Separate cloning and expression analysis of two protein components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. C8S3

ANGELIKA ELSNER,1 RUDOLF MULLER2* and FRANZ LINGENS1

1 Institut für Mikrobiologie der Universität Hohenheim, Garbenstrasse 30, D-7000 Stuttgart 70, Germany.
2 TU Hamburg-Harburg, AB Biotechnologie II, Harburger Schloßstrasse 37, D-2100 Hamburg 90, Germany.

(Received 5 September 1990; revised 4 November 1990; accepted 14 November 1990)

The two protein components, II and III, of the 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 were cloned separately into Escherichia coli. Component II was obtained on plasmid pCBSII, containing a 3.0 kbp HindIII fragment, and component III on plasmid pCBSIIIb, containing a 1.3 kbp SalI/PstI fragment. The identities of the two components were confirmed by comparison with the authentic components from Pseudomonas sp. CBS3. Both components were expressed constitutively in E. coli. Neither component alone showed dehalogenating activity. Only in the mixture of crude extracts from both clones was 4-chlorobenzoate dehalogenase detectable. The specific activities in E. coli crude extracts were 2.9 mU (mg protein)-1 for component II and 3.5 mU (mg protein)-1 for component III. Expression analysis by minicell experiments revealed a single polypeptide chain of 29 kDa for component II and of 31 kDa for component III.

Introduction

Chlorinated benzoic acids are intermediates in the biodegradation of chlorinated biphenyls (Furukawa et al., 1978) and herbicides (Köcher et al., 1976). Several bacteria with the ability to utilize 4-chlorobenzoate as sole source of carbon and energy have been isolated (Ruisinger et al., 1976; Klages & Lingens, 1979, 1980; Zaitsev & Karasevich, 1981; van den Tweel et al., 1986; Marks et al., 1984a). The initial step in 4-chlorobenzoate catabolism by these bacteria is the replacement of the chlorine substituent by a hydroxy group. Müller et al. (1984) and Marks et al. (1984b) showed that the oxygen in the enzymically formed 4-hydroxybenzoate was derived from water and that molecular oxygen was not necessary for the reaction. The 4-chlorobenzoic acid dehalogenase from Pseudomonas sp. CBS3 has been cloned on a 9.8 kbp fragment (Savard et al., 1986). From deletion experiments it was suggested that this whole fragment was necessary for the expression of dehalogenating activity. Here we present evidence that only two closely linked much smaller DNA fragments, each expressing a single polypeptide chain, are necessary for this reaction.

Methods

Bacterial strains, plasmids and growth conditions. The bacteria and plasmids used in this study are listed in Table 1. E. coli strains were grown at 37 °C in L-broth (Maniatis et al., 1982), containing 100 µg ampicillin ml-1 when appropriate. Pseudomonas sp. CBS3 was grown at 30 °C as described by Klages & Lingens (1979) on mineral salts medium containing 2 mM 4-chlorobenzoate.

Isolation of DNA and cloning procedures. Preparative amounts of plasmid DNA were prepared by the method of Birnboim & Doly (1979) with subsequent purification of the DNA by CsCl density-gradient centrifugation. For analytical purposes plasmids were isolated by the method of Holmes & Quigley (1981). Subcloning and restriction mapping were accomplished by established techniques (Maniatis et al., 1982). DNA fragments were eluted from 0.7% agarose gels by the freeze-squeeze method of Tautz & Renz (1983). The ligated constructs were used to transform E. coli TG1 by the calcium chloride method (Mandel & Higa, 1970).

Preparation of crude extracts. E. coli cells were grown overnight in 1 litre of L-broth containing ampicillin. After centrifugation at 4 °C and 4000 g for 10 min, the cells were resuspended in 3 ml 50 mM-potassium phosphate buffer pH 7.0 and were passed twice through a French pressure cell at 35 MPa. Cell debris was removed by centrifugation at 4 °C and 40000 g for 30 min.

Enzyme assay. 4-Chlorobenzoate dehalogenase activity was assayed by quantitative thin-layer chromatography as described before (Thiele et al., 1987). For activity tests with single components, the other components were added in excess.

Enrichment of the two cloned components of 4-chlorobenzoate dehalogenase from E. coli crude extracts. Crude extracts from E. coli clones, containing the cloned components of the 4-chlorobenzoate dehalogenase, were heated to 55 °C for 5 min. The resulting precipitates were removed by centrifugation at 4 °C and 40000 g for 30 min. The supernatants were then brought to 45% saturation with solid (NH₄)₂SO₄. After centrifugation the resulting pellets were dissolved in 3 ml 50 mM-potassium phosphate buffer pH 7.5 and applied to a Sephadex G150 column (2.5 x 100 cm). Proteins were eluted from the column with the same buffer. Fractions were collected and assayed for protein at 280 nm and tested for 4-chlorobenzoate dehalogenating activity.

