Calcium regulation of growth and differentiation in \textit{Streptococcus pneumoniae}

\textbf{MARIE-CLAUDE TROMBE,* CORINNE CLAVÉ† and JEAN-MICHEL MANIAS‡}

Centre de Biochimie et de Génétique Cellulaires du CNRS et Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cédex, France

(Received 28 May 1991; revised 2 September 1991; accepted 17 September 1991)

\textit{Streptococcus pneumoniae} requires 0.15 mM-Ca2+ in the medium for optimal growth. Increasing the Ca2+ concentration to 1 mM triggers either a differentiative state, competence for genetic transformation during exponential growth, or partial lysis as soon as the cultures enter stationary phase. Genetic and physiological data both suggest that these responses are under the control of activator(s), excreted in the presence of high Ca2+ concentrations. 45Ca2+ transport is also stimulated by the activator(s). The amiloride derivative 2',4'-dimethylbenzamid (DMB) inhibits 45Ca2+ transport and prevents lysis and competence development. This provides evidence in favour of the involvement of Ca2+ transport in competence and culture lysis. On the other hand, addition of DNA to a competent culture prevents lysis of wild-type bacteria while a mutant, defective for DNA uptake, is not protected from lysis by exogenous DNA. An hypothesis is proposed for competence induction as a global metabolic response to Ca2+, under the control of competence factor.

\textbf{Introduction}

\textit{Streptococcus pneumoniae} is one of the bacterial species that are able to go through a transient differentiative physiological state, competence for genetic transformation. Competent bacteria exhibit new properties with regard to surface antigens (Nava \textit{et al}., 1963), membrane nuclease activity (Lacks \& Greenberg, 1973; Lacks \& Neuberger, 1975), DNA transport (Lerman \& Tolmach, 1957), recombination and repair (Love \& Yasbin, 1986), expression of a set of specific proteins (Morrison \& Baker, 1979; Raina \& Ravin, 1980) and synthesis of the lipid polymer poly(\(\beta\)-hydroxybutyrate) (Reusch \& Sadoff, 1983; Clavé \textit{et al}., 1989). Membrane hyperpolarization (Trombe, 1983), as well as a stimulation of glycolysis associated with an increased ATP pool and a cytoplasmic alkalization (Lopez \textit{et al}., 1989), are observed in competent \textit{S. pneumoniae}. A remarkable feature in streptococci is that all these responses are controlled by an excreted protein, competence factor (CF) (Leonard \& Cole, 1972; Pakula \& Walczak, 1963; Tomasz \& Hotchkiss, 1964), which probably reacts with a receptor in the cell membrane to activate competence (Ziegler \& Tomasz, 1970).

Competence in \textit{S. pneumoniae} is routinely obtained when cells are grown in Ca2+-rich (1 to 1.5 mM) media. The Ca2+ requirement for growth in prokaryotes is not very well documented. Some evidence now exists for bacterial calmodulin-like proteins (Falah \textit{et al}., 1988; Fry \textit{et al}., 1986; Inouye \textit{et al}., 1983; Swan \textit{et al}., 1987, 1989), suggesting a regulatory function for Ca2+. On the other hand, Ca2+ circulation is described as an electrochemical process (for a review, see Rosen, 1987) associated with its export involving a Ca2+-ATPase in streptococci (Kobayashi \textit{et al}., 1978; Ambudkar \textit{et al}., 1986). In the work presented here, we have addressed the relationship between Ca2+, bacterial growth and induction of the differentiative state, permissive for DNA uptake and genetic transformation, i.e. competence.

\textbf{Methods}

\textbf{Strains.} The RX derivative \textit{Streptococcus pneumoniae} Cp1000 was used as the standard wild-type strain for competence induction and for genetic transformation (Morrison \textit{et al}., 1984). The required mutations were introduced into the wild-type background by genetic transforma-
tion using DNA from the mutant strains. Two rounds of transformation with non-saturating levels of DNA were performed to avoid multiple gene transfer. The mutation in the *lytA* gene of strain Cpl322 comes from strain GP95, a derivative of RUP1, which carries an ery insertion in *lytA*, *lytA::ermC* (Tomasz et al., 1988). The mutation in the *com* locus of strain Cpl322 was introduced with DNA from strain omega 22, a competence-defective mutant selected after insertional mutagenesis (Morrison et al., 1983). Strain CP1209, which carries the *erm*-9 mutation, is defective in DNA transport (Morrison et al., 1983; Clavé et al., 1987).

