An IS1-like element is responsible for high-level synthesis of extended-spectrum β-lactamase TEM-6 in Enterobacteriaceae

SYLVIE GOUSSARD,1 VLADIMIR SOUGAKOFF,1 † CLAUDE MABILAT,1 † ADOLF BAUERNFEIND2 and PATRICE COURVALIN1*

1 Unité des Agents Antibactériens, CNRS UA 271, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
2 Max von Pettenkofer Institute, University of Munich, Pettenkoferstr. 9a, D-8000 München 2, Federal Republic of Germany

(Received 24 May 1991; revised 20 August 1991; accepted 30 August 1991)

Resistance of Escherichia coli strain HB251 to the newer β-lactam antibiotics, in particular ceftazidime and aztreonam, results from production of the extended-spectrum β-lactamase TEM-6. The corresponding structural gene, blaT-6, and its promoter region were amplified by the polymerase chain reaction. Analysis of the sequence of the amplification product showed that blaT-6 differed by two nucleotide substitutions from blaT-1, the gene encoding TEM-1 penicillinase in plasmid pBR322. The mutations led to the substitution of a lysine for a glutamic acid at position 102 and of a histidine for an arginine at position 162 of the unprocessed TEM-1 protein. The presence of a 116 bp DNA insert upstream from blaT-6 resulted in the creation of hybrid promoter P6 in which the −10 region was that of TEM-1 promoter P3 whereas the −35 canonical sequence TTGACA was provided by the right end of the insert. P6 was found to be 10 times more active than P3 and to confer higher levels of antibiotic resistance upon the host. Analysis of the sequence of the insert indicated that the 116 bp fragment is related to insertion sequence IS1 but differs from it by three internal deletions that removed regions encoding the transposase. The distribution of the IS1-like element in clinical isolates of Enterobacteriaceae was studied by the polymerase chain reaction and by DNA–DNA hybridization. The element appeared to be widespread and was detected in strains producing TEM-6 or other TEM variants.

Introduction

β-Lactamases catalyse hydrolysis of the β-lactam ring in penicillins and cephalosporins. Among Gram-negative bacteria, plasmid-encoded penicillinas TEM-1 and TEM-2 are the most prevalent β-lactamases (Medeiros, 1989). These enzymes hydrolyse penicillins and the so-called first-generation cephalosporins but not the novel broad-spectrum second- and third-generation cephalosporins, such as cefotaxime and ceftazidime. Plasmid-mediated resistance to cefotaxime and other recently developed cephalosporins was first described in 1983 in Serratia marcescens, Klebsiella pneumoniae and K. ozaenae (Knothe et al., 1983). Kliebe et al. (1985) showed that resistance was due to production of a new β-lactamase, SHV-2, that differed by a single mutation from the SHV-1 penicillinase commonly found in Klebsiella spp. (Barthélémy et al., 1988). More recently, other extended-spectrum plasmid-mediated β-lactamases that are variants of TEM-type penicillinases have been detected in strains highly resistant to third-generation cephalosporins (for a review, see Philippon et al., 1989). Enzymes TEM-3 and TEM-4 are characterized by similar levels of activity against cefotaxime and ceftazidime (Paul et al., 1989; Sirot et al., 1987) whereas TEM-5, -6, -7 and -9 were found in strains that arepreferentially resistant to ceftazidime and aztreonam (Bauernfeind & Hörl, 1987; Collatz et al., 1989; Petit et al., 1988; Spencer et al., 1987). With the exception of TEM-6, all these variants have been characterized at the molecular level. They differ from TEM-1 or TEM-2 by

* Author for correspondence. e-mail address Earn/Bitnet: COURVAL@FRPSTRO1.
† Present address: Department PF/ID, F. Hoffmann-La Roche & Co., CH-4002 Basle, Switzerland.
‡ Present address: Laboratoire bioMérieux, Ecole Normale Supérieure, 46 allée d'Italie, 69634 Lyon Cedex 07, France.

Abbreviations: CAT, chloramphenicol acetyltransferase; IC99, 99% inhibitory concentration.

