Requirement of the Escherichia coli dnaK gene for thermotolerance and protection against H₂O₂

JOHN M. DELANEY†

Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA

(Received 6 February 1990; revised 1 June 1990; accepted 3 July 1990)

Thermotolerance in Escherichia coli is induced by exposing cells to a brief heat shock (42 °C for 15 min). This results in resistance to the lethal effect of exposure to a higher temperature (50 °C). Mutants defective in the recA, uvrA and xthA genes are more sensitive to heat than the wild-type. However, after development of thermotolerance these mutants are like the wild-type in their heat sensitivity. This suggests that thermotolerance is an inducible response capable of protecting cells from the lethal effects of heat, independently of recA, uvrA and xthA. Thermotolerance does not develop in a dnaK mutant. In addition, the dnaK mutant is sensitive to heat and H₂O₂, but is resistant to UV irradiation. This implies that the E. coli heat-shock response includes a mechanism that protects cells from heat and H₂O₂, but not from UV.

Introduction

The heat-shock response is a highly conserved genetic response to environmental stress. This response is ubiquitous in nature, having been found in every organism studied for its presence, from bacteria to man (Lindquist, 1986; Neidhardt et al., 1984; Schlesinger et al., 1982). Induction of the heat-shock response in Escherichia coli involves the expression of at least 17 genes, and is caused by stimuli such as H₂O₂ treatment, ethanol, UV irradiation and viral infection (Neidhardt et al., 1984), in addition to heat. Whilst the heat-shock response has been studied extensively, its function is essentially unknown.

When E. coli is exposed to a brief, sub-lethal dose of heat it becomes more resistant to subsequent, potentially lethal heat exposure. This phenomenon is termed thermotolerance and has been observed in many organisms (Lindquist, 1986). Interestingly, thermotolerance in E. coli does not develop simply through induction of the heat-shock regulon (VanBogelen et al., 1987); however, there are many data which imply that the development of thermotolerance depends upon the heat-shock response. For example, E. coli htpR mutants, in which heat-shock gene expression is blocked, fail to exhibit thermotolerance (Yamamori & Yura, 1982). Agents other than heat, such as ethanol, which induce the heat-shock response also induce thermotolerance (Lindquist, 1986). In mammalian cells, the accumulation of heat-shock proteins is directly related to the degree to which thermotolerance is expressed (Subjeck & Sciandra, 1982). Of all heat-shock proteins, the concentration of the 70 kDa heat-shock protein, Hsp70, best correlates with the development of thermotolerance (Lindquist, 1986).

Many inducers of the heat-shock response in E. coli, particularly heat, H₂O₂ and UV, are DNA-damaging agents (Ananthaswamy & Eisenstark, 1977; Bridges et al., 1969a; Massie et al., 1972; Neidhardt et al., 1984; Woodcock & Grigg, 1972). This finding suggests that a function of the heat-shock response, and/or thermotolerance, may be to protect against the lethal effects of certain environmental agents known to cause DNA damage. To address this idea, the inactivating effect of heat, H₂O₂ and UV on repair-deficient mutants and a dnaK mutant of E. coli have been studied. The results indicate that the E. coli dnaK mutant is sensitive to heat and H₂O₂, but not to UV, and suggest that the dnaK gene may be needed to protect E. coli from the lethal effects caused by heat and H₂O₂.

Methods

Bacterial strains. All mutant E. coli strains were derived from AB1157 (Howard-Flanders & Theriot, 1966), which is designated wild-type. Strains AB2463 (Howard-Flanders & Theriot, 1966), AB2480 (Howard-Flanders et al., 1969), BW9101 (Demple et al., 1983) and

† Present address: Department of Cellular, Viral and Molecular Biology, University of Utah, School of Medicine, Salt Lake City, Utah 84132, USA.

0001-6080 © 1990 SGM
GW4813 (Pack & Walker, 1987) will henceforth be referred to as recA, recA uraA, xthA and dnaK, respectively. The recA and recA uraA mutants have missense mutations, whereas the xthA and dnaK mutants both have deletion mutations.

