Influence of CO₂ and low concentrations of O₂ on fermentative metabolism of the rumen ciliate *Dasytricha ruminantium*

JAYNE E. ELLIS,¹ **PETER S. MCINTYRE,**² **MOHAMMED SALEH,**² **ALAN G. WILLIAMS**³ and **DAVID LLOYD**¹

¹Microbiology Group, School of Pure and Applied Biology, University of Wales College of Cardiff, PO Box 915, Cardiff CF1 3TL, UK
²Department of Science and Chemical Engineering, Polytechnic of Wales, Pontypridd, Mid-Glamorgan CF37 1DL, UK
³Hannah Research Institute, Ayr KA6 5HL, UK

(Received 29 October 1990; revised 22 February 1991; accepted 28 February 1991)

The effects of ruminal concentrations of CO₂ and O₂ on glucose-stimulated and endogenous fermentation of the rumen isotrichid ciliate *Dasytricha ruminantium* were investigated. Principal metabolic products were lactic, butyric and acetic acids, H₂ and CO₂. Traces of propionic acid were also detected; formic acid present in the incubation supernatants was found to be a fermentation product of the bacteria closely associated with this rumen ciliate. ¹³C NMR spectroscopy revealed alanine as a minor product of glucose fermentation by *D. ruminantium*. Glucose uptake and metabolite formation rates were influenced by the headspace gas composition during the protozoal incubations. The uptake of exogenously supplied D-glucose was most rapid in the presence of O₂ concentrations typical of those detected in situ (i.e. 1–3 μM). A typical ruminal gas composition (high CO₂, low O₂) led to increased butyrate and acetate formation compared to results obtained using O₂-free N₂. At a partial pressure of 66 kPa CO₂ in N₂, increased cytosolic flux to butyrate was observed. At low O₂ concentrations (1–3 μM dissolved in the protozoal suspension) in the absence of CO₂, increased acetate and CO₂ formation were observed and *D. ruminantium* utilized lactate in the absence of extracellular glucose. The presence of both O₂ and CO₂ in the incubation headspaces resulted in partial inhibition of H₂ production by *D. ruminantium*. Results suggest that at the O₂ and CO₂ concentrations that prevail in situ, the contribution made by *D. ruminantium* to the formation of ruminal volatile fatty acids is greater than previously reported, as earlier measurements were made under anaerobic conditions.

Introduction

The isotrichid holotrich ciliate *Dasytricha ruminantium* utilizes glucose and certain other soluble carbohydrates present in rumen fluid (Howard, 1959; Williams, 1986). The principal metabolic products of carbohydrate fermentation are lactate, acetate, butyrate, H₂ and CO₂ (Williams & Harfoot, 1976; Van Hoven & Prins, 1977; Williams, 1979). Traces of propionic and formic acids have also been reported (Heald, 1953; Gutierrez, 1955; Williams & Harfoot, 1976; Van Hoven & Prins, 1977). An intracellular storage polysaccharide, amylopectin, is also synthesized and subsequently supports endogenous fermentation during periods of extracellular substrate depletion (Williams, 1986). The pathways leading to the formation of these principal metabolites have been partially characterized (Yarlett et al., 1981, 1982, 1983).

D. ruminantium lacks mitochondria, but possesses specialized redox organelles, the hydrogenosomes. In these organelles, pyruvate oxidation yields acetate, H₂ and CO₂ (Yarlett et al., 1981, 1982). This organism is susceptible to oxygen when exposed to air, but it has a high affinity for O₂ at low concentrations (Lloyd et al., 1982; Hillman et al., 1985b): the hydrogenosome has been implicated as a site of O₂ consumption in both *Trichromonas foetus* (Čerkašov et al., 1978; Müller & Lindmark, 1978) and *D. ruminantium* (Yarlett et al., 1982). H₂ evolution is, however, markedly influenced by dissolved O₂; O₂ concentrations >2.8 μmol l⁻¹ result in irreversible inactivation of the hydrogenase system (Yarlett et al., 1983; Hillman et al., 1985b). In the rumen, the protozoal population actively scavenges dissolved O₂ (Ellis et al., 1989a, b) and has a protective role in situ,
removing O2 from the environment of more susceptible organisms (e.g. methanogens) (Hillman et al., 1988).

