Identification of nitric oxide reductase activity in \textit{Rhodobacter capsulatus}: the electron transport pathway can either use or bypass both cytochrome \textit{c}{_2} and the cytochrome \textit{bc}{_1} complex

LOUISE C. BELL, DAVID J. RICHARDSON\footnote{Present address: School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.} and STUART J. FERGUSON\footnote{Author for correspondence. Tel. (0865) 275240; fax (0865) 275259.}

Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK

(Received 28 June 1991; revised 27 November 1991; accepted 5 December 1991)

Several strains of \textit{Rhodobacter capsulatus} have been shown to possess a nitric oxide reductase activity (reaction product nitrous oxide) after anaerobic phototrophic growth, but not after aerobic growth. The reductase is associated with the cytoplasmic membrane and electrons can reach the enzyme via the cytochrome \textit{bc}{_1} complex. However, use of appropriate strains has shown that neither the latter, cytochrome \textit{c}{_2} nor cytochrome \textit{c}' is essential for the reduction of nitric oxide. Inhibition by myxothiazol of nitric oxide reduction in a strain that lacks a cytochrome \textit{c}{_2} establishes that in phototrophically grown \textit{R. capsulatus} the cytochrome \textit{bc}{_1} complex is able to transfer electrons to an acceptor that is alternative to cytochrome \textit{c}{_2}. Electron transport to nitric oxide from NADH or succinate generated a membrane potential. When isoascorbate plus 2,3,5,6-tetramethyl-p-phenylenediamine (DAD) was the electron donor a membrane potential was not generated. This observation implies that nitric oxide is reduced at the periplasmic surface of the membrane and that the reductase is not proton translocating.

Introduction

Recent experiments (Goretski \& Hollocher, 1988; Carr \textit{et al.}, 1989; Zafiriou \textit{et al.}, 1989) have provided strong evidence for nitric oxide being a free intermediate within the overall process of bacterial denitrification. A discrete nitric oxide reductase that contains \textit{b} and \textit{c}-type haems has been identified in \textit{Pseudomonas stutzeri} and \textit{Paracoccus denitrificans} (Heiss \textit{et al.}, 1989; Carr \& Ferguson, 1990a).

Certain strains of the photosynthetic bacterium \textit{Rhodobacter capsulatus} are able to catalyse the reduction of some of the oxy-species of nitrogen that participate in the denitrification process. Thus the possession of a nitrate reductase, periplasmic in strains AD2 and N22DNAR\footnote{Abbreviations: DAD, 2,3,5,6-tetramethyl-p-phenylenediamine; HOQNO, 2-n-heptyl-4-hydroxyquinoline-N-oxide.} (McEwan \textit{et al.}, 1984) but membrane-bound in strain BK5 (Ballard \textit{et al.}, 1990), and a periplasmic nitrous oxide reductase have been reported (McEwan \textit{et al.}, 1985; Ferguson \textit{et al.}, 1987). Recently, it has been shown that in strain AD2 the nitrate reductase activity is lost in plasmid-deficient isolates (Willison, 1990). Some strains of \textit{R. capsulatus}, e.g. 37b4, do not possess any of these activities (Kelly \textit{et al.}, 1988). Those strains possessing a nitrate reductase accumulate nitrite because a reductase for the latter is not present (Ferguson \textit{et al.}, 1987). The recent identification of a bacterial nitric oxide reductase raises the question as to whether at least some strains of \textit{R. capsulatus} have this enzyme. The possession of the enzymes for reducing some of the oxy-species of nitrogen suggests that \textit{R. capsulatus} encounters such molecules in its natural habitats and that therefore nitric oxide reductase may be present. Furthermore, the toxicity of nitric oxide, coupled with the evidence of its extensive production in some environments (Rende \textit{et al.}, 1989), suggests that it may be advantageous to possess nitric oxide reductase activity. The present paper describes strains of \textit{R. capsulatus} that possess nitric oxide reducing activity, and, by analysis of certain mutant strains, provides evidence for the nature of the electron transport chain that terminates in this enzyme. In addition, some general conclusions about a multiplicity of electron transport pathways in \textit{R. capsulatus} can be made.
Table 1. Strains of Rhodobacter capsulatus used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Characteristics*</th>
<th>Source and/or reference†</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1131</td>
<td>Green mutant; DNAR−NOSR+</td>
<td>F. Daldal et al. (1989)</td>
</tr>
<tr>
<td>MTG4/S4</td>
<td>Cyt. c5 deletion mutant isolated from MT1131; DNAR−NOSR−Km'</td>
<td>Daldal et al. (1987)</td>
</tr>
<tr>
<td>MTGBC1</td>
<td>Cyt. bc, deletion mutant isolated from MT1131; DNAR−NOSR+Pho−Sp'</td>
<td></td>
</tr>
<tr>
<td>MTGS18</td>
<td>Cyt. bc, deletions isolated from MTG4/S4; DNAR−NOSR−Pho−Km'Sp'</td>
<td></td>
</tr>
<tr>
<td>BK5</td>
<td>Wild-type strain; DNAR−NOSR+</td>
<td>J. H. Klemme et al.</td>
</tr>
<tr>
<td>AD2</td>
<td>Wild-type strain; DNAR−NOSR−Rif'</td>
<td></td>
</tr>
<tr>
<td>10a.2.3</td>
<td>Plasmid-deficient strain isolated from AD2; DNAR−Rif'</td>
<td></td>
</tr>
<tr>
<td>N22</td>
<td>Green mutant from St Louis; DNAR−NOSR+</td>
<td></td>
</tr>
<tr>
<td>N22DNAR+</td>
<td>DNAR+ strain isolated from N22</td>
<td></td>
</tr>
<tr>
<td>37b4</td>
<td>Wild-type; DNAR−NOSR−Sm'</td>
<td>McEwan et al. (1982)</td>
</tr>
<tr>
<td>H123</td>
<td>Tn5 insertion mutant deficient in cyt. / isolated from 37b4; Sm'Km'Aer−</td>
<td>H. Hudig et al. (1986);</td>
</tr>
<tr>
<td>Z-1</td>
<td>Isolated from St Louis; DNAR−NOSR−</td>
<td>Marrs & Gest (1973);</td>
</tr>
<tr>
<td>M5</td>
<td>Chemical mutant isolated from Z-1 deficient in b410 and b260 oxidases; Aer−</td>
<td>Marrs & Gest (1973)</td>
</tr>
</tbody>
</table>