Specific materials. The source of [3H]DNA was the thymidine auxotrophic strain 119 which also carries the rif-23 mutation (Tiraby & Fox, 1973). Amilorides were provided by Dr E. J. Cragoe, Jr, Nacogoches, Texas, USA; 2',4'-dimethylbenzamil (DMB) was prepared specifically for this study. The calcium ionophore A23187, EGTA and triplyphosphate (pentasodium salt) were analytical grade. Salmon sperm DNA and tRNA were from Sigma. Nutrients used for growth media were from Difco. 45CaCl2 was from CEA, France.

Growth and competence induction. Growth conditions and media were identical for the wild-type and the mutant strains as described previously (Clavé et al., 1987). Growth was routinely followed by optical density measurements at 400 nm using a Bausch and Lomb spectrophotometer. The decrease in OD400 was taken as an indicator of culture lysis. For each experiment, a given growth curve was performed in triplicate. The curve presented is thus representative of three independent assays. Briefly, stock cultures were grown at pH 7.5 in a standard medium containing (g l−1): NaCl, 5; yeast extract, 1; tryptone, 5; enzymic casein hydrolysate, 10; glucose, 2; K2HPO4, 3. When the culture reached an OD400 of about 0.4, glycerol (final concn 15%, v/v) was added and samples were kept frozen at −80°C. To obtain precompetent bacteria, samples were thawed, diluted 1 to 100 in transformation medium [standard growth medium enriched with CaCl2 (1 mM) and bovine serum albumin (1 mg ml−1)] at neutral pH, and grown for 2 h at 37°C. Such cultures constituted the 'tester cells'. When shifted to pH 7.8 and incubated at 37°C, they could develop 'natural' competence in 60 to 120 min or could be activated by CF-containing extract and develop competence in 20 min. Competence induction could not be observed at 32°C but competence expression of pre-induced bacteria was maximal at this temperature.

Activator preparation. CF-containing extracts were supernatants of competent wild-type cultures fractionated with 55% saturation (NH4)2SO4 at pH 11. The pellet dissolved in 10 mM-HCl was the source of CF; it was kept frozen at −80°C. One CF unit induces competence of 1 ml of tester cells (2 × 108 c.f.u.) of strain Cpl1095 at pH 7 in 30 min. Extracts from competent cultures of strain Cpl322 contain no detectable CF activity (Morrison et al., 1984) and were used as controls.

Assay for competence. Competence reporters (Clavé & Trombe, 1989) were the degradation of extracellular pneumococcal [3H]DNA resulting in acid-soluble material, the uptake of [3H]DNA in a DNAse-I-resistant form and genetic transformation of the chromosomal marker rif-23, which confers resistance to 2 μg rifampicin ml−1.

Ion transport measurements. Ion transport was assayed using the radioactive isotope 45Ca2+. Tester cells were incubated in transformation medium containing the radioactive isotope. CF-containing extract was then added and 1 ml samples were filtered at intervals through 0.45 μm Gelman Metrical membranes. After three washes with media containing 0.5 mg CaCl2 ml−1, the radioactivity retained on the filters was quantified by liquid scintillation as previously described (Trombe et al., 1984). It was verified that washing with CaCl2 lowered nonspecific adsorption on the filters without significant displacement of intracellular 45Ca2+.

Results

Ca2+ requirement for growth

The standard growth medium used for *S. pneumoniae* was found to contain 0.2 mM-calcium as measured by flame spectrophotometry. When Ca2+ was chelated with 0.2 mM-EGTA, growth was inhibited. Full growth could be restored by addition of a further 0.15 mM-CaCl2 to medium containing 0.2 mM-EGTA (Fig. 1a). Therefore, Ca2+ is an obligatory cation for growth of *S. pneumoniae*. Similar results were obtained whether the pH of the medium was 7 or 8 (Fig. 1a). However, increasing the Ca2+ concentration to 1.5 mM caused precocious lysis of wild type *S. pneumoniae* when the culture reached stationary phase. Culture lysis in high-Ca2+ medium was strongly dependent on the initial pH of the cultures and did not occur at neutral pH (Fig. 1b). Strain Cpl1095, which carries an insertion in the *lytA* gene that encodes the major autolysin (Tomasz et al., 1988), was fully resistant to lysis in alkaline Ca2+-containing medium (Fig. 1b). *LytA* must therefore be involved in the Ca2+-triggered lysis.