Heat treatment. Fresh cultures of bacteria were grown overnight at 30 °C in Hershey's broth (Steinberg & Edgar, 1962) prior to each experiment. These cultures were diluted into fresh Hershey's broth and incubated with shaking at 30 °C to a concentration of about 1 × 10^8 cells ml^{-1}. Culture (1 ml) was then pipetted into each of seven Eppendorf tubes which were placed in a 50 °C waterbath for the desired time. Time points represent the total time spent at 50 °C, and do not include the time needed for the culture to come up to temperature. Time points were measured to be no more than 2 min in each experiment. At each time of treatment, a tube was withdrawn from the waterbath, and the bacterial suspensions were immediately serially diluted in M-9 salts solution and plated on Hershey's agar plates using the agar overlay method (Adams, 1959).

The bacterial suspensions at all time points were diluted in duplicate, except those at the zero dose time point which were diluted in triplicate. Plates were incubated for 36-48 h at 30 °C. As a precaution against possible light-induced DNA repair, photoreactivation was avoided by maintaining darkened conditions during these experiments and during plate incubation. Survival at any given time of heat treatment was determined as the ratio of colony-forming units (c.f.u.) after treatment to the number of c.f.u. at the zero time point.

Thermotolerance. Thermotolerance experiments were done as described above for heat treatment except that prior to the 50 °C exposure, the bacterial suspensions (1-0 ml in plastic Eppendorf tubes) were placed at 42 °C for 15 min (not including 'come-up' time). Following this 42 °C heat treatment, the bacteria were immediately transferred to 50 °C. Survival was determined as above.

H_2O_2 treatment. Bacteria were grown and suspensions were pipetted into Eppendorf tubes as described above. CuSO_4 was added to each tube to a final concentration of 0.1 mM to increase the rate of hydroxyl radical formation (Brandl et al., 1987; McCord & Day, 1978). H_2O_2 (Mallinkrodt 30%) was added to a final concentration of either 4-4 mM or 8-8 mM. All tubes were placed on ice for the desired reaction time (reaction temperature was approximately 1-0 °C). After a known period of time, one tube was withdrawn from the ice and 2000 units of catalase (Sigma) was added. The bacterial suspension was then serially diluted, immediately plated and incubated as above. Survival was determined as indicated above.

UV treatment. Bacterial cultures grown to about 1 × 10^8 cells ml^{-1} were centrifuged at 1000 g for 20 min, and the cell pellet was resuspended in an equal volume of M-9 salts solution. The suspension was centrifuged, and the cell pellet resuspended again in an equal volume of M-9 salts solution. After standing at room temperature at least 20 min 1 ml samples of the suspension were placed into each of seven small dishes (35 × 10 mm), one dish for each time point being studied. The dishes were placed individually under a UV lamp (General Electric) emitting a dose of 10 J m^{-2} s^{-1}, for a specific length of time. After exposure, the dish was removed from the UV light, and the bacteria were serially diluted, plated and incubated as described above. Photoreactivation was avoided, and survival was determined as above.

Results

Sensitivity of E. coli mutants to heat

Repair-defective mutants, recA and recA uraA, were more sensitive to heat than their wild-type parent (Fig. 1a, b). These results are in agreement with previous reports (Bridges et al., 1969a, b), and support the conclusion that heat causes DNA damage. Furthermore, the recA uraA double mutant was more sensitive to heat than the recA strain. This indicates that both excision and recombinational pathways are employed in the repair of heat-induced DNA damages.

In *E. coli*, the xthA gene encodes the DNA repair enzyme exonuclease III. xthA mutants are sensitive to H_2O_2, a known DNA-damaging agent (Ames et al., 1985; Demple et al., 1983, 1986). An xthA deletion mutant was also more sensitive to heat than the wild-type (Fig. 1c). This result implies that exonuclease III, the product of the xthA gene, may be used to repair heat-induced DNA damage.

