Further biological and molecular characterization of actinophage VWB

JOZEF ANNÉ,† LIEVE VAN MELLAERT, BENNY DECOCK, JO VAN DAMME, ARTHUR VAN AERSCHOT, PIET HERDEWIJN and HENDRIK EYSSEN

Laboratory of Microbiology, Laboratory of Immunobiology, and Laboratory of Pharmaceutical Chemistry, Rega Institute, University of Leuven, B-3000 Leuven, Belgium

(Received 21 September 1989; revised 13 February 1990; accepted 26 March 1990)

The development cycle of the temperate actinophage VWB was investigated. Adsorption of most phage particles occurred within 30 min and the adsorption constant was $0.6 \times 10^{-8} \text{ ml min}^{-1}$. The latent and rise periods were 140 and 100 min, respectively, and the burst size was estimated to be 130–250 p.f.u. Although phage VWB could infect only *Streptomyces venezuelae* ETH 14630 (ATCC 40755), of six different *S. venezuelae* strains tested, phage DNA could be introduced by transfection into most non-infectible strains. Upon transfection, phage DNA was propagated in these non-infectible strains and phage particles were released. In addition, the transfected strains could be lysogenized. By comparison of restriction fragments of VWB DNA, either free or integrated in the chromosomal DNA of the *S. venezuelae* ETH 14630 lysogen, the attachment site was localized. PAGE of the phage proteins revealed at least 17 different proteins with three major bands estimated as 16.5, 27.2 and 43 kDa in size. The N-terminal amino acid sequence of these supposed major head and tail proteins was determined. The corresponding DNA sequences on the phage genome were localized using oligonucleotides synthesized on the basis of the N-terminal amino acid sequences. The genes coding for the major structural proteins were shown to be clustered, as has been observed for other bacteriophages.

Introduction

Several articles have mentioned the isolation of actinophages infecting *Streptomyces* strains (e.g. Ackermann et al., 1985). Most phages have been isolated from soil in which they are widespread, but some isolates were obtained from lysogenic wild-type strains. Among the reasons for the interest in phages are the fact that they can be used as a tool for the genetic analysis of host strains (Stuttard, 1983; Chung & Thompson, 1985), and that some phages are suitable for the development of a phage-based cloning vector (Chater, 1986). With a few exceptions, however, actinophages have not been studied in much detail. Their characterization has been limited to the description of some morphological properties and the construction of a restriction map.

To obtain a better understanding of actinophage biology and the regulatory processes involved in phage replication, more fundamental studies are required. This knowledge could be useful in the isolation and identification of interesting regulatory sequences including repressor proteins (Sinclair & Bibb, 1988) or sequences involved in transduction (McHenney & Baltz, 1988). It is also of importance to obtain a better insight into phage taxonomy and evolution.

In a previous article we reported the isolation of actinophage VWB (Anné et al., 1984). This temperate phage, with a genome size of 47.3 kb and cohesive ends (Anné et al., 1985), is infectious to *Streptomyces venezuelae* ETH 14630. The phage is rather unique in its resistance to chelating agents and it is able to package stably at least 4 kb of additional DNA (Van Mellaert et al., 1987). Consequently, it is of potential use for development as a phage-based cloning vector. Therefore, we were interested in studying this phage in more detail and we have determined both the characteristics of the development cycle of VWB and the narrow host specificity. Furthermore, the attachment site (att) as well as the start of the three most prominent structural phage proteins were localized on the phage genome.

Methods

Organisms, phages and plasmids. *Streptomyces* phage VWB and VW3 (Anné et al., 1984) were propagated on *S. venezuelae* ETH 14630...
cultured on S. venezuelae ATCC 10595. The host ranges of different actinophages were checked on the following strains: S. venezuelae ATCC 10712, ATCC 14583, ATCC 21113 and DSM 40727; and Streptomyces exfoliatus ATCC 12672. Plasmid pBR322 (Bolivar et al., 1977), used to clone restriction fragments of VWB, was propagated in Escherichia coli JM83 [ara Δ(lac pro AB) rpsL 960, lacP Δ(lacZ) M15]. VWB04 is a derivative of VWB. It contains a thioesterase resistance gene as selection marker and is 48.5 kb in size (Van Mellaert et al., 1987).