The nucleotide sequence data reported in this paper have been submitted to EMBL and have been assigned the accession number X57972.

0001-6947 © 1991 SGM
several point mutations that are mostly involved in the extension of the substrate range of the enzymes (Collatz et al., 1989; Mabilat & Courvalin, 1990; Mabilat et al., 1990; Sougakoff et al., 1988b, 1989).

β-Lactamase TEM-6 was detected in Escherichia coli HB251, which is resistant to cefazidime and aztreonam but susceptible to other third-generation cephalosporins (Bauernfeind & Hörler, 1987). The enzyme is characterized by an isoelectric point of 5.9 and the corresponding gene is transferable by conjugation, together with chloramphenicol, kanamycin and sulphonamide resistance determinants, to other E. coli strains. DNA–DNA hybridization with a probe specific for TEM-1 indicated that the gene encoding TEM-6, designated blaT-6, is closely related to the structural blaT genes for TEM-type penicillinases (Sougakoff et al., 1988a).

In this study, the molecular characterization of blaT-6 and of its promoter region is presented. We found upstream from blaT-6 a 116 bp DNA element related to insertion sequence IS1. The major features of the active hybrid-promoter P, created by insertion of this DNA fragment have been determined. The distribution of the IS1-like element was studied in clinical isolates that produced TEM-6 or other TEM variants.

Methods

Strains, plasmids and media. E. coli HB251, harbouring plasmid pIP1844 [Tra, blaT-6 (TEM-6), Ap, Km, Km, Su, approx. 200 kb], and recipient strain E. coli A15, plasmid-free and resistant to nalidixic acid, have been described (Bauernfeind & Hörler, 1987). E. coli THB251 corresponds to transconjugant A15[pIP1844] and produces a β-lactamase with an isoelectric point of 5.9 (Bauernfeind & Hörler, 1987). Plasmids pBR32 (Ap, Tc, 4.3 kb) (Bolivar et al., 1977) and pKK232-8 (Ap, 4.6 kb) (Brosius, 1984) were from our laboratory collection. E. coli HB101 (Boyé & Roulland-Dussoix, 1969) was the host strain for recombinant plasmids. E. coli BM2570 has been previously described (Brisson-Noél et al., 1988). The strains isolated in the Federal Republic of Germany were obtained in an intensive care unit from patients treated with cefazidime alone or combined with tobramycin (Bauernfeind et al., 1989). E. coli THB82, 87, 91, 102, 103, 107, 114, 136 and 137 are transconjugants derived from these strains by mating with E. coli A15 and selecting for ampicillin and nalidixic acid resistance. Clinical isolates resistant to β-lactams were described previously (Mabilat & Courvalin, 1990). Strains were grown in brain heart infusion broth and agar (Difco), containing ampicillin at 100 μg ml⁻¹ or chloramphenicol at 10 μg ml⁻¹ when required.

Mating experiments. Donor and recipient strains were mixed in the same ratio and mating was performed on a nitrocellulose filter for 48 h. Transconjugants were selected on agar containing nalidixic acid (50 μg ml⁻¹) and ampicillin (100 μg ml⁻¹).

Determination of 99% inhibitory concentrations (IC99) of antibiotics. Concentrations of antibiotics that inhibited 99% of bacterial growth were determined as described by Chabbert & Derlot (1983).

Preparation of DNA and nucleic acid techniques. Plasmid pIP1844 DNA was prepared by caesium chloride/ethidium bromide ultracentrifugation as described by Labigne-Roussel et al. (1981). Digestion with restriction endonucleases (Amersham), cloning experiments and electrophoresis in 0.8% agarose gels were performed as described by Maniatis et al. (1982).