* Km', kanamycin resistance; Sp', spectinomycin resistance; Sm', streptomycin resistance; Rif', rifampicin resistance. DNAR, dissimilatory nitrate reduction; NOSR, nitrous oxide reduction; Pho, phototrophic growth; Aer, aerobic growth.
† Addresses: a, University of Philadelphia, USA; b, University of Bonn, Germany; c, CNRS, Grenoble, France; d, University of Bristol, UK; e, University of Freiburg, Germany; f, Dupont, Wilmington, USA.

Methods

R. capsulatus strains. The strains used in this study are listed in Table 1. Cells were grown phototrophically on a RCV medium as described by Weaver et al. (1975) but with 30 mM-sodium succinate substituted for malate. Antibiotics were added to the medium where appropriate (Daldal et al., 1987). The medium for *R. capsulatus* strains Z-1 and M5 was sparged with argon before growth since strain M5 lacks oxidase activity and it has been reported that oxygen represses the synthesis of the photosynthetic apparatus. Strains MTGBC1 and MTGS18, which are unable to grow phototrophically (Heiss et al., 1989), were grown aerobically to mid-exponential phase and then incubated anaerobically in the dark for 12 h with the medium supplemented with 10 mM-glucose and 25 mM-NaCl.

Nitric oxide reduction. This was measured using a nitrous oxide electrode sensitive to both nitric oxide and nitrous oxide as previously described (Carr et al., 1989; Bell & Ferguson, 1991). All measurements were performed at 30°C. In some experiments nitric oxide reduction was measured at 30°C in the presence of one or both of the electron transport inhibitors, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQONO) and myxothiazol. The non-physiological electron donor sodium ascorbate in conjunction with 2,3,5,6-tetramethyl-p-phenylenediamine (DAD) was used in certain experiments.

Membrane vesicles. These were prepared by lysing spheroplasts as described by Burnell et al. (1975) except that 3 mM-EDTA was included in the medium for preparing the spheroplasts. Membrane potentials were measured from the electrochromic response of the endogenous carotenoid pigments at either 528-511 nm or 503-487 nm (for green mutants) using an Aminco DW2000 spectrophotometer in the dual wavelength mode. Cell protein was determined by lysing the cells in 0.1 M-NaOH at 100°C before assaying by the Lowry method (with BSA as standard).