Media and buffers. Streptomyces strains were cultured on R2YE (Hopwood et al., 1985) or ISP-2 medium (Difco). Phage particles were maintained in phage buffer (Anne et al. 1984). Protoplasts were prepared in P medium (Okanishi et al., 1977) from S. venezuelae mycelia grown in S medium (Hopwood et al., 1985) supplemented with 0.6% glycine, and they were regenerated on R2YE medium. S medium supplemented with 0.6% glycine was also the medium to culture Streptomyces for chromosomal DNA isolation. E. coli was cultivated in liquid LB medium (Miller, 1972) and transformants, obtained as described by Maniatis et al. (1982), were selected on solid LB. When applicable, antibiotics were added to the medium at final concentrations of 100 and 50 μg ml⁻¹ for ampicillin and thiostrepton, respectively. DNA was stored in TE (0·01 M-Tris/HCl, 0·001 M-EDTA, pH 7·5). Buffers required for restriction enzyme digestions were obtained from Boehringer Mannheim.

Propagation of S. venezuelae phages. All platings for phage assays were carried out by the agar layer technique (Adams, 1959). High-titre lysates (10¹¹ p.f.u. ml⁻¹) were obtained on solid phage medium and, in the case of VWB, occasionally in liquid phage medium. On solid medium, lysates could be harvested after 20 h of cultivation, whereas in liquid cultures at least 32 h of incubation was required. For liquid cultures, mycelial fragments of the strain to be investigated. Infection could be scored by the presence of plaques in a lawn of Streptomyces mycelium after 20 h incubation (27°C).

Purification of phages and denaturation of phage proteins. Phages from high-titre lysates were purified by CsCl gradient centrifugation as described previously (Anne et al., 1984). Gradients were prepared with 0·785 g CsCl ml⁻¹ for VWB and 0·715 g CsCl ml⁻¹ for SVl and other S. venezuelae phages. Phage proteins used for immunization or gel electrophoresis were denatured by treatment of CsCl-gradient-banded phage particles with 2.3% (w/v) SDS in the presence of 5% (v/v) β-mercaptoethanol at 95°C for 3 min. Denatured phages were dialysed (3 × 2 h) against 0·01 M-Tris/HCl, pH 7·5.

Antiserum production. Serum containing VWB antibodies was prepared in rabbits as described by Adams (1959). The amount of phage antibodies, expressed as K, was calculated from the formula
\[K = 2·3D/t \times \log (p_0/p), \]
where \(p_0 \) = phage assay at zero time, \(p \) = phage assay at time \(t \) min and \(D \) = final dilution of serum in the phage–serum mixture (Adams, 1959).

Adsorption. Adsorption experiments were carried out with VWB suspensions added to mycelial fragments at an m.o.i. of 0·01. Suspensions were incubated with gentle shaking at 27°C. Samples were withdrawn at regular intervals after contact. The mycelial fragments were removed by centrifugation (5 min, 5000 g) and the number of phages remaining in the supernatant was counted as p.f.u. on the tester strain. The rate of adsorption was determined as described by Adams (1959).

One-step growth experiment. Mycelial fragments were infected with VWB particles at an m.o.i. of 0·001. Following adsorption for 15 min, the suspension was treated with diluted (1:20) rabbit antisera (K = 10) for 20 min at 27°C and subsequently diluted 500-fold before incubation (27°C, 350 r.p.m.). At regular intervals 1 ml samples were withdrawn, centrifuged (5 min, 5000 g) and the number of phage particles in the supernatant estimated as p.f.u. ml⁻¹ on a lawn of S. venezuelae. Burst size was calculated according to Adams (1959), the number of infectious centres being estimated from the adsorption efficiency.

Separation of phage proteins by PAGE or by hydroxyapatite chromatography and detection of protein bands. Phage proteins (10 to 100 μg, depending on the staining method) along with a calibration kit for molecular mass determination (Pharmacia) were subjected to SDS-PAGE under reducing conditions in 12·5% (w/v) gels (1 mm thick) according to Laemmli (1970). After electrophoresis, proteins were either visualized in the gel by staining with Coomassie Blue R-250 (Chrambach et al., 1967) or with silver stain (Guevara et al., 1982), or they were electroblotted onto nitrocellulose membranes (BioRad) for immunological detection. In those cases where samples were used for amino acid sequence analysis, they were blotted onto PVDF membranes (Millipore). Electroblotting with a semi-dry electroblotter (J/C Biotechnical Instruments) was done according to the manufacturer’s instructions. Immunological detection of the membrane-bound proteins was done according to the method of Towbin et al. (1979) using rabbit antisera against VWB and anti-rabbit IgG alkaline phosphatase conjugate (Sigma). Proteins electroblotted onto PVDF membranes were visualized by staining with Coomassie Blue R-250. After electroblotting the membrane was first washed with water for 5 min and then stained with 0·1% (w/v) Coomassie Blue R-250 in 50% (v/v) methanol, 10% (v/v) acetic acid for 5 min. Finally the membrane was washed again in water for 5 min and air-dried.

