Molecular cloning and characterization of the *aroD* gene encoding
3-dehydroquinase from *Salmonella typhi*

SPIROS SERVOS,1,4 **STEVE CHATFIELD,**1 **DAVID HONE,**2,3 **MYRON LEVINE,**2 **GEORGE DIMITRIADIS,**4 **DEREK PICKARD,**1 **GORDON DOUGAN,**1 **NEIL FAIRWEATHER**1 and **IAN CHARLES**1*

1 Department of Molecular Biology, Wellcome Biotech, Langley Park, South Eden Park Road, Beckenham, Kent BR3 3BS, UK
2 Center for Vaccine Development, School of Medicine, and 3 The Medical Biotechnology Center, University of Maryland, 10 South Pine St, Baltimore, Maryland 21201, USA
4 University of Patras, Faculty of Sciences, Department of Biology, Division of Genetics, Cell and Development Biology, Patras, Greece

* (Received 3 July 1990; accepted 19 September 1990)

The *aroD* gene from *Salmonella typhi*, encoding 5-dehydroquinate hydrolyase (3-dehydroquinase), has been cloned into *Escherichia coli* and the DNA sequence determined. The *aroD* gene was isolated from a cosmid gene bank by complementation of an *S. typhimurium* *aroD* mutant. Analysis of the DNA sequence revealed the presence of an open reading frame capable of encoding a protein of 252 amino acids with a calculated M, of 27706. Comparison of the deduced *S. typhi* 3-dehydroquinase protein sequence with that elucidated for *E. coli* revealed 69% homology. Alignment of the *S. typhi* sequence and equivalent *Aspergillus nidulans* and *Saccharomyces cerevisiae* sequences showed that homology was lower, at 24%, but still significant. Use of a minicell expression system demonstrated that a polyclonal antibody raised against *E. coli* 3-dehydroquinase cross-reacted with its *S. typhi* counterpart.

Introduction

The only biosynthetic route for the synthesis of aromatic compounds possessed by micro-organisms is the shikimate pathway, leading to the synthesis of chorismic acid, a central precursor for other aromatic compounds (Giles, 1978; Pittard, 1987). The products of the pathway include the aromatic amino acids p-aminobenzoic acid and 2,3-dihydroxybenzoate. The enzyme 3-dehydroquinase catalyses step three of the prechorismate part of the pathway and in bacteria is encoded by the gene *aroD*. In *Escherichia coli*, DNA sequence analysis of *aroD* has revealed the presence of a monocistronic gene capable of encoding a protein of 240 amino acid residues with a calculated M, of 26377 (Duncan et al., 1986). By contrast, the plant enzyme consists of 3-dehydroquinase linked with shikimate dehydrogenase as a bifunctional polypeptide (Polley, 1978). The 3-dehydroquinase activity found in *Aspergillus nidulans* (Kinghorn & Hawkins, 1982; Charles et al., 1986; Hawkins, 1987), *Neurospora crassa* (Lumsden & Coggins, 1977; Catcheside et al., 1985) and *Saccharomyces cerevisiae* (Duncan et al., 1987) has been identified as part of a pentafunctional polypeptide. In each case, the large polypeptide carries the enzyme activities associated with steps two to six of the prechorismate part of the pathway. In addition to these biosynthetic activities an inducible catabolic dehydroquinase involved in the quinic acid catabolic pathway has been characterized from *A. nidulans* (Hawkins et al., 1982) and *N. crassa* (Giles et al., 1985). In *A. nidulans* the quinate-inducible 3-dehydroquinase is the product of the *QuTE* gene and has an M, of 16505. A similarly sized protein from *N. crassa*, the product of the *Q42* locus, has considerable homology to the *QuTE* gene product (Da Silva et al., 1986). Neither of these two catabolic dehydroquinase genes or their deduced protein sequences shows any significant homology with their biosynthetic counterparts.

In our laboratories, interest in the shikimate pathway has come from the observation that pathogenic organisms with genetic lesions in genes encoding enzymes involved in the prechorismate pathway grow poorly in vitro (Dougan et al., 1987; Levine et al., 1987; O'Callaghan et al., 1988) and are of potential use as live vaccines (Bacon et al., 1951; Hoiseth & Stocker, 1981).