Results

As explained in previous publications (Carr et al., 1989; Bell & Ferguson, 1991), a silver cathode Clark-type electrode responds to both nitric and nitrous oxides, with the former being detected at slightly higher sensitivity than the latter. Fig. 1 shows the response of such an electrode when nitric oxide was introduced into a reaction chamber containing cells of *R. capsulatus* strain MT1131. The first phase of the response in record (a) corresponds to the reduction of nitric oxide and the second phase to the reduction of nitrous oxide, as established by the prevention of the second phase by acetylene in record (b). Acetylene specifically inhibits nitrous oxide reductase in denitrifying bacteria...
Nitric oxide reductase in *Rhodobacter capsulatus* 439

Table 2. Effects of inhibitors of electron transport on rates of electron transport to nitric oxide in cells of *R. capsulatus* strain MT1131 and mutant MTG4/S4

A reaction chamber fitted with a Clark-type silver cathode electrode contained, in a total volume of 2 ml: RCV medium with 30 mM-sodium succinate instead of malate, 4 units glucose oxidase, 50 units catalase, 16 mM-β-glucose and cells of *R. capsulatus*. Once the reaction mixture was anaerobic nitric oxide was added to a final concentration of 75 μM. Other additions were made as shown. The temperature was 30 °C and light was excluded from the chamber. The rates given are typical data representing three experiments. There was a variation between different batches of cells of ± 5 nmol min⁻¹ (mg protein)⁻¹. ND, Not determined.

<table>
<thead>
<tr>
<th>Additions</th>
<th>Strain</th>
<th>MT1131</th>
<th>MTG4/S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>MT1131</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>3 μM-Myxothiazol</td>
<td>MT1131</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>3 μM-Myxothiazol + 20 μM-DAD + 0.25 mM-sodium isoascorbate</td>
<td>MT1131</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>3 μM-Myxothiazol + 20 μM-HOQNO</td>
<td>MT1131</td>
<td>3</td>
<td>ND</td>
</tr>
<tr>
<td>3 μM-Myxothiazol + 20 μM-HOQNO + 20 μM-DAD + 0.25 mM-sodium isoascorbate</td>
<td>MT1131</td>
<td>19</td>
<td>ND</td>
</tr>
</tbody>
</table>

(Balderston *et al.*, 1976; Yoshimura & Knowles, 1976). It is clear that nitric oxide strongly inhibits the reduction of nitrous oxide and thus rates of nitric oxide reduction can be calculated directly from the first phase of records such as (a) in Fig. 1; no correction for concomitant reduction of nitrous oxide is necessary. Similar observations to those in record (a) of Fig. 1 were made with several other strains of *R. capsulatus*. Thus typical rates of nitric oxide reduction were 20 nmol min⁻¹ (mg protein)⁻¹ for both MT1131 (Table 2) and AD2, 30 nmol min⁻¹ (mg protein)⁻¹ for both N22 and N22DNAR⁺, 35 nmol min⁻¹ (mg protein)⁻¹ for BK5, and 10 nmol min⁻¹ (mg protein)⁻¹ for Z-1, all measured under the conditions specified in the legend to Fig. 1. *R. capsulatus* strain 37b4 also reduced nitric oxide with a typical rate of 15 nmol min⁻¹ (mg protein)⁻¹, but the response of the electrode was a single phase [as record (b) in Fig. 1], consistent with the absence of nitrous oxide reductase in this strain (Kelly *et al.*, 1988). No strain of *R. capsulatus* tested (Table 1) was found to lack nitric-oxide-reducing activity.

There are reports of the non-specific reduction of nitric oxide by oxidase activities (Brudvig *et al.*, 1980). *R. capsulatus* strain M5 is completely deficient in both the cytochrome b₄10 and cytochrome b₂60 oxidase activities (Marrs & Gest, 1978), but it had a typical nitric oxide reduction rate of 10 nmol min⁻¹ (mg protein)⁻¹ that was indistinguishable from that of the parent strain Z-1. In addition, after aerobic growth all tested strains of *R. capsulatus*, which had oxidase activities in the range 50 to 100 nmol O min⁻¹ (mg protein)⁻¹, did not reduce nitric oxide. Thus it appears very probable that nitric oxide reduction is performed by a discrete reductase. Recent work (Willison, 1990) has indicated that *R. capsulatus* strain 10a.2.3, which has been cured of an endogenous plasmid, no longer has the ability to respire nitrate. This finding prompted enquiry into whether nitric oxide reductase is encoded on this endogenous plasmid. However, the cured strain reduced both nitric and nitrous oxides at rates comparable to the parent *R. capsulatus* strain AD2, indicating that the genes for these activities are not located on the cured plasmid.