Separation of proteins by hydroxylapatite chromatography was carried out in the presence of SDS essentially as described by Moss & Rosenblum (1972). After adding 0·1 vol. 10% (w/v) SDS and 0·01 vol. of β-mercaptoethanol to the protein solution (1 mg protein ml⁻¹), the sample was boiled for 2 min. Meanwhile, a 1 ml column of hydrated Bio-Gel HTP hydroxylapatite (BioRad) was prepared and equilibrated with 0·01 M-sodium phosphate buffer, pH 6·4 and 0·1% (w/v) SDS. The denatured protein sample was diluted with 20 vol, column equilibrating buffer and then applied (1 ml min⁻¹) to the hydroxylapatite column. After washing with equilibrating buffer the proteins were eluted with a linear (0·01–0·5 M) sodium phosphate buffer (pH 6·4) gradient in 0·1% (w/v) SDS. Flow was maintained at 1 ml min⁻¹ and 2 min fractions were collected. The proteins in the fractions were analysed by SDS-PAGE on a 8–20% gradient gel and silver-stained.

Amino acid sequence analysis of phage proteins. Protein N-terminal amino acid sequences were determined with an automated 477A-120A protein sequencing system (Applied Biosystems). Cysteines were not alkylated and therefore not detectable. Electrophoretically separated proteins electroblotted onto PVDF membranes were excised after staining. The excised protein bands were cut into small pieces (2 × 4 mm) and placed on top of a polybrene-conditioned glass fibre filter in the 477A cartridge block. Proteins in hydroxylapatite chromatography fractions were concentrated by ultrafiltration in Ultrafree-MC filter units (Millipore) and directly applied to polybrene-conditioned glass fibre filters.

Formation and transfection of Streptomyces protoplasts. After growth of the strains for 20 h at 27°C, 350 r.p.m., mycelium was harvested by centrifugation and washed in saline followed by P medium. Protoplasts
were produced by lysozyme treatment (10 mg ml\(^{-1}\)) at 27 °C for 30 min. They were then separated from mycelial remnants by centrifugation (700 g, 5 min) and harvested (3000 g, 10 min). After washing twice with P medium, protoplasts were treated by using a modification of the method described by Suarez & Chater (1980). Phage DNA (0.5 µg in 15 µl TE buffer) was added to 200 µl protoplast suspension (OD\(_{600}\) = 0.1) and immediately mixed with 500 µl 40% (w/v) polyethylene glycol (molecular mass 6000 Da, Koch Light) dissolved in P medium. This suspension was spread at different dilutions on R2YE. Transfection was assayed after 5 d of incubation at 27 °C. For VWB transfectants, plates were soaked with phage buffer and the presence of phages in the buffer was investigated by dot test on S. venezuelae ETH 14630. VWB 804 transfectants were selected by replica plating on selective R2YE medium. Thiostrypen-resistant clones were investigated for the presence of VWB 804. The procedure used gave 10\(^5\)-10\(^6\) transformants (µg phage DNA\(^{-1}\)).

DNA manipulations and restriction enzyme digestion. Phage DNA was obtained from CsCl-purified phages after treatment with phenol (Maniatis et al., 1982) and following dialysis (3 x 2 h against TE buffer). Chromosomal DNA of S. venezuelae was isolated after SDS- and pronase-treatment of lysozyme-digested cells (Womble et al., 1977). E. coli plasmid DNA was obtained from cells grown in LB (300 r.p.m., 37 °C, 16 h) by the alkaline lysis method (Birnboim & Doly, 1979). DNA was purified by CsCl/ethidium bromide gradient centrifugation (Maniatis et al., 1982). Restriction enzymes and T4 DNA ligase were supplied by Boehringer Mannheim or Pharmacia and they were used according to the manufacturer's instructions. Digested DNA was separated by electrophoresis on agarose gels using selective R2YE medium. Thiostrepton-resistant clones were investigated for the presence of VWB 804. The procedure used gave 10\(^5\)-10\(^6\) transformants (µg phage DNA\(^{-1}\)).