The nucleotide sequence data reported in this paper have been submitted to EMBL and assigned the accession number X54546.
Shikimate pathway enzymes are also absent from mammalian species, and consequently have been the target for chemotherapeutic agents and broad-range herbicides (Kishore & Shah, 1988). As part of our research programme to generate aromatic amino acid dependent mutants of pathogenic organisms in order to evaluate their utility as live-attenuated vaccines (Dougan et al., 1987), we have cloned, sequenced and characterized a number of aro genes from different microorganisms (Charles et al., 1985, 1986, 1990; Maskell et al., 1988). In this paper we report the cloning and characterization of the aroD gene from Salmonella typhi, and demonstrate homology between its deduced protein sequence and the protein sequences of other biosynthetic 3-dehydroquinase enzymes.

Methods

Strains, bacteriophage and plasmids. E. coli K12 strain TG1 [Δlac-pro supE thi hsdR51/F’traD36 proA’B’ lacZAM15 (Carter et al., 1985)] was the kind gift of Dr T. Gibson, Laboratory of Molecular Biology, Cambridge, UK. E. coli SK2881 (F- ΔaroD ΔleuC hsdR4 recA1) has been described by Kushner (1978). S. typhimurium strain S68 [his-6165 fli-452 metA22 metE551 trpB2 galE496 xyl-404 rpsL20 flaA6 hsdL6 hsdS29 lamE E. coli] zja::Tnl0] harbours the lamB gene from E. coli integrated into the chromosome and is susceptible to bacteriophage λ infection when grown on 0.2% maltose; it was the kind gift of Professor B. Stocker, Department of Medical Microbiology, Stanford University, California, USA. S. typhimurium CU038 (aroD), S. typhi Ty2 (aroA::Tnl0) and bacteriophage P22 have been described previously (Dougan et al., 1987; Miller et al., 1989).

Cosmid pH79 (Hohn & Collins, 1980) was obtained from Amersham. Transposon Rts1::Tnl25 has been described (Ubben & Schmitt, 1986). M13mp18 and M13mp19 (Messing & Vieira, 1982) were supplied by Pharmacia. Minicells were prepared using E. coli strain DS410 (Dougan & Sherrat, 1977).

Media and reagents. S. typhimurium, S. typhi and E. coli were grown in Luria broth (LB) or LB solidified with 1.6% (w/v) agar. For testing auxotrophic requirements, minimal medium (MM) or MM with 2% (w/v) Noble agar (Difco) was used (Miller, 1972). Restriction endonuclease enzymes were supplied by BRL Gibco and Pharmacia. The T7 and Klenow DNA sequencing kits were supplied by Pharmacia and Cambridge Bioscience. T4 DNA ligase was from Boehringer.

DNA isolation and Tn1725 mutagenesis. Plasmid DNA was isolated by the alkaline-SDS lysis method (Maniatis et al., 1982). DNA restriction endonuclease fragments were isolated by the method of Ubben & Schmitt (1986).

Construction of an S. typhi chromosomal gene bank in pH79. Chromosomal DNA from S. typhi aroA::Tnl0 was partially digested with Sau3A and fragments in the size range 23–40 kb were size-selected as described previously (Maniatis et al., 1982; Morrissey & Dougan, 1986) and ligated into BamHI-digested pH79 (Hohn & Collins, 1980). Cosmids were packaged in vitro with a kit supplied by Amersham using conditions recommended by the manufacturer, and phage plated out as described previously (Miller et al., 1989). A high-titre stock of packaged recombinant phage was mixed with S. typhimurium AS68 at an m.o.i. of 0·1, and recombinants selected on LB plates containing ampicillin at a concentration of 50 μg ml−1. Several thousand recombinants were pooled, and a P22 stock was generated by standard methods (Davis et al., 1980). This P22 bank was subsequently used to complement S. typhimurium strain CU038 (aroD).