The rumen provides an environment in which *D. ruminantium* experiences low, fluctuating concentrations of O2 (0.25–3 μM, Scott et al., 1983; Hillman et al., 1985a) and high concentrations of CO2 (160–3800 μM dissolved in rumen liquor (Hillman et al., 1985a) and forming 65% (v/v) of the ruminal gaseous headspace (McArthur & Miltimore, 1961)]. The effects of these gases at physiological concentrations on the fermentation of soluble carbohydrates by this organism have not been determined, as previous studies *in vitro* have used O2-free N2 (Williams & Harfoot, 1976) or CO2 (Van Hoven & Prins, 1977).

In this study, 13C NMR, HPLC and membrane-inlet mass spectrometry have been used to identify and quantify the end products of glucose fermentation by *D. ruminantium in vitro*. We have determined the effects of O2 and CO2, at concentrations typical of conditions that prevail in the rumen, on the fermentative metabolism of this ruminal ciliate.

Methods

Isolation of organism. *D. ruminantium* was isolated from rumen contents of a sheep that had been defaunated and recolonized with *D. ruminantium* and *Entodinium* spp. The animal received a diet of concentrates and chopped hay. Water was given *ad lib*. Samples of rumen fluid (500 ml) were withdrawn 1 h after feeding, strained and diluted twofold with holotrich isolation buffer (Williams & Harfoot, 1976) from which Na2S had been omitted. The buffer was rendered O2-free by using distilled water that had been boiled and cooled with N2 gassing. Samples were transported to the laboratory in a portable incubator and maintained at 39 °C in sealed, N2-gassed insulated containers. The sample temperatures never fell below 37 °C, and the pH remained between 6.7 and 7.0 during transportation. Subsequently, samples were strained to remove residual plant material, diluted twofold with buffer, and placed into N2-gassed conical flasks. The samples were incubated in a water-bath at 39 °C until contaminating small plant particles formed a scum layer and could be removed.

D. ruminantium preparations were collected on defined aperture textiles (20 μm pore size) (Simon Engineering) following prefiltration through a filter cloth (80 μm pore size), then thoroughly washed with buffer on the 20 μm pore-size filter to remove free and adherent bacteria and any remaining *Entodinium* spp. Anaerobiosis was maintained during the isolation procedures by thorough gassing with N2. Washed suspensions of *D. ruminantium* were sedimented by centrifugation at 500 g for 2 min at room temperature and resuspended in 2 ml of buffer under N2. Contamination of the preparation by *Entodinium* spp. was negligible (<1%). Protozoa were counted using a haemocytometer.

Protozoal incubations and dissolved gas analyses. Samples (2 ml) were adjusted to pH 7.0 and transferred to an incubation vessel maintained at 39 °C. Separate incubations were carried out using four different headspace compositions: 101 kPa (100%) N2; a partial pressure of O2 in N2, usually 7.5 kPa O2 (35% air; 65% N2, v/v) to give a balance of 1–3 μM dissolved O2 in the protozoal suspension; 66 kPa CO2 in N2; and a gaseous mixture of 66 kPa CO2 and 7.5 kPa O2 (65% CO2; 35% air, v/v) to give 1–3 μM O2 and 3000–3400 μM-CO2 in the protozoal suspension. Each incubation was done in triplicate. Dissolved gas concentrations were monitored using the HAL series quadrupole gas analyser (Hiden Analytical) which was linked to the incubation vessel by a quartz probe sealed at one end with a 100 μm diameter inlet covered by a 15-μm-thick silicone membrane (Lloyd et al., 1987). The probe monitored gases dissolved in the 2 ml reaction vessel under a mobile gas phase (Degn et al., 1985; Lloyd & Scott, 1985); mixing was by bubbling at a constant flow rate (10 ml min⁻¹) (Lloyd et al., 1987). The partial pressures of O2 and CO2 in the gas were controlled using a digital gas mixer (Degn & Lundsgaard, 1980). The concentrations of dissolved gases at 39 °C and pH 7.0 were taken as: H2, 740 μM; O2 in air, 215 μM; CO2, 5258 μM (Wilhelm et al., 1977). Rates of gas production were calculated as described previously (Lloyd & Scott, 1985).