Oligonucleotide synthesis. Oligonucleotides were synthesized on a Gene Assembler Plus (Pharmacia). After deprotection, the oligonucleotides were desalted on an NAP-10 column and subsequently desalted on an NAP-10 column and subsequently desalted prior to lyophilization or, alternatively, they were purified on a Mono Q ion exchanger (Pharmacia) and desalted prior to lyophilization.

Southern blotting and DNA labelling reactions. After separation of DNA restriction fragments by agarose gel electrophoresis the DNA was purified by CsCl/ethidium bromide gradient centrifugation (Maniatis et al., 1982). Restriction enzymes and T4 DNA ligase were supplied by Boehringer Mannheim or Pharmacia and they were used according to the manufacturer's instructions. Digested DNA was separated by electrophoresis on agarose gels using 40 mM-Tris/10 mM-sodium acetate/1 mM-EDTA, pH 7.8 (Maniatis et al., 1982) as running buffer.

Characterization of actinophage VWB

It has previously been observed that VWB has a very narrow host range (Anne et al., 1984). Further investigations on the host range versus different S. venezuelae strains showed that VWB infects S. venezuelae ETH 14630 but no other S. venezuelae strain (Table 1). This observation raised the question about the ETH 14630 strain being S. venezuelae. Reinvestigation of the culture by numerical cluster analysis indicated that the ETH 14630 strain resembles the S. venezuelae type strain ATCC 10712 (W. Wohlleben, personal communication), but it also shows a close relationship to S. exfoliatus ATCC 12672. Moreover, S. exfoliatus could be infected by VWB and when comparing the host range of three other S. venezuelae phages, S. venezuelae ETH 14630 and S. exfoliatus indeed showed a close relationship (Table 1).

In order to explain the narrow host range of VWB we also investigated the adsorption of this phage to other S. venezuelae strains. From these experiments it could be concluded that under the test conditions VWB efficiently adsorbed to ETH 14630 and to S. exfoliatus, but not to any of the other S. venezuelae strains tested (data not shown). Adsorption was, therefore, one of the restricting factors. The limited adsorption (1–10\(^{-6}\)) of VWB to the different S. venezuelae strains could be due to non...
specific adsorption phenomena. Efficient adsorption (more than 90% under the test conditions) of VWB to \textit{S. venezuelae} ETH 14630 and to \textit{S. exfoliatius} was probably due to particular phage receptor proteins at the cell surface of these strains. However, VWB or its derivative VWB04 could be introduced in most \textit{S. venezuelae} strains by transfection (Table 1). Moreover, they could also lysogenize these strains, as observed with VWB04. In this case the phage DNA became inserted in the host chromosome, rendering the strain thiostrepton-resistant. From these lysogens free phage particles could be isolated. After multiplication on ETH 14630 analysis of their DNA proved that the phage particles consisted of VWB04. It is evident that no plaques could be observed on \textit{S. venezuelae} strains different from ETH 14630 when transfected with VWB DNA, because these phages could not infect the surrounding cells.

![Fig. 1. One-step growth curve of phage VWB development on \textit{S. venezuelae} ETH 14630.](image)

![Fig. 2. (a) Mapping of prophage VWB DNA by comparison between restriction endonuclease digests of phage VWB and of chromosomal DNA isolated from \textit{S. venezuelae} ETH 14630 lysogenized with VWB. Mapping was done using Southern blots following hybridization with VWB DNA labelled either with digoxigenin (\textit{SphI} digest) or radioactively labelled (\textit{XmnI} and \textit{BglII} digests). Identification of restriction fragments containing the \textit{att} site was achieved by scoring the bands with changed mobility (arrowed). The size of the original bands are indicated. Lanes 1 and 2, chromosomal DNA of lysogens; V, VWB; C, control \textit{S. venezuelae} chromosomal DNA. (b) Restriction map of phage VWB showing the fragments that contain the \textit{att} site (\textit{BglII–XmnI}). In this manner the \textit{att} site was localized on a 2.5 kb \textit{BglII–XmnI} fragment.](image)
During the determination of the VWB host range to other *S. venezuelae* strains it was noticed that the type strain ATCC 10712 is a lysogenic strain. In the supernatant of liquid cultures or after soaking plates containing mycelia of strain ATCC 10712, a phage could be detected that produced clear plaques on ATCC 10595 (Table 1). This phage, designated SVL1, was spontaneously released from ATCC 10712. Since the latter strain is a lysogen, it could not be infected by this phage probably as a result of phage homoimmune superinfection. The observation of the ATCC 10712 strain harbouring an actinophage was independently observed by Hahn et al. (1988). The occurrence of wild-type actinomycetes being lysogens is not totally unusual. It has been described earlier, e.g. for *Streptomyces hygrosopicus* (Rautenstein et al., 1976), *Streptomyces rimosus* (Hranueli et al., 1979), *Streptomyces lividans* 803 (Lomovskaya et al., 1980), *Streptomyces gallaeus* (Kuhn et al., 1987) and *Faenia rectivirgula* (Schneider et al., 1987).