Minicells experiments and Western blotting. Minicell experiments and SDS-PAGE were carried out as described by Dougan & Sherrat (1977). The procedure used for Western blotting was as described by Towbin et al. (1979).

DNA sequencing. Single-stranded DNA templates were sequenced using Klenow (Sanger et al., 1977) or T7 DNA polymerase (Tabor & Richardson, 1987), using kits supplied by Pharmacia and Cambridge Bioscience. Labelled fragments were separated on buffer gradient polyacrylamide/urea gels (Biggin et al., 1983). DNA sequencing was initiated from sites within the S. typhi aroD gene by cloning EcoRI fragments from four independent aroD-associated Tn1725 transposon insertions (Ubben & Schmitt, 1986). Gaps in the sequence were filled in using synthetic oligonucleotides as specific primers (Charles et al., 1985, 1986; Strauss et al., 1986).

Oligonucleotides. Oligonucleotide primers were synthesized on a SAM1 oligonucleotide synthesizer (Biolabs, UK).

Results and Discussion

Cloning and mapping of the S. typhi gene for aroD in E. coli

A cosmid gene bank generated in pHC79 was used to complement an aroD lesion in S. typhimurium CU038. Transformants were selected on MM containing ampicillin at a concentration of 50 μg ml−1, but lacking aromatic compounds. Colonies were visible after 48 h incubation at 37 °C. Of the initial six transformants that were picked on their ability to complement an aroD lesion, a single recombinant cosmid, pWB1YD1, that demonstrated recomplementation was selected for further analysis by transposon mapping, DNA sequencing and minicell-directed protein synthesis.
Fig. 2. The nucleotide and derived amino acid sequence of the *aroD* gene from *S. typhi*. The overlined sequence at positions 93-96 indicates a possible ribosome-binding site. The open reading frame for *aroD* comprises 252 amino acids capable of encoding a protein of M, 27706.

Subcloning and transposon mutagenesis of *S. typhi aroD*

Initial restriction endonuclease mapping of cosmid pWBTD1 demonstrated that it carried an insert of 22 kb. In order to characterize a smaller fragment that still complemented *aroD*, *HindIII*, *EcoRI* and *BglII* fragments were subcloned into pUC18 and the ligation mixtures used to transform *E. coli SK2881*. Analysis of *aroD*-complementing recombinants by plasmid mini-preps (Maniatis *et al.*, 1982) showed that one recombinant, pCVD1001, carried an 8.2 kb *BglII* fragment. This plasmid was used as a substrate for Tn1725 mapping as described previously (Ubben & Schmitt, 1986). Four pCVD1001::Tn1725 isolates were identified, three of which no longer complemented the *E. coli aroD* mutant SK2881, and were used in the subsequent DNA sequencing strategy (Fig. 1).

Nucleotide sequence of *S. typhi aroD*

A 2 kb *HindIII* fragment, identified by transposon mapping of the 8-2 kb *BglII* fragment as covering the region corresponding to the *S. typhi aroD* gene, was cloned into M13mp18 in both orientations. These M13 templates were used as the substrates for the synthetic oligonucleotide primers. Tn1725 mutagenesis generated four plasmids, pCVD 1005, pCVD 1006, pCVD 1007 and pCVD1008, the first three of which no longer complemented the *E. coli aroD* strain SK2881, presumably because of gene disruption. As a consequence of these transposon insertions, additional *EcoRI* sites were introduced into the gene for *aroD* and these new sites were used to conveniently clone *aroD*-associated fragments into M 13mpl8 and M 13mp19 for DNA sequencing (see Fig. 1). Gaps in the sequence were filled in using synthetic oligonucleotides as specific sequencing primers. Analysis of the DNA sequence (Fig. 2) reveals the presence of an open reading frame capable of encoding a protein of 252 amino acids with a calculated M, of 27706.

Putative regulatory elements for the *S. typhi aroD* gene*

Examination of the DNA sequence (Fig. 2) reveals the presence of two regions with a good fit to the consensus
Fig. 3. Amino acid homologies between the *S. typhi* *aroD* gene product and other published 3-dehydroquinate sequences. Sequences that are common to three or more of the species are boxed. Dots refer to regions of variable length that are introduced in the sequences to produce a best fit for regions of homology.