After recording endogenous steady-state levels of dissolved CO2 and H2 under a predetermined gas phase, substrates were added. Substrates used were D-glucose (30 mM final concentration) or sodium DL-lactate (5 mM final concentration) or both D-glucose (30 mM final concentration) and sodium DL-lactate (5 mM final concentration). Organisms were incubated for 2 h. Samples (200 μl) were withdrawn every 30 min and centrifuged for 10 min at 5100 g at room temperature. Supernatants were then filtered to remove protein using a molecular filter (mol. mass cut-off 10 kDa) (Amicon) and stored frozen at −20 °C. Endogenous end-metabolite formation was determined by an identical procedure except that no substrate was added. Samples for NMR were obtained in a similar manner except that D-[1-13C]glucose (30 mM final concentration) was added. Samples (0-5 ml) were withdrawn after 2 and 4 h, respectively and centrifuged at 5100 g for 10 min. Supernatants were decanted and extracted with perchloric acid (60%, v/v) on ice for 10–15 min, neutralized with 4 m-NaOH and centrifuged at 5100 g for 10 min. Supernatants were then stored at −20 °C.

Bacterial incubations. Controls were set up using extracts from the protozoa that might contain bacteria. Washed protozoa were maintained at 4 °C under N2 and disrupted by treatment with ultrasound using an MSE Soniprep 150 at a frequency of 20 kHz, in cycles of 15 s, with 15 s intervals, at an amplitude of 6–12 μm for 6 min. The absence of intact protozoa after these treatments was confirmed by microscopic examinations. The crude homogenate (10 ml) was centrifuged at 7000 g for 10 min. The pellet was washed twice in buffer by recentrifugation at 7000 g for 10 min. The pellet contained intact, motile bacteria (observed by microscopic examination) that were present in the original protozoal suspension. The pellet was resuspended in buffer under anaerobic conditions to its original volume.

NMR measurements. 13C NMR proton decoupled spectra were recorded at 22.49 MHz on a JEOL FX90Q spectrometer equipped with a 10 mm multinuclear probe. Free induction decays (FID) were acquired into 8000 data points covering a spectral width of 120 p.p.m. (2700 Hz) using pulses of 13 μs (78°) at 10 s intervals. Each FID was multiplied by an exponential function that produced a line broadening of 1-03 Hz before transformation. D20 was used as solvent and internal reference. An external peak (β-C1 resonance in the added D-glucose (97.0 p.p.m.) (Lloyd et al., 1988).

Quantification of metabolites. Soluble metabolites present in the supernatant were separated and quantified using reverse phase HPLC coupled to a variable wavelength UV detector (HPLC Technology Ltd). Separation was achieved by injecting 20 μl volumes into a resin-based fermentation monitoring column (Bio-Rad), via a guard column packed with the same material. Samples of supernatant were suitably diluted in the solvent which formed the mobile phase (1 mM-H2SO4). Eluent streams were monitored at 210 nm with readout on a potentiometric chart recorder. The eluent flow rate was 0.8 ml min⁻¹ and the sustained pressure was approximately 800 p.s.i. Metabolites were identified and quantified by using internal standards to plot
calibration curves of pure compounds. Glucose concentration was determined using a commercially available coupled hexokinase:glucose-6-phosphate dehydrogenase assay kit (Sigma).

Sources of chemicals. D-[1-13C]glucose (99%) was purchased from Aldrich. For HPLC, H2SO4 was Aristar grade (BDH) all other chemicals were of analytical grade obtained from BDH.