0001-6492 © 1991 SGM
Table 1. Bacterial strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Phenotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas sp. CBS3</td>
<td>4-chlorobenzoate dehalogenase</td>
<td>Klages & Lingens (1979)</td>
</tr>
<tr>
<td>E. coli TG1</td>
<td>LacZ</td>
<td>Gibson (1984)</td>
</tr>
<tr>
<td>E. coli DS910</td>
<td>Minicell strain; RecA- derivative of strain DS410</td>
<td>Dougan & Sherratt (1977)</td>
</tr>
<tr>
<td>pUC18</td>
<td>Ap'</td>
<td>Vieira & Messing (1977)</td>
</tr>
<tr>
<td>pPSA 843</td>
<td>Ap', 4-chlorobenzoate dehalogenase</td>
<td>Savard et al. (1986)</td>
</tr>
<tr>
<td>pCBSII</td>
<td>Ap'</td>
<td>This study</td>
</tr>
<tr>
<td>pCBSIIa</td>
<td>Ap'</td>
<td>This study</td>
</tr>
<tr>
<td>pCBSIIIb</td>
<td>Ap'</td>
<td>This study</td>
</tr>
</tbody>
</table>

Hybridization experiments. Chromosomal DNA from *Pseudomonas* sp. CBS3 and plasmid DNA of pCBSII and pCBSIII were digested with HindIII or SalI and loaded on an agarose gel. DNA was blotted from the gel as described by Southern (1975) on a NY3N Nytran membrane (Schleicher & Schull). The filter was hybridized with a nick-translated, biotinylated probe of pCBSII (Schneider & Müller, 1988). The nick-translation kit was purchased from Gibco Bethesda Research Laboratories; the biotin-16-dUTP was from Boehringer.

Identification of the gene products of the cloned fragments. For the identification of the protein products from the *E. coli* clones expressing component II and component III, we performed minicell experiments with strains harbouring pCBSII and pCBSIIa according to Dougan & Sherratt (1977). [35S]Methionine was purchased from Amersham.

Results

Separate cloning of the two components of 4-chlorobenzoate dehalogenase from *Pseudomonas* sp. CBS3

Savard et al. (1986), who cloned the 4-chlorobenzoate dehalogenase from *Pseudomonas* sp. CBS3, suggested from their deletion experiments that all of the 9.8 kbp fragment was necessary for the dehalogenation reaction, and that the dehalogenase had to comprise several protein subunits. We therefore digested this 9.8 kbp insert with various restriction enzymes and ligated the fragments obtained into the plasmid pUC18 (Vieira & Messing, 1982). All of these subclones were grown in 1 litre cultures and crude extracts were prepared. As expected, none of these extracts showed dehalogenating activity. However, when the extracts of two clones, one containing a 3 kbp HindIII fragment (pCBSII) and the other containing a 2.6 kbp SalI fragment (pCBSIIIa), were mixed, dehalogenating activity was observed. The 2.6 kbp SalI fragment could be further shortened by digestion with PstI to 1.3 kbp (pCBSIIIb). The subcloning procedure is outlined in Fig. 1.

Identification of the dehalogenase components encoded in the subclones

In previous biochemical studies, we found that 4-chlorobenzoate dehalogenase from *Pseudomonas* sp. CBS3 comprised at least three different components (Elsner et al., 1991). Components II and III were stable proteins, whereas component I was an unstable small molecule. When we mixed crude extract from the clone containing pCBSII with the enriched components of 4-chlorobenzoate dehalogenase from *Pseudomonas* sp. CBS3, only component III had to be added to restore dehalogenating activity. To crude extracts of the pCBSIII-containing clone only component II had to be added for activity. We therefore concluded that pCBSII encoded component II, whereas pCBSIIIa and pCBSIIIb coded for component III. The small component I seemed to be present in both extracts. However, when we used crude extracts from *E. coli* containing no plasmid at all, this extract also substituted for component I. Upon dialysis the extracts lost the ability to substitute for component I. We therefore concluded that component I was a small cofactor common in crude extracts of *E. coli*, which was not necessarily encoded in the two plasmids. In order to confirm the identities of the two cloned components, we partially purified the components from the crude extracts of the clones by heat treatment and ammonium sulphate precipitation. In these purification steps the component expressed from pCBSII behaved identically to component II and that from pCBSIII to component III of the 4-chlorobenzoate dehalogenase from *Pseudomonas* sp. CBS3. In gel filtration experiments on Sephadex G150 the two components comigrated with the authentic components from *Pseudomonas* sp. CBS3 at molecular masses of 86 kDa and 92 kDa, respectively. The activity of component II in extracts of *E. coli* containing pCBSII was 2.9 mU (mg protein)⁻¹, whereas the activity of component
III in the crude extracts of pCBSIIa containing E. coli clones was 3-5 mU (mg protein)$^{-1}$. Both components were expressed constitutively in their clones.