-10 and -35 promoter elements (Rosenberg & Court, 1979). The sequence 5'-TATAAT-3' from nucleotides 65 to 70 is an exact match with the -10 consensus sequence, while the sequence 5'-TTTACT-3' from nucleotides 41 to 46 with a spacing of 18 bp has a 4/6 match with the consensus -35 region.

Comparison of the DNA sequence flanking the structural gene for *aroD* from *S. typhi* with the *E. coli* *aroD* flanking regions shows little homology, although both sequences have a candidate AGG ribosome-binding site (Shine & Dalgarno, 1974). In the *E. coli* *aroD* sequence an inverted repeat has been noted 48 bp after the end of the structural gene but this feature is apparently absent from the *S. typhi* *aroD* sequence.

Comparison of the S. typhi and E. coli aroD sequences

Comparison of the sequences shows a high degree of homology, 69.6% at the protein level, and 68.7% when DNA sequences were aligned. Many of the observed protein changes are, however, conservative substitutions. Interestingly, the sequence from *S. typhi* comprises
Most frequently used. The pattern is consistent for those arOD al., degree of similarity in the choice of which codons are enzymes is displayed in Fig. 3. The figure was obtained by comparing the deduced protein sequence individually with those for E. coli, genes that are poorly expressed in S. typhi, with that derived for another gene encoding a protein involved in aromatic amino acid biosynthesis from S. typhi, the aroC gene (Charles et al., 1990), shows a high degree of similarity in the choice of which codons are most frequently used. The pattern is consistent for those genes that are poorly expressed in E. coli (Grantham et al., 1981). There are some minor differences in codon preference, e.g. in the S. typhi aroC gene the most popular codon for alanine is GCG, while in the S. typhi aroD it is GCC.

Alignment of four biosynthetic dehydroquinase enzymes

Homology between four biosynthetic dehydroquinase enzymes is displayed in Fig. 3. The figure was obtained by comparing the deduced S. typhi 3-dehydroquinase protein sequence individually with those for E. coli, 252 amino acid residues, while the sequence from E. coli has 240 residues. This sequence difference appears to be the consequence of an error in the published E. coli sequence for aroD. Resequencing the E. coli gene indicates that it also comprises 252 amino acid residues (J. Coggins & L. Graham, personal communication).

Comparison of the codon usage table of S. typhi aroD with that derived for another gene encoding a protein involved in aromatic amino acid biosynthesis from S. typhi, the aroC gene (Charles et al., 1990), shows a high degree of similarity in the choice of which codons are most frequently used. The pattern is consistent for those genes that are poorly expressed in E. coli (Grantham et al., 1981). There are some minor differences in codon preference, e.g. in the S. typhi aroC gene the most popular codon for alanine is GCG, while in the S. typhi aroD it is GCC.

Minicell-directed polypeptide expression from an aroD recombinant

Cosmid pWBTYD1 encoding the S. typhi aroD gene was transferred to the minicell-producing strain DS410. Plasmid-harbouring minicells were purified, labelled with [35S]methionine and analysed using SDS-PAGE followed by Western blotting. Proteins were transferred to nitrocellulose, and reacted with antibody raised against E. coli 3-dehydroquinase (kindly supplied by J. Coggins, University of Glasgow, UK). The results are shown in Fig. 4. The aroD-complementing cosmid (track 3) directs the expression of a protein of M, approximately 28000 (marked with an arrow), which is in good agreement with the value of 27706 deduced from the DNA sequence. This polypeptide is absent from the control (track 2) sample prepared from minicells harbouring pHc79 vector. Cross-reacting bands of lower mobility, present in both the negative control (track 2) and track 1, are incidental to 3-dehydroquinase expression.

We thank Professor J. Coggins for supplying antibody to E. coli 3-dehydroquinase, and L. Graham for supplying us with information about the revised E. coli aroD sequence prior to publication. We also thank Hugh Spence for making oligonucleotides, Steve Nicholls for advice on computing and Tina Silva for typing the manuscript.

References

S. Serosos and others