Results

Identification of products by NMR

An initial identification of all of the products released by *D. ruminantium* during catabolism of D-glucose was carried out after incubating the organism with D-[1-13C]glucose under various gas phases. 13C NMR spectra of the supernatants obtained after 4 h incubations under 101 kPa N2 revealed lactate, acetate and butyrate to be the principal fermentation end-products, as previously reported (Williams & Harfoot, 1976; Van Hoven & Prins 1977). D-[1-13C]Glucose was still present extracellularly after 4 h (Fig. 1a). Alanine was detected extracellularly as a minor product of glucose catabolism by this organism. Labelled alanine was never detectable in bacterial incubations with D-[1-13C]glucose, confirming the protozoal origin of the amino acid. Spectra obtained from the 2 h incubation after exposure to low O2 concentrations revealed similar signals to those observed after 4 h under 101 kPa N2 (Fig. 1b); however, the relative signal intensities changed dramatically in the 4 h incubation with low O2 concentrations (Fig. 1c). Glucose was not detected extracellularly after 4 h. Alanine showed progressive accumulation; thus it was undetectable after 2 h, but present after 4 h; butyrate was increased and the lactate signal intensity was greatly diminished. 13C NMR spectra obtained after incubations under 66 kPa CO2 in N2 revealed similar metabolite signals as observed with the 101 kPa N2 gas phase, except that alanine was not detected (Fig. 1d). No anomic specificity for D-[1-13C]glucose utilization by *D. ruminantium* was detected for any of the incubations.

Volatile fatty acid (VFA) and lactate production during incubations with D-glucose

Incubations of *D. ruminantium* with 30 mM-D-glucose under 101 kPa N2 revealed lactate to be the major end-product of fermentation (Fig. 2a). Acetate and butyrate were produced in equimolar portions but lactate was produced at a concentration 10-fold greater than that of each VFA. Glucose was initially utilized at a steady rate (55 nmol min⁻¹ per 10⁵ organisms), but the extracellular concentration never decreased below 3-5 mM. The introduction of low O2 concentrations resulted in dramatic changes in metabolite formation. Glucose was consumed at almost twice the rate observed in the absence of O2 (101 nmol min⁻¹ per 10⁵ organisms) and was barely detectable in the incubation supernatants after 30 min (Fig. 2b). Rapid accumulation of extracellular lactate was observed which decreased by 50% over the following 90 min. The rate of acetate production was
Table 1. Metabolites formed by *D. ruminantium* during 2 h incubations with various substrates at 39 °C

Values presented are means ± SD obtained from three measurements using HPLC.

<table>
<thead>
<tr>
<th>Gas phase</th>
<th>Substrate</th>
<th>Lactate</th>
<th>Acetate</th>
<th>Butyrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>101 kPa N<sub>2</sub></td>
<td>None</td>
<td>+7.2 ± 1.6</td>
<td>+3.8 ± 1.0</td>
<td>+4.4 ± 0.8</td>
</tr>
<tr>
<td>101 kPa N<sub>2</sub></td>
<td>Sodium lactate (5 mM)</td>
<td>+24 ± 0.5</td>
<td>+1.3 ± 0.2</td>
<td>1.8 ± 0.5</td>
</tr>
<tr>
<td>7.5 kPa O<sub>2</sub> in N<sub>2</sub>*</td>
<td>Sodium lactate (5 mM)</td>
<td>-4.3 ± 1.0</td>
<td>+2.8 ± 0.5</td>
<td>+4.0 ± 0.9</td>
</tr>
<tr>
<td>7.5 kPa O<sub>2</sub> in N<sub>2</sub>*</td>
<td>D-Glucose (30 mM)</td>
<td>-49.3 ± 5.5†</td>
<td>+8.6 ± 2.4</td>
<td>+8.6 ± 1.8</td>
</tr>
<tr>
<td>7.5 kPa O<sub>2</sub> in N<sub>2</sub>*</td>
<td>Sodium lactate (5 mM) + D-glucose (30 mM)</td>
<td>-15.1 ± 3.1†</td>
<td>+4.0 ± 0.5</td>
<td>+4.2 ± 1.5</td>
</tr>
</tbody>
</table>

* Partial pressure of O₂ in N₂ required to give 1-3 μM-O₂ dissolved in the protozoal suspension.
† After depletion of D-glucose from supernatant (approx. 30 min).

85 nmol min⁻¹ per 10⁵ organisms. This was slightly higher (11%) than uptake rates under 66 kPa CO₂ in N₂, but 35% greater than the uptake rates under 101 kPa N₂. Lactate was produced at 25% lower than rates obtained using 101 kPa N₂. Equimolar butyrate and acetate were formed at 25% higher concentrations than those obtained with 101 kPa N₂ (Fig. 2d).