Localization of the att site on the VWB phage genome

In order to locate the att site on the phage genome, we isolated chromosomal DNA from several lysogens of *S. venezuelae* ETH 14630, digested it with restriction endonucleases and compared the restriction pattern to those of ligated VWB DNA. After digestion and electrophoresis the restriction fragments were blotted onto a membrane by Southern blotting and visualized by probing with 32P-labelled or digoxigenin-labelled VWB DNA. The restriction bands containing the att site could be detected because in the DNA of the lysogens this restriction band is lost as a result of the addition of bacterial chromosomal DNA at the att site. Instead, two new bands representing the right and left phage DNA–bacterial DNA junction bands appear.

Table 1. Host range of several *S. venezuelae* phages on different *S. venezuelae* strains and on *S. exfoliatus*

<table>
<thead>
<tr>
<th>Host</th>
<th>After infection</th>
<th>After transfection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VWB SV1 SVL1</td>
<td>VW3 VWB VWB04</td>
</tr>
<tr>
<td>S. venezuelae ETH 14630</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
<tr>
<td>S. venezuelae ATCC 10595</td>
<td>– + +</td>
<td>+ + +</td>
</tr>
<tr>
<td>S. venezuelae ATCC 10712</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>S. venezuelae ATCC 14583</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>S. venezuelae ATCC 21113</td>
<td>– – –</td>
<td>+ – +</td>
</tr>
<tr>
<td>S. venezuelae DSM 40727</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>S. exfoliatus DSM 12672</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
</tbody>
</table>

* No protoplasts obtained.

In this manner the att site could be located on a 2.5 kb *BglII–Xmnl* restriction fragment (Fig. 2b). The fragments *SphI/B, BglII/C, KpnI/A* (data not shown) and *Xmnl/A* disappeared and new bands became visible (Fig. 2a). Since it was observed that in different lysogens the same restriction fragments always contained the att site and the newly formed bands were always identical, it could be concluded that the phage usually integrated into a preferred site.

Protein composition of VWB

Electron microscopic investigations of VWB have shown that this phage has an icosahedral head, a long tail and a base-plate like structure (Anné et al., 1984). Electrophoresis of CsCl gradient-purified phage particles on 12.5 or 15% SDS-PAGE revealed the presence of at least 17 protein bands, a similarly high number of protein bands as observed with $\phi C31$ (Suarez et al., 1984). Molecular masses ranged between 12 and 83 kDa (Fig. 3). Coomassie and immunoblotting staining clearly showed that three bands with molecular masses of 16.5 kDa, 27-2 kDa and 43 kDa are the most prominent proteins.
They account, respectively, for 24, 10 and 20\% of the total amount of proteins as estimated by Gelscan XL (Pharmacia). The proteins in these bands are thought to be capsid proteins. In most bacteriophage proteins analysed by SDS-PAGE, three to four structural proteins are similarly present in much higher amounts than the other proteins (Muraiolo & Siminovitch, 1971; Relano et al., 1987; Suarez et al., 1984; Trautwetter et al., 1987). In all instances these major proteins are proven or thought to be major head and tail proteins. Some minor bands could be contaminating host proteins or precursor polypeptides of the phage structural proteins that have been incorporated into the capsids or remained absorbed to the phage particles.

N-terminal amino acid sequence analysis of VWB proteins

In a first approach 40 \(\mu \)g VWB proteins were separated by SDS-PAGE and electroblotted onto a PVDF membrane. After staining, the three major protein bands (16.5, 27.2 and 43 kDa) were excised from the PVDF membrane and subjected to 20 Edman degradation cycles. Of the 16.5 kDa protein 18 amino acids could be identified (Fig. 4). In contrast, no sequence could be obtained for the 27.2 and 43 kDa proteins due to insufficient sequenceable material.