![Fig. 1. Ca2+ regulation of growth: effect of amilorides.](image-url)
Calcium stress triggers competence and culture lysis

In cultures growing at neutral pH, competence develops naturally in the late exponential phase and at high cell density (Chen & Morrison, 1987). It was possible to induce competence in the early exponential phase, at neutral pH, by the addition of extra CF, above the concentration which induced competence in alkaline cultures (Fig. 3a). Interestingly, precocious lysis in high-Ca\(^{2+}\) medium was also obtained at neutral pH in the presence of CF (Fig. 3b). The \(com\) mutant Cp1322, which required high levels of CF for its activation whatever the pH used (Fig. 3a), was fully resistant to culture lysis in alkaline medium containing high Ca\(^{2+}\), but lysed if the culture was complemented with CF (Fig. 3d). The same threshold concentration of CF was required to induce both competence and lysis (Fig. 3a, d). The single mutational event carried by the \(com\) strain prevents both natural lysis and competence induction. These defects are complemented under the same conditions, i.e. CF addition, suggesting a correlation between competence induction and culture lysis as proposed by Seto & Tomasz (1975). However, the LytA-null mutant Cp1095, which was refractory to lysis even in high-CF medium (Fig. 3c), exhibited the same CF requirement for competence induction as the wild-type strain (Fig. 3a), and was fully transformable (data not shown) as already shown for other \(lyt\) strains (Sanchez-Puelles et al., 1986; Tomasz et al., 1988), indicating that LytA is not involved in competence-regulation. The effect of CF in lowering the growth rate and growth yield of Cp1095 is noteworthy (Fig. 3c). This effect was not observed in media with a low (0-2 mm) Ca\(^{2+}\) concentration (Fig. 3c). Thus, competence induction might be considered as a response to Ca\(^{2+}\) stress under the control of CF. Another possibility would be that both a competence activator and a lysis activator are released at the same time in competent cultures. In any case, competence and lysis represent two manifestations of the Ca\(^{2+}\) response, regulated by the pH of the medium and under the control of released factor(s).

Prevention of lysis by exogenous DNA

In Bacillus subtilis it is proposed that competence is induced in response to a variety of signals including growth stage and nutritional information (for a review, see Dubnau, 1991). Culture-medium titrations showed no variation in glucose and phosphate concentrations during the development of a competence cycle in S. pneumoniae (Clavé, 1988). Taking into account the composition of the transformation medium (see Methods), N-starvation seems unlikely. Thus unbalanced growth with regard to C, P or N does not appear to

Figure 2. Specific Ca\(^{2+}\) requirement for competence induction or for competence expression. (a) Induction. Tester cells were incubated in media at pH 8 containing various Ca\(^{2+}\) concentrations with CF-free extracts of strain Cp1322 (O) or with 0-1 CF units ml\(^{-1}\) (●). Competence development was monitored at intervals by assaying the nuclease activity of the cultures using [\(^{3}H\)]DNA (1 μg ml\(^{-1}\); 10\(^6\) d.p.m. ml\(^{-1}\)) (see Methods). The highest competence level achieved for each culture is expressed as a percentage of the maximum competence level achieved at a saturating Ca\(^{2+}\) concentration (1 mm). (b) Expression. Bacteria induced to competence in a medium containing 1-5 mm-Ca\(^{2+}\) were shifted at 32°C into media containing various Ca\(^{2+}\) concentrations and [\(^{3}H\)]DNA (1 μg ml\(^{-1}\); 10\(^6\) d.p.m. ml\(^{-1}\)). CF (0-1 units ml\(^{-1}\)) was added in one series of samples (●) while the other received CF-free extracts from strain Cp1322 (O). After 15 min incubation at 32°C the acid-soluble radioactivity was quantified by liquid scintillation counting.