Lactate utilization

Further investigations of lactate uptake by *D. ruminantium* (Fig. 2b) were carried out. Incubations with extracellularly added sodium DL-lactate (5 mM) under 101 kPa N₂ in the absence of D-glucose showed no consumption of extracellular lactate although production of acetate, lactate and butyrate was detectable (Table 1). However, their formation rates were 30-40% lower than those found after similar incubations in the absence of any substrate. Incubation of *D. ruminantium* without D-glucose but with extracellularly added lactate (5 mM) in the presence of 1-3 μM-O₂ gave a slow consumption of lactate. Organisms incubated at 1-3 μM-O₂ in the presence of both D-glucose (30 mM) and lactate (5 mM) preferentially consumed D-glucose prior to lactate utilization. This was similar to results obtained previously with *D. ruminantium* incubated with D-glucose (30 mM) and low dissolved O₂ concentrations in the absence of extracellular lactate (Fig. 2b). In both cases acetate formation increased. No change in the rate of butyrate production was detected.
Fermentation by Dasytricha ruminantium

Endogenous metabolism of D. ruminantium

The endogenous metabolites produced by D. ruminantium are formed by intracellular amyllopectin degradation (Williams & Harfoot, 1976; Van Hoven & Prins, 1977). The changes observed in principal metabolite concentrations under the four gas phases studied are presented in Fig. 3(a–d). Highest metabolite concentrations were obtained under 101 kPa N₂. Lactate was the major product of endogenous metabolism in all cases.

Table 2. Mass spectrometric analyses of dissolved gas production by D. ruminantium during glucose-stimulated and endogenous fermentation, under different gas phases

<table>
<thead>
<tr>
<th>Gas phase</th>
<th>Hydrogen</th>
<th>Carbon dioxide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endogenous</td>
<td>Glucose</td>
</tr>
<tr>
<td>101 kPa N₂</td>
<td>4.5 ± 1.0</td>
<td>2.1 ± 0.6</td>
</tr>
<tr>
<td>7.5 kPa O₂ in N₂</td>
<td>3.7 ± 0.5</td>
<td>3.7 ± 0.5</td>
</tr>
<tr>
<td>66 kPa CO₂ in N₂</td>
<td>2.3 ± 0.5</td>
<td>2.0 ± 0.5</td>
</tr>
<tr>
<td>7.5 kPa O₂/66 kPa CO₂*</td>
<td>2.4 ± 0.4</td>
<td>4.4 ± 0.9</td>
</tr>
</tbody>
</table>

* Partial pressure of O₂ required to give 1–3 μM-O₂ dissolved in the protozoal suspension.

Acetate formation was reduced by 30% under a gas phase high in CO₂ by comparison with its production under 101 kPa N₂. Endogenous fermentation under 101 kPa N₂, or a combination of low O₂ and high CO₂ concentrations resulted in the production of approximately equimolar concentrations of acetate and butyrate.

H₂ and CO₂ production by D. ruminantium

Rates of H₂ and CO₂ production by D. ruminantium were determined simultaneously by dissolved gas analysis using membrane-inlet mass spectrometry. Rates obtained during incubations with each of the four gas phases are presented for both glucose-stimulated and endogenous fermentation (Table 2). In both cases, H₂ production was partially inhibited by the presence of low concentrations of O₂. During glucose-stimulated fermentation under low O₂, inhibition of H₂ production was coupled to a 2.5-fold increase in the rate of CO₂ evolution. Endogenous CO₂ evolution was unaffected by the presence of low dissolved O₂ concentrations. H₂ evolution was also inhibited during incubations with 66 kPa CO₂ in N₂. Both glucose-stimulated and endogenous fermentation under this gas phase showed an approximate 50% inhibition of H₂ production compared to gas evolution rates measured under a 101 kPa N₂ gas phase.

Other metabolites formed by D. ruminantium

Small amounts of formate (<10 μM), propionate (<100 μM) and isobutyrate (<25 μM) were detected in all
incubation supernatants. The presence of alanine in the supernatants was also indicated, although concentrations were not measurable by the methods employed. Formate concentrations in the protozoal incubation supernatants were similar to those detected in corresponding incubations of bacteria which had been isolated from the protozoal suspensions. Bacterial suspensions produced <2% of the principal VFA and lactic acid concentrations detected in equivalent protozoal incubations.