Connection of the nitric oxide reductase to the electron transport chain of *R. capsulatus* was established by the observation of a nitric-oxide-dependent electrochromic shift in the absorption maximum of the endogenous carotenoids. The latter is an indicator of cytoplasmic membrane potential. The potential generated after a pulse of nitric oxide was smaller by a factor of two, assuming the linearity of the carotenoid response, than that which was developed upon illumination of cells (not shown). Fractionation of cells into periplasm, cytoplasm and membranes revealed that NADH-, succinate- or isoascorbate/DAD-dependent nitric oxide reduction was associated with the membrane fragments whilst the nitrous oxide reductase activity was released into the periplasm fraction (not shown). As expected on the basis of the fractionation studies, membrane vesicles generated a NADH- and succinate-dependent membrane potential in response to the addition of nitric oxide (Fig. 2). A membrane potential was not observed either in the presence of nitric oxide and isoascorbate/DAD or following addition of nitrous oxide. The latter observation is consistent with loss of the reductase for the latter from membrane vesicles.

Myxothiazol inhibits specifically the cytochrome b₅ complex of electron transport chains (Trumpower, 1990). The finding that myxothiazol partially inhibited the reduction of nitric oxide by cells (Table 2; data shown for
MT1131 as an example of wild-type cells) thus indicated that electron flow could proceed to nitric oxide reductase via the cytochrome bc₁ complex. No additional inhibition accompanied introduction of higher concentrations of myxothiazol. Nitric oxide reduction by either cells or vesicles (not shown) was restored following the addition of isosaccharate/DAD after the site of myxothiazol inhibition. It is notable that the inhibition by myxothiazol was never complete. Similar observations have been made for the reduction of nitrous oxide by R. capsulatus (Richardson et al., 1989). In that case it was shown that the cytochrome bc₁ complex could be bypassed. The same is true for nitric oxide reduction because a mutant that lacked a functional bc₁ complex (R. capsulatus MTCBC1) was competent in nitric oxide reduction [10 nmol min⁻¹ (mg protein)⁻¹] at a rate which was, however, attenuated relative to the parent (MT1131) strain [15 nmol min⁻¹ (mg protein)⁻¹] under the growth conditions used for MTCBC1. As expected, and in agreement with previous observations concerning nitrous oxide reduction by R. capsulatus MTCBC1 (Richardson et al., 1989), an amount of myxothiazol sufficient to inhibit the cytochrome bc₁ complex in wild-type cells had no effect on the rate of nitric oxide reduction by R. capsulatus MT1131. Thus there exists a pathway for electrons that is independent of, and alternative to, the myxothiazol-sensitive cytochrome bc₁ complex. This alternative pathway was sensitive to 20 µM-HOQNO as shown by over 80% inhibition of nitric oxide reduction in wild-type cells in the presence of both this inhibitor and 3 µM-myxothiazol (Table 2). The same conclusion could be drawn from the finding that 20 µM-HOQNO gave 90% inhibition of the nitric oxide reduction in R. capsulatus MT1131 which lacks a functional cytochrome bc₁ complex. In both cases the rate of reduction of nitric oxide was fully restored by addition of isoascorbate/DAD, demonstrating that the HOQNO was not inhibiting the site of nitric oxide reduction at these concentrations.

The cytochrome bc₁ complex acts as a reductant for cytochrome c₂ in R. capsulatus but the latter cytochrome is not obligatory for nitric oxide reduction because a mutant, MTG4S4, in which the gene for cytochrome c₂ is specifically deleted was still able to reduce nitric oxide, albeit at a slightly slower rate than the parent strain (Table 2). In R. capsulatus MTG4S4 the record of respiration measured by the nitric oxide electrode was monophasic, resembling the parent strain in the presence of acetylene. This is because cytochrome c₂ has been found to be an obligatory component for nitrous oxide respiration (Richardson et al., 1991) which, as described earlier, accounts for the second phase of the electrode response with cells. The cytochrome bc₁ complex was still operative in the mutant since myxothiazol was observed to give partial but considerable inhibition (Table 2). Thus the cytochrome bc₁ complex can reduce one or more components as alternative(s) to cytochrome c₂, and this (these) component(s) must also be able to accept electrons from the pathway that is independent of the cytochrome bc₁ complex. As expected from the foregoing results, a mutant, MTGS18, in which both the cytochrome bc₁ complex and cytochrome c₂ were absent, was also able to reduce nitric oxide, although at approximately half the specific rate [8 nmol min⁻¹ (mg protein)⁻¹] measured for the parent strain grown under the same conditions [i.e. 15 nmol min⁻¹ (mg protein)⁻¹]. R. capsulatus mutant H123, which lacks cytochrome c' (Hudig et al., 1986), was observed to reduce nitric oxide at a rate [15 nmol min⁻¹ (mg protein)⁻¹] that was not attenuated compared to its parent strain 37B4. This provides firm evidence that cytochrome c' is not obligatory for nitric oxide reduction in R. capsulatus.