Amplification and sequencing of DNA and computer analysis of sequence data. The polymerase chain reaction (PCR) with oligonucleotides A, B, C, E and G was performed as described by Mabilat et al. (1990), using 25 ng plasmid DNA as a template. PCR with oligonucleotides F, J and K was carried out in a final volume of 10 ml containing 10 μl of a 1:1000 diluted overnight culture lysed by heating at 95 °C for 3 min. The 35 amplification cycles were performed as follows: annealing at 55 °C for 1 min, extension step at 72 °C for 30 s and denaturation at 94 °C for 30 s. The Tag DNA polymerase was purchased from Perkin-Elmer. Cetus Co. PCR-amplified DNA was purified (Maniatis et al., 1982) and sequenced with T7 polymerase (Sequenase) using the protocol of Tabor & Richardson (1987) as described previously (Mabilat et al., 1990). Oligonucleotides A to G used as amplification and/or sequencing primers were described by Mabilat et al. (1990). Amplification primers J (5'-d[GTAATGATACCAACGT]-3') and K (5'-d[GTTAATGCTGCAACCT]-3') were also used. DNA sequences were compared using the algorithm of Wilbur & Lipman (1983).

Nucleic acid hybridization. For Southern hybridization (Southern, 1975), DNA restriction fragments fractionated by agarose gel electrophoresis were transferred to Nytran membranes (Schleicher & Schuell). Prehybridization and hybridization were carried out at 65 °C in 6 × SSC (1 × SSC is 0.15 M-NaCl, 0.015 M-sodium citrate), 0.5% sodium dodecyl sulphate and 0.05% nonfat dry milk (Johnson et al., 1984). Colony hybridization was as described by Grunstein & Hogsnes (1975). Probes were labelled with [α-32P]dATP (Amersham) by nick-translation (Maniatis et al., 1982). The probe specific for blaT genes was a 347 bp fragment internal to blaT-1 obtained by PCR using primers C and E (Fig. 1). The IS1-specific probe consisted of the 0.5 kb PstI–BsrNI fragment of plasmid pAT69 (Brisson-Noél et al., 1988).

Enzyme assays and analytical isoelectric focusing. Chloramphenicol acetyltransferase and β-lactamase activities were assayed using the protocol of Lupski et al. (1984). The isoelectric point of β-lactamases was determined by polyacrylamide gels by the method of Matthew & Hedges (1976). The enzymes were revealed with nitrocefin (Glaxo) (Barthélémy et al., 1978).

Results

Comparative analysis by agarose gel electrophoresis of plasmid DNA from wild strain E. coli HB251 and from transconjugant E. coli THB251 (data not shown) indicated that blaT-6 was part of a plasmid, named pIP1844, of about 200 kb. The presence of a blaT gene on pIP1844 was confirmed by DNA–DNA hybridization. The blaT probe specific for TEM-type β-lactamases hybridized to a 7 kb BamHI-generated fragment and to EcoRI and HindIII fragments of approximately 12 kb (data not shown).

Amplification and sequencing of blaT-6 and of its promoter and comparison with blaT genes

We amplified by PCR (Saiki et al., 1988), using oligonucleotide primers A and B (Mabilat et al., 1990) and plasmid pIP1844 DNA as a template (Fig. 1), a
1.2 kb DNA fragment including blaT-6 that was sequenced directly. Substitutions in blaT-6 relative to blaT-1 encoding TEM-1 are indicated in Fig. 1. The genes differ at positions 512 and 693, where a transition of A in blaT-6 to G in blaT-1 had occurred. In blaT-6, mutations A512 and A693 determine a lysine at amino acid number 102 and a histidine at residue 162 instead of glutamic acid and arginine, respectively, in TEM-1. Comparison of sequences upstream from blaT-6 and blaT-1 revealed that the promoter region of blaT-6 differed from that of blaT-1 by insertion of a 116 bp DNA fragment (Fig. 1).

Sequence analysis of the 116 bp DNA fragment inserted into the promoter region of blaT-6

As shown in Fig. 2, the 116 bp insertion occurred between the -35 and -10 regions of promoter P3 of blaT-1, which was consequently disrupted. However, analysis of the sequence indicated that another promoter, designated P6, was formed. It is composed of the -10 region of P3 and of a -35 TTGACA sequence provided by the right end of the insert. The -10 and -35 sequences of the hybrid promoter of blaT-6 are separated by 18 nucleotides, a spacing 1 bp longer than that in P3 (Chen & Clowes, 1984).