Following all incubations the protozoa were observed microscopically and appeared intact with maintained ciliary movement.

Discussion

The glucose fermentation balance of *D. ruminantium* is modulated by ambient gas partial pressures. Under all incubation conditions employed this holotrich ciliate predominantly ferments glucose to lactate, acetate, butyrate, H₂ and CO₂, but the relative proportions in which these are produced are sensitive to O₂ and CO₂ at those concentrations typically observed in situ in the rumen (Hillman et al., 1985a). Alanine, not previously recognized as a product of glucose catabolism by this organism, was detected by ¹³C NMR spectroscopy. Glycerol and ethanol, known products of the trichomonads (Müller, 1988), were not detected as metabolites of *D. ruminantium* fermentation by the methods employed.

Lactic acid is the major end-product of glucose-stimulated fermentation; this confirms previous studies (Williams & Harfoot, 1976; Van Hoven & Prins, 1977). In the rumen, lactic acid is a short-lived intermediate (Hungate, 1966) and its over-accumulation results in a condition potentially lethal to the host. The uptake of lactic acid from rumen fluid by the entodiniomorphid ciliates has been reported previously (Newbold et al., 1987). However, lactate has previously been observed to have adverse effects on holotrichs (Prins & Van Hoven, 1977; Van Hoven & Prins, 1977; Williams & Morrison, 1982).

The presence of traces of O₂ (1–3 μM) profoundly affects the balance of metabolic fluxes in *D. ruminantium*. Lactate was consumed by *D. ruminantium* in the presence of low dissolved O₂ concentrations only when glucose was depleted from the supernatant. Increased CO₂ evolution suggests an increased flux of carbon through hydrogenosomal pathways; acetate production was correspondingly increased. Increased production of acetate in the presence of O₂ has also been reported to occur in *Isotricha* spp. (Prins & Prast, 1973). Acetate formation under strictly anaerobic conditions may be limited by the electron-accepting activity of protons in the hydrogenase reaction. Oxygen competes with protons within the hydrogenosome by acting as a terminal acceptor for electrons released during pyruvate oxidation (Chapman et al., 1986a). Increased carbon flux through the hydrogenosome, as observed with *D. ruminantium* in the presence of O₂, might be energetically favourable although no direct experimental evidence exists for increased ATP generation aerobically in this organism or in the trichomonads (Müller, 1988).

Certain hydrogenosomal enzymes are oxygen-sensitive (Yarlett et al., 1981) and their compartmentation indicates a possible protective role for the organelle in organisms living in the presence of O₂ (Lloyd & Coombs, 1989). During periods between feeds the isotrichid holotrich ciliates sequester the reticulum wall (Abe et al., 1981; Dehority & Tirabasso, 1989; Ankrah et al., 1990), where they would be exposed to the full flux of O₂ entering the rumen through the mucosal epithelium (Czerkawski, 1986). Conversion of lactate to pyruvate by *D. ruminantium* regenerates cytosolic NADH. This organism possesses functional cytosolic NADH oxidase and peroxidase activities (Yarlett et al., 1981) which may also have a role in protecting O₂-sensitive systems from O₂ and its reduction products, and in keeping the organism in redox balance (Williams, 1986).

The inhibition of H₂ production by O₂ in *D. ruminantium* confirms previous studies (Yarlett et al., 1983; Hillman et al., 1985b). Both inhibitory and stimulatory effects of traces of O₂ on H₂ production have been observed in organisms containing hydrogenosomes (Lloyd et al., 1987; Ellis et al., 1989b; Paget & Lloyd, 1990). These results emphasize the complexities of the interactions of O₂ with the hydrogenosomal electron transport system.

Suppression of acetate formation and H₂ evolution under high CO₂ concentrations have been observed previously in the hydrogenosome-containing flagellate *Trichomonas vaginalis* (Paget & Lloyd, 1990), where high CO₂ favours biosynthetic pathways. In *D. ruminantium* high CO₂ favours butyrate formation. Cultivation of the rumen fungus *Neocallimastix patriciarum* under high CO₂ concentrations leads to suppression of pyruvate ferredoxin oxidoreductase synthesis and therefore acetate formation (Yarlett et al., 1986).