Fig. 2. Electrochromic absorbance changes of the carotenoid pigment of membrane vesicles of R. capsulatus strain MT1131 following the addition of 10 µM-nitric oxide. Vesicles (0.4 mg protein) were resuspended in 1.5 ml 10% (w/v) sucrose, 50 mM-KCl, 8 mM-MgCl₂, 50 mM-Tricine/KOH, pH 7.4, containing 4 units catalase, 50 units glucose oxidase, and 16 mM-D-glucose in a sealed cuvette. The following additions were made: (a) 50 µM-NADH; (b) 1 mM-sodium succinate; (c) 20 µM-DAD plus 100 µM-sodium isosaccharate. Once the suspensions had become anaerobic, and a steady baseline attained, nitric oxide was added.
Discussion

Reduction of nitric oxide is known from observations with Wolinella succinogenes (Payne et al., 1982) not to be restricted to genera of bacteria that carry out all the reactions of denitrification. The present report of nitric oxide reductase activity in many strains of R. capsulatus, including a strain, 37b4, that lacks any other reductase activity towards oxy-species of nitrogen, provides a second and striking example.

A very strong case for the presence of a discrete reductase for nitric oxide in R. capsulatus can be made on the basis of both it being in a number of strains that lack between them several different redox components and its specific activity in a given strain being comparable with both the rate of nitrous oxide reduction (see e.g. Fig. 1) and oxidase activities. Had the specific nitric oxide reductase activity been orders of magnitude lower than these other activities, serious consideration would have to be given to the possibility that the reduction of nitric oxide represented a side reaction of a reductase with another primary substrate. The extent to which nitric oxide reductase activity is widespread amongst bacteria in general remains to be seen. The finding of a discrete nitric oxide reductase in a denitrifying strain of Rhodobacter sphaeroides (Itoh et al., 1989) and the close relationship of R. capsulatus to R. sphaeroides suggests that nitric oxide reductase activity may also be common in the many non-denitrifying strains of the latter organism.

The widespread occurrence of nitric oxide reductase activity amongst strains of R. capsulatus, and possibly amongst other organisms, should be viewed in the light of the toxicity and abundance of nitric oxide. This gas is a product of microbial nitrification and denitrification (Goretski & Hollecher, 1988; Carr et al., 1989; Zafiriou et al., 1989; Rende et al., 1989). Furthermore, it is formed during chemical processes such as the decomposition of nitrite in soils and the combustion of fossil fuels (Logan, 1983). Amongst the potentially toxic effects to bacteria of nitric oxide are the inhibition of the enzymes nitrite reductase (cytochrome cd1) (Carr et al., 1989; Frunzke & Zumft, 1986; Dhesi & Timkovich, 1984; Shapleigh et al., 1987), nitrous oxide reductase (Carr et al., 1989; Frunzke & Zumft, 1986) and bacterial oxidases (Carr & Ferguson, 1990b). It has been proposed that cytochrome c' may, in effect, act as a scavenger for nitric oxide and thus have a protective function (Yoshimura et al., 1988). This idea remains to be tested, but the present experiments with the R. capsulatus strain H123 do establish that lack of cytochrome c' does not prevent electron transport to nitric oxide reductase. At the concentrations of nitric oxide used in the present work electron transport from NADH to nitric oxide was not significantly impaired by loss of the nitric oxide binding capacity of cytochrome c'. It may be concluded that cytochrome c' is not an
obligatory component of the electron transport system that terminates in nitric oxide reductase.