The DnaK protein is a major heat-shock protein in *E. coli*. As shown in Fig. 1(d), the dnaK deletion mutant was very sensitive to heat. This result was previously obtained by Pack & Walker (1987). The inactivation curves of the wild-type and the dnaK mutant were replotted with best-fit straight lines obtained through linear regression analysis (data not shown). Comparison of the slopes of these curves reveals that the slope of the dnaK inactivation curve is 3.6 times greater than the slope of the wild-type inactivation curve. These results indicate that the dnaK gene is important in protecting *E. coli* from the lethal effect of heat.

Thermotolerance protects against heat-induced damage

The three mutants recA, recA uraA and xthA with defects in known repair pathways, and wild-type *E. coli* were strongly thermotolerant (Fig. 2). In other words, after heat-shock at 42 °C for 15 min there was almost no killing by subsequent treatment at 50 °C, even though they are sensitive to a direct treatment of 50 °C (compare Fig. 2a-c to Fig. 1a-c). This suggests that, after establishment of thermotolerance, there is little or no need to repair heat-induced DNA damage by means of repair pathways employing the recA, uraA or xthA gene products.

In contrast, when the dnaK deletion mutant was also heat-shocked at 42 °C for 15 min and then heat-treated at 50 °C, it was killed very rapidly (Fig. 2d). Comparison of the killing curves of wild-type and the dnaK mutant showed that the slope of the dnaK inactivation curve was 19-6 times greater than the slope of the wild-type inactivation curve. The rate of inactivation of the dnaK mutant at 50 °C was essentially the same whether pretreated at 42 °C (Fig. 2d) or not (Fig. 1d).

The dnaK deletion mutant is sensitive to H_2O_2

Since the dnaK gene is induced by H_2O_2 treatment (VanBogelen et al., 1987), the effect of H_2O_2 on the
Requirement for thermotolerance in E. coli

Fig. 1. Sensitivity of E. coli strains to a temperature of 50 °C. Each point is a mean value based on determinations from at least three experiments. Error bars indicate standard error of the mean. WT, Wild-type.

Fig. 2. Sensitivity of E. coli strains to a temperature of 50 °C following exposure at 42 °C for 15 min. Each point is a mean value based on determinations from at least three experiments. Error bars indicate standard error of the mean. WT, Wild-type.
Fig. 3. Sensitivity of *E. coli* strains to exposure to (a) 4.4 mM-H$_2$O$_2$ and (b) 8.8 mM-H$_2$O$_2$. Each point is a mean value based on determinations from at least three experiments. Error bars indicate standard error of the mean. WT, Wild-type.

Survival of the *dnaK* mutant was studied. An *xthA* mutant, previously reported to be sensitive to H$_2$O$_2$ (Demple *et al.*, 1983) was also tested for comparison (Fig. 3). Both the *dnaK* and *xthA* mutants were more sensitive to 4.4 mM-H$_2$O$_2$ than the wild-type (Fig. 3a), which was relatively insensitive to H$_2$O$_2$ up to 60 min of exposure. Both the *dnaK* and *xthA* mutants were inactivated by H$_2$O$_2$ at approximately the same rate. At the higher H$_2$O$_2$ concentration (8.8 mM), wild-type cells were killed more rapidly (Fig. 3b). Here, wild-type cells were relatively resistant to H$_2$O$_2$ until 30 min of exposure, when survival declined rapidly. The *dnaK* and *xthA* strains were initially much more sensitive to this concentration of H$_2$O$_2$ than to the lower concentration. Killing was most rapid in the *dnaK* mutant during the early treatment times, such that only 20% of the cells survived after 5 min of exposure (Fig. 3b). For the *xthA* mutant, killing was also most rapid during the first 5 min of treatment. These results indicate that the *dnaK* gene, like *xthA*, is needed to protect *E. coli* from H$_2$O$_2$.