Another feature of the DNA sequence upstream from blaT-6 is the presence of a 9 bp sequence (CCGCTCATG) that is directly repeated at the boundary of the insert (Fig. 2). Insertion of IS elements is accompanied by a short (2-12 bp) duplication of target DNA so that the transposed element is flanked by direct repeats (Grindley & Reed, 1985). It therefore appears that the presence of the 116 bp DNA fragment in the β-lactamase promoter results from a transposition event. The sequence of the 116 bp DNA fragment was compared with those of known IS elements and homology with IS1 (Ohtsubo & Ohtsubo, 1978) was found (Fig. 3). Segments from bp 1 to 31 and from bp 94
Table 1. Chloramphenicol resistance and CAT versus β-lactamase activity (Lupski et al., 1984) in E. coli HB101 harbouring pKK232-8 containing different blaT promoters

<table>
<thead>
<tr>
<th>Promoter</th>
<th>Nucleotide sequence</th>
<th>IC₅₀ of Cm (μg ml⁻¹)</th>
<th>10⁻³ × CAT/β-lactamase activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>5</td>
<td><1</td>
</tr>
<tr>
<td>P₆</td>
<td>TTCAAA GACAAT</td>
<td>80</td>
<td>33</td>
</tr>
<tr>
<td>P₅</td>
<td>TTGACA GACAAT</td>
<td>800</td>
<td>306</td>
</tr>
</tbody>
</table>

Analysis of the strength of hybrid promoter P₆ of blaT-6

As already mentioned, the ISI-like element contributed a −35 sequence, TTGACA, to P₆ (Fig. 2). This is equivalent to the consensus sequence for E. coli promoters (Hawley et al., 1983). The hexanucleotide TTCAAA in the −35 region of P₃ is less related to the consensus. Since the −35 region is known to play an important role in promoter strength (Moran et al., 1982), we compared the level of expression of P₆ of blaT-6 and of P₃ of blaT-1. The 0.34 kb DNA fragment including P₆ of pIP1844 that was obtained after amplification with oligonucleotides A and G and digestion with SspI and the 0.19 kb EcoRI–SspI fragment of pBR322 that contains P₃ (Fig. 1) were inserted into the SmaI site of the promoter-probe plasmid pKK232-8 (Brosius, 1984). In this replicon, the SmaI site is located upstream from a promoterless chloramphenicol acetyltransferase (CAT) gene and expression of the enzyme is dependent upon transcription originating in the inserts. The promoter strength was expressed by the ratio of CAT activity to β-lactamase activity (Lupski, 1984) and was also assessed by the level of chloramphenicol resistance of the host (Table 1). When P₆ was fused to the CAT gene, there was a 10-fold higher CAT/β-lactamase ratio and chloramphenicol resistance level as compared to the fusion with P₃.

Distribution of the ISI-like element among Enterobacteriaceae

β-Lactamase TEM-6 was first detected in two E. coli strains isolated in the Federal Republic of Germany (Bauernfeind & Hörl, 1987). Since 1987, outbreaks of infections due to enterobacteria resistant to ceftazidime have been observed in this country (Bauernfeind et al., 1989). Nine transconjugants in E. coli A15 expressing resistance to ceftazidime were chosen because they were shown to produce TEM-6, as judged by analytical isoelectric focusing (data not shown). Since the study of blaT-6 from pIP1844 showed that an ISI-like element was inserted into the promoter region for the gene, we searched, by DNA amplification, for the 116 bp region in the promoter region of blaT-6 in the transconjugants. Oligonucleotides J and K (Fig. 2) will only amplify the ISI-like element, whereas primers J and F (Fig. 1) allow amplification of a 525 bp fragment only when the 116 bp fragment is present in the promoter region. Resolution of amplified DNA by agarose gel electrophoresis (Fig. 4) showed that the ISI-like element was present in the promoter region of the gene for TEM-6 in each transconjugant.