The retention, with physiological substrates as electron donors, of nitric oxide reductase activity by the R. capsulatus mutants MTBC1 and MTG4/S4, respectively, establishes that neither the cytochrome bc1 complex nor cytochrome c2 is obligatory for electron transport to nitric oxide. The partial inhibition by myxothiazol in both wild-type cells and the MTG4/S4 mutant shows, however, that electron flow to the nitric oxide reductase can involve the cytochrome bc1 complex. The inhibitory effects of myxothiazol on nitric oxide reduction by R. capsulatus MTG4/S4 also show that the cytochrome bc1 complex must be able to transfer electrons to an acceptor other than cytochrome c2. On the basis of the data in the present paper we cannot exclude the possibility that the transfer is directly to the nitric oxide reductase; this would be equivalent to the proposal (Daldal et al., 1986) of a direct transfer of electrons from cytochrome bc1 to the reaction centre in MTG4/S4. However, we note that Jones et al. (1990) have recently identified a cytochrome c-type cytochrome that can substitute for cytochrome c2 in the role of a donor to the reaction centre. It is conceivable that this component or one similar could act as an electron donor, called 'X' here (Fig. 3), to nitric oxide reductase. In this respect, the electron transport pathway to nitric oxide must differ from that to nitrous oxide. Cytochrome c2 is obligatory for the latter (Richardson et al., 1991). In contrast, electron transport to both nitrous oxide (Richardson et al., 1989) and, as shown here, nitric oxide, can bypass the cytochrome bc1 complex. Fig. 3 summarizes present conclusions (with some being tentative and indicated as such by "?") concerning the electron transport pathway to reductases for nitric and nitrous oxides in R. capsulatus. Direct evidence for including cytochrome c2 on a path to nitric oxide is not yet available. However, two considerations indicate that it should be included in Fig. 3. First, cytochrome c2 is an electron acceptor from the cytochrome bc1 complex whose participation in nitric oxide respiration is established in the present paper. Second, a dependence on cytochrome c2 of the rate of electron transfer from the cytochrome bc1 complex to nitric oxide reductase has been demonstrated for the membranes of the related organism R. sphaeroides f.sp. denitrificans (Itoh et al., 1989), and for reasons discussed below it is very probable that the same type of nitric oxide reductase is found in both R. capsulatus and R. sphaeroides. It is also noteworthy that antimycin, an inhibitor of the cytochrome bc1 complex, fails to inhibit completely the reduction of nitric oxide by the latter organism (Shapleigh & Payne, 1985), indicating that the cytochrome bc1 complex may be bypassed by electrons destined for nitric oxide reductase as proposed here for R. capsulatus.

DAD is assumed to be unable to act as a direct electron donor to nitric oxide reductase because it is known to be ineffective at donating electrons to the purified nitric oxide reductase of P. denitrificans (Carr & Ferguson, 1990a), which is a closely related organism. The fact that the nitric oxide reductase of P. stutzeri (Heiss et al., 1989) is very similar to the enzyme from P. denitrificans (Carr & Ferguson, 1990a; Dermastia et al., 1991) strengthens the case that the same type of nitric oxide reductase is present in R. capsulatus and R. sphaeroides, organisms that share membership with P. denitrificans of the α-purpur group of bacteria. Nevertheless, in the absence of a detailed molecular characterization of the nitric oxide reductase from R. capsulatus, the possibility that DAD might donate directly to a distinct type of nitric oxide reductase cannot be absolutely excluded. The finding that electron transport from isocitrate plus DAD to nitric oxide did not generate a membrane potential in R. capsulatus MT1131, whereas electron flow from either NADH or succinate did so, indicates that nitric oxide is reduced at the same side of the membrane that is the location of cytochrome c2, which is generally regarded as an electron acceptor from DAD. Thus if nitric oxide reductase is an integral membrane protein in R. capsulatus, as in P. stutzeri (Heiss et al., 1989) and P. denitrificans (Carr & Ferguson, 1990a), it cannot either translocate electrons from the periplasmic side of the membrane to the cytoplasmic side or pump protons from the cytoplasm. This description is in agreement with the conclusion of Shapleigh & Payne (1985) that protons required for the reduction of nitric oxide are taken from the external side of the cytoplasmic membrane in several organisms. This conclusion concerning the lack of proton pumping by nitric oxide reductase is unaffected by the issue of whether electron flow from DAD is direct or mediated by a periplasmic cytochrome.

This work was supported by the SERC through a grant to S. J. F. and a studentship to L. C. B. We thank Dr F. Daldal, H. Hudig, B. Marrs and J. Willison for supplying strains of R. capsulatus. The observations reported here are a development of a long-standing joint project on R. capsulatus with Dr Baz Jackson.

References

Carr, G. J. & Ferguson, S. J. (1990b). Nitric oxide reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochimica et Biophysica Acta 1017, 57-62.