Ca\(^{2+}\) requirement for differentiation: competence development

In the experimental system used for this study, competence was induced in early exponential phase when the culture was alkaline, as described by Chen & Morrison (1987). A competence cycle could be divided into two steps: induction, which required 20 min incubation at 37°C in CF-containing medium or 60 to 120 min in the absence of CF, and expression, where all the properties of the competent bacteria were expressed. The Ca\(^{2+}\) requirement for both steps was determined using Ca\(^{2+}\)-titrated media, as described for the experiments shown in Fig. 1. A difference in the Ca\(^{2+}\) requirement for optimal induction (1 mm) (Fig. 2a) and for optimal expression (0-4 mm) (Fig. 2b) suggests a specific requirement at induction. DNA transport is probably the Ca\(^{2+}\)-requiring step at the expression stage (Lacks & Greenberg, 1973; Seto & Tomasz, 1974, 1976; Lacks, 1977; Clavé et al., 1989; Clavé & Trombe, 1989). Addition of CF to the medium did not change the Ca\(^{2+}\) dependence (Fig. 2), nor did the \(lytA\) mutation carried by strain CP1095 (data not shown). Interestingly, from the data presented, the conditions required for competence induction correspond to conditions which cause precocious lysis in the wild-type strain.
explain the Ca2+ response. Results in Fig. 4(a) show that addition of homologous or heterologous DNA (1 \mu g ml-1) prevented the cultures from lysing. In these cultures, competence development was not altered by DNA (data not shown). In contrast, neither polyphosphate nor tRNA prevented lysis (Fig. 4a), suggesting that the protective effect of DNA is not caused merely by its global negative charge. Strain Cp1209, deficient in DNA transport, which develops a normal competence pattern with regard to its nuclease activation or its gene regulation (Morrison et al., 1983), lysed even in DNA-supplemented medium (Fig. 4b). It is possible that the shift in the lysis profile of Cp1209, when grown in DNA-containing medium (Fig. 4b), corresponds to a partial protection resulting from its residual transport activity, estimated at 0.5 to 1\% of the wild-type activity (data not

Fig. 3. CF-induced competence and culture lysis. (a) CF requirement for competence induction: effect of external pH. Tester cells of strains Cp1000 (○) and Cp1095 (●) were shifted to media of different pH values and stimulated by increasing amounts of CF. After 30 min incubation at 37°C, [3H]DNA (1 \mu g ml-1; 105 d.p.m. ml-1) was added and incubation was continued for 15 min at 32°C. Acid-soluble radioactivity, used as a measure of competence, was quantified by liquid scintillation. The data plotted represent the CF concentration required, at each pH, to obtain optimal competence, i.e. 5 x 105 d.p.m. per 0.1 ml sample in the acid-soluble fraction and a transformation (RifR) frequency between 1 and 5\%. A culture of strain Cp1322 (□) was similarly treated. (b) CF activation of culture lysis. Cultures of strain Cp1000 were started in 1.5 mM-Ca2+ media at pH 7 (open symbols) and pH 8 (filled symbols). Various amounts of CF were added at time zero of incubation and the optical density was monitored at intervals. △, 0.05 units CF ml-1; □, 0.25 units CF ml-1; ●, 1 unit CF ml-1; ○, no addition. (c) Cultures of strain Cp1095 were started in media at pH 8 containing 1.5 mM-Ca2+ (filled symbols) or 0.2 mM-Ca2+ (open symbols). Various amounts of CF were added at time zero of incubation and the optical density was monitored at intervals. △, 0.05 units CF ml-1; ○, 0.25 units CF ml-1; ●, 1 unit CF ml-1; ○, no addition. (d) Cultures of strain Cp1322 were started at pH 8. Various amounts of CF were added at time zero and growth was monitored. △, 0.05 units CF ml-1; ○, 0.5 units CF ml-1; ●, 1 unit CF ml-1; ○, cultures with CF-free extract from strain Cp1322.

Fig. 4. Inhibition of lysis by DNA uptake. Tester cells from strains Cp1000 (a) and Cp1209 (b) were incubated at 37°C in media containing CF (0.7 units ml-1) and DNA (1 \mu g ml-1) (solid line) from either S. pneumoniae (○) or salmon sperm (●), or (dashed line) 1 \mu g tRNA ml-1 (◇), or 1 \mu g polytriphosphate ml-1 (□). ○, Controls with no addition. Growth was monitored as described in Fig. 3.
Calcium stress triggers competence and culture lysis

![Graph showing modulation of 45Ca2+ transport by CF extracts: effect of amilorides. Tester cells from strain Cp1000 were transferred into competence medium [1.5 mM-CaCl\textsubscript{2}; 1 μCi (37 kBq) 45Ca2+ ml-1]. The suspension was divided into four aliquots. Three were supplemented with CF (0.05 units ml-1) and 5 μM-HMA (●) or 5 μM-DMB (▲) was added at the times indicated, followed by incubation at 37 °C. ○, No additions. The filters were rinsed with medium containing CaCl\textsubscript{2} (0.5 mg ml-1) and the radioactivity retained by the bacteria was determined at intervals by filtration assays. ▲, Cultures treated with CF-free extracts from strain Cp1322.

shown). In any case, these results indicate that DNA uptake is necessary to prevent lysis of cultures which have passed through a competence cycle.