UV irradiation turns on the heat-shock response and induces the *dnaK* gene (Krueger & Walker, 1984). To determine if the *dnaK* gene protects a cell generally or if it is limited to specific types of environmental stress, the effect of UV on the *dnaK* deletion mutant was studied. Wild-type and *dnaK* mutant cells were irradiated with up to 180 J of UV light, a dose which has been shown to induce the *E. coli* heat-shock response (Krueger & Walker, 1984). The results of these experiments indicated that the *dnaK* mutant is not more sensitive to UV than the wild-type (data not shown). This implies that the *dnaK* gene is not involved in protecting cells from UV-induced DNA damage.

Discussion

Treatment of *E. coli* with a sub-lethal dose of heat results in resistance to subsequent heat exposure, i.e. thermotolerance. This induced heat resistance occurs independently of *recA-, uvrA-*, or *xthA*-mediated repair systems, but is absent in a *dnaK* mutant. These results imply that the development of thermotolerance, an inducible protective mechanism, abrogates the need for the *recA, uvrA* and *xthA* DNA repair pathways. Therefore, another heat-inducible system must exist which eliminates the DNA damaging potential of heat.
Deletion of the dnaK gene from *E. coli* results in cellular defects at a wide range of temperatures (Bukau & Walker, 1989). This suggests that the DnaK protein has important cellular functions at both normal and high growth temperatures, and, in fact, the DnaK protein is essential for growth at high temperatures (Bukau & Walker, 1989; Itikawa & Ryu, 1979; Paek & Walker, 1987). In addition, DnaK is necessary for initiation of DNA replication in *E. coli* at high temperatures (Sakakibara, 1988) and in bacteriophage λ at all temperatures (Dodson *et al*., 1986). I have shown that the dnaK mutant is very sensitive to H$_2$O$_2$. Therefore, the DnaK protein may also function to protect a cell from oxidative stress. Since heat and H$_2$O$_2$ at the concentration used may cause nucleic acid, protein and membrane damage, any of these may be the targets of DnaK protection.

The dnaK deletion mutant is very sensitive to heat even under conditions in which thermotolerance would otherwise be induced (Fig. 2d). This suggests that the DnaK protein provides some function which is essential for the development of thermotolerance. The precise nature of this function is not known, but many possibilities exist. *E. coli* dnaK mutants are deficient in both DNA and RNA synthesis and cell division is blocked at non-permissive temperatures (Bukau & Walker, 1989; Itikawa & Ryu, 1979; Massie *et al*., 1972; Saito & Uchida, 1977). Therefore, DNA and/or RNA synthesis may be required for the development of thermotolerance in a dnaK deletion mutant. Since the DnaK protein inhibits the heat-shock response in *E. coli* (Tilly *et al*., 1983), another possibility is that DnaK provides some type of regulatory function for the development of thermotolerance which is missing in the dnaK deletion mutant. Alternatively, the DnaK protein may be required for replication or repair of DNA at high temperatures.

Spontaneous DNA damage due to heat or oxidative processes appears to be a serious problem with which organisms must cope (Ames *et al*., 1985; Setlow, 1987). One function of the *E. coli* heat-shock response could be to specifically repair the type of DNA damage caused by heat and H$_2$O$_2$. The heat-shock response may be well suited to repair the DNA damage induced by both heat and oxidative reactions because these damages are similar. Both heat and H$_2$O$_2$ cause base alterations which result in apurinic and apyrimidinic (AP) sites (Hagensee & Moses, 1986; Massie *et al*., 1972; Ripley, 1988). Maintenance of the replicative integrity of DNA at high temperatures would allow a cell to survive heat stress more efficiently than a cell without such a process, and might result in the high degree of conservation seen in the heat-shock response.

I am very grateful to Barbara Bachmann and Graham Walker for supplying the bacterial strains used in this study. I would also like to thank Harris Bernstein and John Spizizen for their many helpful discussions and for critical review of this manuscript. This work was supported by NIH grant GM27219-08 to Harris Bernstein.

References