Expression analysis of the cloned fragments by minicell experiments

In order to determine the size and number of polypeptide chains encoded in the cloned fragments, we performed minicell experiments according to Dougan & Sherratt (1977). The radioactively labelled gene products were detected by autoradiography after separation by SDS-polyacrylamide gel electrophoresis. In both clones only a single polypeptide was expressed from the DNA insert (Fig. 2). pCBSII coded for a 29 kDa polypeptide, whereas the polypeptide from pCBSIIa was 31 kDa.

Restriction analysis and hybridization experiments

The restriction maps obtained from the two inserts (Fig. 1) suggested that the inserts from pCBSII and pCBSIIa contain overlapping sequences. We therefore labelled the insert of pCBSII and performed Southern analysis on pCBSIIa and *Pseudomonas* CBS3 chromosomal DNA. As shown in Fig. 3, the insert from pCBSIIa hybridized with that from pCBSII. In the HindIII digests of chromosomal DNA from *Pseudomonas* CBS3 the two expected bands corresponding to the insert of pCBSII hybridized, whereas in the SalI digests the band corresponding to the insert of pCBSIIa hybridized, together with a second band at about 4-4 kb, containing the non-overlapping parts of the insert from pCBSII. From these results it is clear that the inserts from pCBSII and pCBSIIa contained identical sequences.

Substitution of component I by ATP, coenzyme A and Mg$^{2+}$

Recent results of F. Löffler (unpublished) suggested that in the reaction of 4-chlorobenzoate dehalogenase from *Pseudomonas* CBS3 component I could be replaced by a mixture of ATP, coenzyme A and Mg$^{2+}$. When we used mixtures of dialysed inactive extracts from E. coli clones containing pCBSII and pCBSIIb, the addition of 1 mM-ATP, 1 mM-coenzyme A and 1 mM-MgSO$_4$ restored the dehalogenating activity.

Discussion

The two protein components of 4-chlorobenzoate dehalogenase have been cloned and expressed separately in E. coli. Both components were expressed constitutively, which indicates that they are under negative control in the parent strain and that the regulatory sequences have not been cloned. In the original clone pPSA843 (Savard *et al.*, 1986) as well as in several clones we obtained from a genomic library we constructed from *Pseudomonas* sp.
CBS3 (A. Elsner, unpublished results) both components were also expressed constitutively, which is in contrast to Pseudomonas sp. CBS3, where the expression of the enzyme is regulated by 4-chlorobenzoate. Since some of these clones contained inserts of more than 30 kbp the regulatory sequences must be located far from the structural genes. Another explanation might be that these regulatory sequences were not functional in E. coli.

The structural genes of the two components must be closely linked, as evidenced by the overlapping sequences in the clones expressing the two components. From these data it is clear that for the constitutive expression of 4-chlorobenzoate dehalogenase in E. coli only a much smaller DNA fragment was necessary than was originally suggested (Savard et al., 1986).

None of the 4-chlorobenzoate dehalogenases described so far has been purified to homogeneity. Therefore, nothing is known about the subunit structure of the components involved in the dehalogenation reaction. From the gel filtration experiments and from the minicell experiments, we suggest that component II and component III are both comprised of three identical protein subunits.

The small unstable component I could be replaced by a mixture of coenzyme A, ATP and Mg²⁺. The biosynthesis of these compounds is not located on the DNA fragments of the clones showing dehalogenating activity but the general availability of these compounds in crude extracts makes the dehalogenation reaction possible when the two protein components described above are expressed.

We thank Dr I. Hunter, Department of Genetics, University of Glasgow, UK, for supporting the minicell experiments in his laboratory. This work was supported by the Bundesministerium für Forschung und Technologie under the contract 0319416A and by Fonds der Chemischen Industrie.

References

