), but the rapid cessation of both DNA and RNA synthesis at the restrictive temperature is evidently different from the patterns observed with the four mutants which we have classified as *dna* mutants. These *S. coelicolor* ts mutants have considerable potential as tools for the study of many areas of streptomycete molecular biology. By analogy with other micro-organisms (McMacken et al., 1987; Newton & Ohta, 1990), they should prove useful in elucidating the regulation of macromolecular synthesis. DNA replication and its possible involvement in the control of secondary metabolite production are primary targets for such studies. The tentative identification of both slow (initiation) and fast (elongation) stop mutants should facilitate the cloning of some of the essential genes required for DNA replication in *S. coelicolor*. Future work will also include an investigation of plasmid replication in the *dna* mutants, and probing of possible integrative suppression events arising from interactions between the *Streptomyces* chromosome and the large linear plasmid SCP1.

This research was supported by the 'Antibiotics and Recombinant DNA' initiative, which was sponsored by the SERC Biotechnology Directorate, the Department of Trade and Industry, Beecham Pharmaceuticals, Cellech, Glaxo Group Research and ICI Pharmaceuticals. We wish to acknowledge the major contribution which John Cullum made to the initiation of this project. We are grateful to Paul Broda and Colin Smith for many useful discussions and to David Hodgson for the communication of data prior to publication. We also thank the other members of the research group who acted as 'colony pickers'.

Table 1. Properties of ts macromolecular synthesis mutants of *S. coelicolor*

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Osmotically remedial</th>
<th>DNA</th>
<th>RNA</th>
<th>Protein</th>
<th>Possible lesion by analogy with E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>No</td>
<td>Stops after 2 h</td>
<td>Continues for 5 h</td>
<td>Continues for 5 h</td>
<td>DNA initiation</td>
</tr>
<tr>
<td>66</td>
<td>Yes</td>
<td>Stops within 20 min</td>
<td>Continues for 3 h</td>
<td>Continues for 3 h</td>
<td>DNA elongation</td>
</tr>
<tr>
<td>102</td>
<td>Yes</td>
<td>Stops after 1 h</td>
<td>Continues for 3.5 h</td>
<td>Continues for 2.5 h</td>
<td>DNA replication</td>
</tr>
<tr>
<td>114</td>
<td>Yes</td>
<td>Stops after 30 min</td>
<td>Continues for 2.5 h</td>
<td>Continues for 2.5 h</td>
<td>DNA elongation</td>
</tr>
<tr>
<td>45</td>
<td>Yes</td>
<td>Stops after 1 h</td>
<td>Stops after 1 h</td>
<td>Stops after 1 h</td>
<td>adk-like</td>
</tr>
<tr>
<td>60</td>
<td>Yes</td>
<td>Continues for 1 h</td>
<td>Stops within 15 min</td>
<td>Stops within 15 min</td>
<td>RNA synthesis</td>
</tr>
<tr>
<td>98</td>
<td>Yes</td>
<td>Stops after 30 min</td>
<td>Continues for 3 h</td>
<td>Continues for 3 h</td>
<td>dna like</td>
</tr>
</tbody>
</table>

of RNA synthesis on transfer to the permissive temperature (Yoshinaga & Sugiura, 1977). The lack of reversibility of the ts-60 RNA synthesis lesion after transfer from restrictive to permissive temperatures was reflected in a loss of viability. The ability to form colonies on nutrient agar at 30 °C declined ten fold after 3 h exposure to 39 °C; such a loss of viability was not observed with the ts DNA synthesis mutants.

In temperature shift experiments on ts-45, synthesis of DNA, RNA and protein stopped after an hour at 39 °C (Fig. 5b). Incorporation of [14C]uracil into RNA resumed rapidly on return to 30 °C, whereas DNA and protein synthesis were not reinitiated within 3 h of transfer to the permissive temperature. The apparently simultaneous cessation of DNA, RNA and protein synthesis may point to a mutation in an energy-generating system rather than directly in one of the macromolecular synthesis pathways. Another possibility is that ts-45 is similar to the *dnaW* mutant of *E. coli* (Blinkowa & Gawecka, 1979), although the latter exhibits much more rapid inhibition of macromolecular synthesis at 42 °C. The *dnaW* mutation has been shown subsequently to be an allele of the *adk* (adenylate kinase) gene (Henson et al., 1982). Interestingly, double temperature shift experiments with the *dnaW* mutant produced reinitiation results similar to those obtained with ts-45; i.e. RNA synthesis started rapidly on transfer to 30 °C, but the inhibition of DNA and protein synthesis was reversible only after a long delay (Blinkowa & Gawecka, 1979).

Clearly, further analysis of these three mutants will be required before their specific lesions can be identified and this may have to await the accumulation of more data concerning the primary metabolism of *Streptomyces*.

Conclusions

We believe this to be the first report of the isolation and preliminary characterization of a set of ts macromolecular synthesis mutants of *S. coelicolor*. The properties of
ts-mutants of Streptomyces coelicolor