Possible control points in *D. ruminantium* fermentation are indicated in Fig. 4. In summary, by comparison with anaerobic metabolism under 101 kPa N₂, high CO₂ favours cytosolic carbon fluxes (i.e. production of lactate from pyruvate and butyrate from acetyl-CoA) whereas low O₂ concentrations favour those pathways located in the hydrogenosomes. These metabolic tendencies are qualitatively similar to those observed in *T. vaginalis* (Paget & Lloyd, 1990).

Traces of formate detected in this study could be
Fermentation by Dasytricha ruminantium

1415

Fig. 4. Fermentation pathways in D. ruminantium. Pathways favoured by the presence of low dissolved O₂ (1-3 μM) are indicated by bold arrows (→). Pathways favoured by high CO₂ concentrations (66 kPa CO₂ in N₂ gas phase) are indicated by dashed arrows (-----). The box encloses those reactions proceeding in the hydrogenosome. Enzymes are as follows: (1) Pyruvate: acceptor oxidoreductase; (2) hydrogenase; (3) phosphate acetyltransferase; (4) acetate kinase; (5) β-hydroxybutyryl-CoA dehydrogenase; (6) crotonase; (7) crotonyl-CoA reductase; (8) phosphate butyryltransferase; (9) butyrate kinase; (10) lactate dehydrogenase; (11) malate dehydrogenase (decarboxylating). X is the uncharacterized low-redox-potential electron-transporting component (Yarlett et al., 1981, 1982, 1985). The formation of acetyl phosphate from acetyl-CoA is based on physiological observations (Yarlett et al., 1982) and awaits confirmation, as this pathway of acetate formation is considered unique amongst eukaryotes.

bacterial products and not products of protozoal metabolism as previously reported (Van Hoven & Prins, 1977). Attachment of bacteria to the cilia and pellicle of D. ruminantium (Imai & Ogimoto, 1978) and also their presence in digestive vacuoles (Gutierrez & Hungate, 1957; Stern et al., 1977) are commonly observed. The possible metabolic interrelationships are uncertain although studies with rumen ciliates and methanogens suggest that these microbial groups interact strongly (Hillman et al., 1988).

At the low population densities which typically survive the protozoal isolation procedure, contaminating and associated bacteria produced no detectable alanine. The C-3 atom of alanine is derived from C-1 of D-glucose during glucose catabolism by D. ruminantium. Alanine has been identified as an end-product of fermentation by parasitic protozoa (Chapman et al., 1986b; Darling et al., 1987; Edwards et al., 1989; Paget et al., 1990). The pathway leading to alanine formation is sensitive to O₂ in Giardia lamblia (Paget et al., 1990). At the dissolved O₂ concentrations used in this study (1-3 μM) no apparent effect of O₂ on alanine formation was observed. Relatively little is known about the metabolism of amino acids by D. ruminantium. Alanine secretion has been reported in Isotricha spp. (Harmeyer, 1971) and aminotransferase activities have been detected in extracts obtained from mixed protozoal preparations (Bhatia et al., 1979). Further work is required to determine the pathway(s) of alanine production from D-glucose; presumably pyruvate is the direct precursor and the final step may involve either reductive amination or the participation of an aminotransferase (e.g. alanine:2-oxoglutarate aminotransferase).

Previous estimates (Van Hoven & Prins, 1977) of the contributions of D. ruminantium to the overall VFA output of the ruminant have been based on anaerobic measurements in vitro of endogenous metabolism using O₂-free CO₂ atmospheres. These measurements take no account of the actual conditions prevailing in situ in the rumen. The present results therefore suggest that the importance of D. ruminantium may have been underestimated as the endogenous metabolite formation rate under O₂-free CO₂ was used in the determination. During the fermentation of exogenous glucose by D. ruminantium under a gas headspace composition similar to conditions that prevail in situ in the rumen, acetate and
butyrate formation were stimulated by 7- and 8-fold, respectively, compared to their endogenous production under a high CO₂ in N₂ gas phase.

J.E.E. held a SERC (CASE) postgraduate studentship.

References

Fermentation by *Dasytricha ruminantium*