Ion fluxes and competence induction

During competence induction fluctuation of the Na+ content of the bacteria was observed and it was noted that their K+ levels did not change (Lopez et al., 1989). Measurement of the 45Ca2+ flux in a CF-stimulated culture showed a transient increase in 45Ca2+ retained by the cells compared to the control (Fig. 5). Treatment of cells with amiloride derivatives resulted in total inhibition of Ca2+ transport by DMB (Fig. 5) while HMA lowered Ca2+ uptake by 20% of the control. Measurements of the influx velocity, \(V\), after 15 s corroborate these observations (data not shown). DMB has been described as an inhibitor of Ca2+ porters in eukaryotes (Kacgorowski et al., 1985; Simchowitz & Cragoe, 1986). Interestingly, DMB prevented culture lysis (Fig. 1b), and was a strong inhibitor of competence induction, but under the same conditions it allowed full competence expression of pre-induced cultures (Table 1). Such an inhibition of competence induction and of culture lysis was not observed in the presence of the other derivatives (Table 1 and Fig. 1b). It is likely that the DMB-sensitive function is involved in competence induction as well as in triggering culture lysis. As DMB interferes with Ca2+ transport, Ca2+ porter(s) might constitute(s) the drug target. Therefore, Ca2+ circulation is probably a key event in competence induction and in triggering lysis of the bacteria. Indeed, using the Ca2+ ionophore A23187 it was possible to obtain, in the wild-type strain, full induction at a suboptimal Ca2+ concentration (Table 2). This suggests that Ca2+ influx is a determinant in the regulation of competence induction. A similar effect was not observed in strain Cp1322 (data not shown); therefore, the Ca2+ ionophore cannot complement the

<table>
<thead>
<tr>
<th>Compound added</th>
<th>(a) Induction (% control)</th>
<th>(b) Expression (% control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (control)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Amiloride</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1-10 μM</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5 μM</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>DMB</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>1 μM</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2. Stimulation of competence induction in strain Cp1000, at low Ca2+ concentrations, by the Ca2+ ionophore A23187

Induction was obtained in alkaline media with Ca2+ concentrations adjusted as indicated, with or without the Ca2+ ionophore A23187. [3H]DNA (1 μg ml-1, 15000 d.p.m. ml-1) bearing the ery-32 genetic marker was routinely used. The standard deviation of DNA degradation and DNA transport measurements, performed in triplicate, never exceeded 10%; it was 5% for the estimation of transformants.

<table>
<thead>
<tr>
<th>Ca2+ added</th>
<th>DNA degradation (d.p.m. ml-1)</th>
<th>DNA transport (d.p.m. ml-1)</th>
<th>Rif transformants (percentage of culture)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 mM-CaCl\textsubscript{2}</td>
<td>9120</td>
<td>3720</td>
<td>17%</td>
</tr>
<tr>
<td>0.4 mM-CaCl\textsubscript{2} +</td>
<td>4700</td>
<td>1830</td>
<td>8%</td>
</tr>
<tr>
<td>1 μM-A23187</td>
<td>11030</td>
<td>4470</td>
<td>20%</td>
</tr>
</tbody>
</table>
defect in CF production. In addition, CF did not lower the Ca2+ requirement for induction in the wild-type strain (Fig. 2a) as does A23187 (Table 2). CF probably does not act simply as a Ca2+ ionophore.

Discussion

In *S. pneumoniae*, Ca2+ is an obligatory cation that is required at a threshold concentration of 0.15 mM (Fig. 1a). It is noteworthy that high Ca2+ triggers both a permissive state for DNA uptake at competence and for DNA liberation during lysis. Inhibition of Ca2+ uptake by DMB (Fig. 5) can be correlated with inhibition of both lysis (Fig. 1b) and competence induction (Table 1), suggesting that Ca2+ transport is the determinant process. The involvement of Ca2+ at the onset of competence induction in *S. pneumoniae* (Fox & Hotchkiss, 1957) and in competence induction in *S. pneumoniae* (Fox & Hotchkiss, 1957) have already been described. However, some media allowing competence development contain less than 1 mM-Ca2+, but are supplemented with a mixture of divalent cations (Tomasz & Hotchkiss, 1964). In these media, competence develops when the cultures reach an OD\textsubscript{400} of 0.3 to 0.4, while competence was attained at an OD\textsubscript{400} about 0.05 to 0.1 in the medium used for this study. This suggests that another set of growth parameters might trigger competence. In any case, in our system conditions that do not allow competence development, such as absence of CF production in the *com* mutant Cpl322 (Fig. 3d) and neutral pH (Fig. 1a) do not allow Ca2+-induced lysis.