Fig. 4. Agarose gel electrophoresis of DNA fragments obtained by PCR with oligonucleotides J and K (left) or J and F (right). Lanes: 1, THB251; 2, THB82; 3, THB87; 4, THB91; 5, THB102; 6, THB103; 7, THB107; 8, THB114; 9, THB136; 10, THB137. PstI-generated fragments of bacteriophage λ were used as molecular size standards. The size of the amplified fragments is indicated on the right. No amplification product was observed when DNA of E. coli BM2570 harbouring IS1 was used as a template (data not shown).
Colony hybridization using the 116 bp fragment amplified with primers J and K as a probe was used to study the distribution of the IS1-like element in 266 β-lactam-resistant clinical isolates that originated from various hospitals in five countries (Table 2). The probe did not hybridize to DNA from *E. coli* BM2570, which harbours IS1 (data not shown), indicating that it is specific for the IS1-like element. Among the strains tested, 218 produced TEM-type enzymes whereas the remainder (48) encoded non-TEM β-lactamases (Mabilat & Courvalin, 1990). The IS1-like element was found in 103 (47%) isolates harbouring TEM variants and in 27 (56%) strains producing non-TEM enzymes (Table 2). In TEM-producing strains, homology with the IS1-like probe was detected in 93 (68%) *K. pneumoniae* isolates. One of 46 *E. coli* isolates hybridized with the probe and the IS1-like element was not found in *Citrobacter freundii*, Proteus spp., *Salmonella typhimurium* and *Serratia marcescens*. Among the isolates producing non-TEM β-lactamases, 16 (57%) *K. pneumoniae* strains hybridized with the probe. The IS1-like element was also found in *E. coli*, *Enterobacter cloacae*, *K. oxytoca* and *K. ozaenae*. The only strain of *C. freundii* tested hybridized with the probe whereas that of *S. marcescens* did not.

Discussion

E. coli HB251, a strain that is highly resistant to ceftazidime and aztreonam, was isolated from a patient treated with ceftazidime. Cephalosporin resistance in this strain is due to production of the extended-spectrum β-lactamase TEM-6 encoded by the approximately 200 kb plasmid pIP1844.

TEM-type β-lactamases that hydrolyse third-generation cephalosporins differ from penicillinas TEM-1 and TEM-2 by a few amino acid substitutions (Collatz et al., 1989; Mabilat & Courvalin, 1990; Mabilat et al., 1990; Sougakoff et al., 1988, 1989). Determination of the sequence of blaT-6 encoding TEM-6 in *E. coli* HB251 showed that the resistance gene differed from blaT-1 specifying TEM-1 by two point mutations (Fig. 1). The nucleotide substitutions correspond, in the primary structure of TEM enzymes, to a lysine and a histidine in TEM-6 in place of a glutamic acid and an arginine in TEM-1 at positions 102 and 162, respectively (Fig. 1). Lysine 102 has been previously detected in extended-spectrum β-lactamase TEM-9 (Mabilat et al., 1989). This histidine, however, was the only change in an extended-spectrum variant hydrolysing ceftazidime and aztreonam which was obtained by ultraviolet mutagenesis of the structural gene for a TEM-type penicillinase (W. Sougakoff, S. Goussard & P. Courvalin, unpublished result). Since lysine 102 is known to be implicated in the hydrolysis of ceftazidime and aztreonam by TEM variants (Sougakoff et al., 1988b) the high-level resistance of strains producing TEM-6 (Philippon et al., 1989) may therefore reflect a combination of the effects of each substitution. A similar phenomenon has already been proposed to account for the high catalytic activity towards ceftazidime of the extended-spectrum β-lactamase TEM-9 (Mabilat et al., 1990). This enzyme also differs from TEM-1 by two amino acid substitutions, a lysine at position 102 (as in TEM-6) and a serine at position 162 which confers resistance to ceftazidime in TEM-7 (Collatz et al., 1989). The location of residues 102 and 162 in the three-dimensional structure of the class A β-lactamase of *Staphylococcus aureus* PC1 (Herzberg & Moult, 1987) indicates that these amino acids could be part of the substrate-binding
site (Sougakoff et al., 1989); however, the mechanism by which substitutions in these positions expand the substrate range of the enzyme is still unknown.