To prepare sufficient amounts of purified proteins for sequencing, 500 \(\mu \)g of a VWB protein preparation was subjected to hydroxylapatite chromatography. Fractions containing only one protein were concentrated and sequenced. The sequence obtained for the 16.5 kDa protein was identical to the sequence obtained after SDS-PAGE and electroblotting. In addition, the amino acid at position 17 was likely to be a leucine residue. The 20 N-terminal amino acids of the 27.2 kDa protein (with the exception of residue 18) and of the 43 kDa protein were also determined from material recovered from hydroxylapatite chromatography. Remarkably, the 43 kDa protein showed N-terminal heterogeneity, since about 19\% of the molecules started with Glu\(_1\). This explains the observation that a protein with a slightly lower molecular mass co-purified with the 43 kDa protein during hydroxylapatite chromatography (data not shown).

Localization of the three most prominent structural proteins on the phage genome

Certain bacteriophages, e.g. \(\lambda \) (Hendrix et al., 1983), T7 (Hausmann, 1976), P1 (Sternberg & Hoess, 1983) have a well-characterized genetic map. These maps were constructed by painstaking genetic work using numerous different mutants. From these maps it became clear that the genes coding for the structural proteins are clustered. With respect to actinophages, a relatively detailed genetic map is available for only one phage, \(\phi C31 \) (Lomovskaya et al., 1980).

In order to study the genetic organization of VWB, we intended to map the three most prominent structural proteins by probing with mixtures of synthetic oligonucleotides based on the results of N-terminal amino acid sequencing, instead of using classical genetic means. The choice of oligonucleotides to be synthesized was intended to map the three most prominent structural proteins in *Streptomyces* based on the observation that the codon usage in *Streptomyces* shows a marked asymmetry in favour of codons with G or C in the third position (Hopwood et al., 1986). To minimize the number of possible oligonucleotides corresponding to the N-terminal amino acids of the prominent structural proteins the following amino acids were chosen for the different proteins: 16.5 kDa = QTFGGGDQ; 27.2 kDa = WEGADFYA and 43 kDa = EFTIEPTQL. Taking into account the average codon usage in *Streptomyces* the oligonucleotide mixtures contained a total of 18 different 24-mers in the case of the

Fig. 4. N-terminal amino acid sequences of VWB proteins. The sequence of the 16.5 kDa protein was determined using both material purified by SDS-PAGE and electrobloktting to PVDF (85 pmol, repetitive yield 87\%) and material purified by hydroxylapatite chromatography (40 pmol, repetitive yield 83\%); the sequences of the 27.2 kDa (141 pmol, repetitive yield 88\%) and the 43 kDa (57 pmol, repetitive yield 90\%) proteins were derived from hydroxylapatite-chromatography-purified material. Amino acids are represented by their one-letter symbols. Positions where no amino acids could be identified are indicated by an X. Amino acids that are likely to occur in a sequence are shown in parentheses. The arrow in the 43 kDa protein sequence indicates the N-terminus of the truncated form of this molecule.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.5 kDa</td>
<td>ME L S I K T Q T F G G D D Q S (L) L G X</td>
</tr>
<tr>
<td>27.2 kDa</td>
<td>A G D T D N P R L W E G A D F Y A X P V</td>
</tr>
<tr>
<td>43 kDa</td>
<td>S W T L D T E F I E P T Q L T G L I (R) E</td>
</tr>
</tbody>
</table>

"..."
16.5 kDa protein, and 12 and 32 different 23-mers for the 27.2 kDa and 43 kDa proteins, respectively.

The mixtures were end-labelled and hybridized to different restriction fragments of VWB DNA separated on agarose gels. By this method, it was observed that the start sites of the coding regions of the prominent proteins were all located in the SphI/C fragment (6-2 kb) (Anne et al., 1985). Finer mapping obtained after cloning the SphI/C fragment in pBR322 followed by restriction enzyme analysis of the cloned fragment indicated that the 16.5 kDa and 43 kDa proteins are located very close to each other (Fig. 5).

From these results it could be concluded that in VWB the genes coding for the main structural proteins are clustered in the same way as in bacteriophages investigated, e.g. λ, T4 and T7. Sequencing of the genes coding for the prominent structural proteins is in progress. Comparison of these sequences to those of other bacteriophages is without doubt of much interest for evolutionary studies.

References