Complementation of mutant Cpl322 and cultures of the wild-type strain grown at neutral pH with exogenous CF restores both competence induction (Fig. 3a) and lysis (Fig. 3b, d). CF extract could not complement the lysis defect of the *lyt* mutant. It is thus unlikely that the extract was contaminated by a lytic activity. So far, the leader region lying within the *lyt* promoter (Diaz & Garcia, 1990) might somehow contribute to regulation of *lyt* expression in response to deleterious growth conditions. Nevertheless, our findings support strongly the hypothesis that competence and lysis constitute responses to Ca2+ stress, regulated by CF or by different activators, produced in and co-purified from the same cultures.

In *lyt*+ cultures, lysis is overcome in the presence of exogenous DNA if the bacteria are genetically capable of DNA uptake (Fig. 4a, b). Homologous or heterologous DNA are equivalent for lysis protection (Fig. 4a). After uptake, the fate of these two substrates is quite different but in the end, both processes lead to a replenishment of the nucleotide pool. Pneumococcal DNA is integrated by homologous recombination resulting in the local replacement of one strand of the recipient molecule by the transforming strand. The parental strand is then degraded and the nucleotides are used for *de novo* DNA synthesis (Lacks *et al.*, 1967). Heterologous DNA is degraded by endonucleases and enters the nucleotide pool. Thus, DNA uptake by competent bacteria might be looked on as a process that allows nucleotide feeding. A dramatic metabolic upshift triggered by Ca2+ and regulated by CF occurs at competence. Stimulation of glycolysis associated with an elevation of the ATP pool, a cytoplasmic alkalinization (Lopez *et al.*, 1989) and synthesis of the lipid polymer poly(β-hydroxybutyrate) (Reusch & Sadoff, 1983; Clavé *et al.*, 1989) have been described. If one branch of the metabolic network is not activated in a concerted manner and becomes limiting, growth might then, become unbalanced. DNA uptake prevents lysis of cultures which have passed through a competence cycle. Nucleotides might represent the limiting factor in cultures growing in high Ca2+ media. As an hypothesis, we propose that activation of DNA uptake at competence might be an homeostatic regulation for the restoration of balanced growth conditions.

The natural environment of *S. pneumoniae* is body fluids in which the Ca2+ concentration is around 1-5 mM, the concentration at which competence and lysis are obtained under laboratory conditions. Interestingly, *comA* (Morrison *et al.*, 1984; Chandler & Morrison, 1988), a gene belonging to the *com* locus, whose disruption prevents CF production, contains consensus sequences characteristic of the superfamily of ATP-dependent bacterial transporters (Hui & Morrison, 1991). The ComA primary structure, derived from the nucleic acid sequence of the *comA* gene, shows a strong homology with HlyB, which is involved in the export of the bacterial toxin haemolysin in *E. coli* (Koronakis *et al.*, 1988). By analogy, it has been proposed that the *com* locus contains an operon encoding the synthesis and excretion of CF. CF might be a molecule allowing a cycle...
of consecutive lysis and transformations, resulting in cross-feeding within natural co-cultivated subpopulations. Indeed, under laboratory conditions, successive competence waves can be observed in the same culture (Chen & Morrison, 1987). Genetic exchanges at competence might be part of a more general cross-feeding event. In this highly regulated process, Ca\(^{2+}\) transport via a DMB-sensitive function plays a central role (Fig. 5, Table 1).

This work was supported by Université P. Sabatier and Centre National de la Recherche Scientifique LP008201. Corinne Clavé was supported by a grant from Ministère de la recherche et de la Technologie and Jean-Michel Manias was a graduate student.

We thank Dr Diane Stassi for helpful discussions during preparation and editing of the manuscript. Strain GP95 was kindly provided by Dr Gianni Pozzi, Universita di Verona, Verona, Italy.

References