Sequence determination of blaT-6 and of its promoter region showed that a 116 bp insertion occurred between the −35 recognition site and the −10 Priboin box of promoter P3 of the blaT-1 gene (Fig. 2). Analysis of the sequence of the insert (Fig. 3) suggested that it is derived from the 768 bp insertion sequence ISI by two types of events: (i) three internal deletions and (ii) nucleotide substitutions in the remaining portions where the overall similarity was 59%. Nucleotide similarity was highest in the terminal inverted repeats of the two elements (Fig. 3).

Transposition of ISI results in the duplication of 9 bp of the target (Prentki et al., 1986). Since a 9 bp sequence is repeated directly at the ends of the ISI-like element, it is likely that the presence of the 116 bp DNA fragment is the result of a transposition event. The IS-related insert does not contain the central region of ISI coding for the transposase. Therefore, deletions in the 116 bp insert occurred after insertion of the element or, alternatively, insertion had to be promoted by transposition functions provided in trans by another IS element such as IS1 that is common in E. coli. In fact, nucleotide sequences homologous to IS1 were detected in pIP1844 DNA by hybridization using an IS1-specific probe (data not shown).

Insertion of the ISI-like element between the −35 and −10 sequences of the P3 promoter of blaT-1 did not abolish resistance to β-lactam antibiotics. Sequence analysis at the junction of the 116 bp fragment and of the region upstream from blaT-6 showed that insertion generated a hybrid promoter P9 in which the TTCAAA −35 recognition site of P3 was replaced by the −35 sequence TTGACA located at the right end of the element (Fig. 2), which is identical to the consensus sequence for E. coli promoters. The distance between the −10 and −35 regions in P9 is 18 bp and corresponds to the preferred spacer (17 or 18 bp) for an E. coli promoter (Moran et al., 1982). Comparison of the strength of the promoters and of the antibiotic resistance levels of the hosts (Table 1) indicated that the hybrid promoter of TEM-6 is 10 times stronger than P3 of blaT-1. It therefore appears that acquisition of both a strong promoter and point mutations in the structural gene contribute to the ability of TEM-6-producing bacteria to resist the lethal effect of third-generation cephalosporins. The fact that the strong P3P9 promoter, which is 10 times more efficient than P3 of blaT-1 (Chen & Clowes, 1984), has been found upstream from the structural genes for TEM-3, -4, -5, -7 and -9 (Collatz et al., 1989; Mabilat et al., 1990; Sougakoff et al., 1988b, 1989) is consistent with this notion.

Insertion of IS1 into the promoter P3 of blaT-1 in plasmid pBR322 has been reported (Prentki et al., 1986). The insertion was at the same position as that of the ISI-like element upstream in blaT-6 and resulted in the formation of an active hybrid promoter consisting of the −10 region from P3 and a −35 TTGACA region provided by the end of ISI. However, gene expression from the resulting hybrid promoter was less efficient than that from P9. An explanation for this difference could be that the −35 region of the ‘ISI-hybrid promoter’ has a poorer match to the canonical −35 consensus than that in P9. Alternatively, features of the regions upstream from the −35 sequences in ISI and in the ISI-like element might be important for promoter recognition by the RNA polymerase (Moran et al., 1982; Prentki et al., 1986).

The ISI-like element was detected by PCR, using two oligonucleotides specific for the ends of the insert (Fig. 2), in transconjugants derived from clinical isolates expressing resistance to ceftazidime and aztreonam by production of TEM-6. Using another pair of primers, J and F (Fig. 1), we found that insertion of the element occurred in the promoter region of blaT-6 in the nine strains tested (Fig. 4). It is therefore tempting to speculate that presence of the ISI-like element into the β-lactamase promoter, which contributes to the survival of the host in the presence of third-generation cephalosporins, was selected by extensive use of these drugs in clinical settings.

Study of the distribution of the ISI-like element in enterobacteria of various origins by DNA–DNA hybridization indicated the presence of DNA sequences related to the insert in 47% of the clinical isolates producing a TEM-type enzyme and in 56% of the strains producing non-TEM β-lactamases (Table 2). The ISI-like element therefore appears to be widespread in members of the family Enterobacteriaceae and not exclusively linked to blaT-6.

References

Sequence of the gene for TEM-6 β-lactamase