Nodule formation in soybeans by exopolysaccharide mutants of *Rhizobium fredii* USDA 191

YOUNG H. KO† and RANDALL GAYDA*

Department of Microbiology, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, LA 70803, USA

(Received 10 July 1989; revised 1 September 1989; accepted 18 September 1989)

Production of exopolysaccharides by *Rhizobium* has been linked with efficient invasion and nodulation of leguminous plant roots by the bacteria. Exopolysaccharide-deficient (exo) mutants of *Rhizobium fredii* USDA 191 were isolated following Tn5-insertion mutagenesis. Five phenotypically unique *exo* mutants were investigated for exopolysaccharide synthesis and their ability to nodulate soybeans. The exopolysaccharides produced by these mutants were analysed for polysaccharide composition by column chromatography and thin-layer chromatography. Two mutants designated *exo-3* and *exo-5* were deficient in both neutral glucan and exopolysaccharide synthesis, but each induced some functional nodules on *Glycine max* (Peking). The remaining three mutants (*exo-1, exo-2* and *exo-4*) synthesized neutral glucans at levels higher or lower than those in the wild-type and exhibited partial exopolysaccharide deficiencies. The data imply that neither exopolysaccharides nor neutral glucans are essential for the induction of determinate nodules by *R. fredii*.

Introduction

The induction of nitrogen-fixing nodules on the roots of host legumes by *Rhizobium* and *Bradyrhizobium* bacteria is a multistep process involving interactions between the plant and its symbiont (see reviews by Halverson & Stacey, 1986; Keen & Staskawicz, 1988). Bacterial lipopolysaccharides and exopolysaccharides have been implicated as early bacterial signals in nodule development (Djordjevic *et al*., 1987; Finan *et al*., 1985; Gardiol *et al*., 1987; Leigh *et al*., 1985). Exopolysaccharides are composed of capsular polysaccharides (CPS) and extracellular polysaccharides (EPS) that differ chiefly in their degrees of polymerization (Tsien & Schmidt, 1981). Exopolysaccharide-deficient (exo) mutants of several *Rhizobium* species do not form normal nitrogen-fixing nodules; instead, they induce abnormal pseudonodules in legume roots which are devoid of bacteroids (Djordjevic *et al*., 1987; Finan *et al*., 1985; Noel *et al*., 1986; Vandenbosch *et al*., 1985). Several hypotheses for the functional role(s) of exopolysaccharides in the bacterial invasion process have been proposed. Exopolysaccharides may function as signal molecules that induce host initiation of infection thread formation and allow the rhizobia to enter the plant (Downie & Johnston, 1986; Halverson & Stacey, 1986). They may function to allow the growth of the bacteria within the infection thread without evoking the plant defence mechanisms (Downie & Johnston, 1986; Verma & Nadler, 1984). They may act as host specificity factors which enable the bacteria to bind to specific plant lectins (Halverson & Stacey, 1986; Keen & Staskawicz, 1988). In short, exopolysaccharides may be functioning as direct inducers, indirect protectors, or both, in the bacterial penetration process.

The exopolysaccharides synthesized by various *Rhizobium* species can be divided into acidic polysaccharide and neutral polysaccharide components. Acidic exopolysaccharides are composed of hexoses and uronic acids (Huber *et al*., 1984; Mort & Bauer, 1980, 1982; Robertsen *et al*., 1981). The acidic exopolysaccharides of *R. fredii* USDA 191 contain uronic acid, mannose, galactose and glucose in an approximately $1:1:1:1$ ratio and are also pyruvated (Lim & Tan, 1983). This is quite different from the reported composition of the exopolysaccharide from the more extensively studied species, *R. meliloti* 1021, which contains seven β-linked glucose and one β-linked galactose and is modified by pyruvlation, acetylation and succinylation (Aman *et al*., 1981). The neutral polysaccharide components contain primarily β-
glucans (York et al., 1980). Approximately 5 to 10% of the total polysaccharides secreted by fast-growing Rhizobium species are composed of β-2-linked glucans (York et al., 1980). The β-glucans are cyclic compounds with about 20 glucose residues. There is a strong correlation between β-1,2-glucan synthesis and plant attachment in both Rhizobium infection and Agrobacterium virulence (Cangelosi et al., 1987).

The present work was performed to determine if exopolysaccharide synthesis is a strict requirement for the induction of soybean nodulation by R. fredii USDA 191. Exopolysaccharide-deficient mutants of R. fredii USDA 191 were created by transposon Tn5 insertion mutagenesis, and their ability to induce nodulation in soybean roots was examined.

Methods

Biological materials. Bacterial strains and plasmids are listed in Table 1. Escherichia coli strains were maintained on Luria-Bertani (LB) medium (Maniatis et al., 1982) and R. fredii on mannitol/salt/yeast extract (MSY) medium (Lim & Shanmugam, 1979). Antibiotics were added to the media at the following concentrations: 25 μg ml⁻¹ for kanamycin sulphate and chloramphenicol for E. coli; and 40 μg ml⁻¹ for nalidixic acid, 50 μg ml⁻¹ for kanamycin sulphate, 25 μg ml⁻¹ for streptomycin sulphate and 10 μg ml⁻¹ for tetracycline hydrochloride for R. fredii. Seeds of wild-type soybean, Glycine soja (Peking), obtained from R. Tully (USDA-ARS, Beltsville, Maryland, USA), were used for nodulation tests.

Mutagenesis and screening for exo mutants. Filter mating was done with a slight modification of the procedure of Hom et al. (1984). Cells from exponential-phase cultures of E. coli MM294A(pRK602) were mixed with cells of R. fredii YKL999, collected on a nitrocellulose membrane filter, washed three times with 0.9% NaCl, and incubated overnight on yeast extract/salt (YS) agar plates (Lim & Shanmugam, 1979) at 28 °C. Cells were washed off the filter with YS broth and dilutions were spread on MSY agar plates containing nalidixic acid, kanamycin sulphate and streptomycin sulphate (Salvaraj & Iyer, 1984). Small non-mucoid transconjugants were selected and purified by restreaking on the same selection medium.

EPS production was quantified from 7 ml of late-exponential-phase cultures grown in mannitol/glutamate (MG) medium (Sherwood, 1970) at 28 °C. The culture samples were centrifuged at 12000 × g for 20 min to pellet the cells and EPS was precipitated from 5 ml of supernatant culture fluid by the addition of 2 vols acetone (Tully, 1985). This precipitate was washed three times with acetone/water (2:1, v/v), dried, and dissolved in 1% (v/v) H₂SO₄. Hexose content was determined by the anthrone method (Dudman & Jones, 1980).

Plant nodulation test. Method I. Seeds of G. soja were surface sterilized by soaking in concentrated H₂SO₄ for 15 min, rinsing five times with sterile water for 5 min, washing with 50% (v/v) ethanol for 5 min, and rinsing again three times with sterile water for 2 min. Sterile seeds were germinated on 0.5% (w/v) water agar at room temperature in darkness for 3–4 d. Seedlings were inoculated by dipping the roots in a late-exponential-phase culture of bacteria for 30–60 s, and then transplanted to vermiculite containing nitrogen-free salt medium (Schwinghamer, 1960). Plants were harvested after 4 weeks of incubation in a growth chamber under fluorescent light with a 14 h photoperiod at 22 °C (night) and 30 °C (day). Every observable change in plant root tissue was noted. Four to five seedlings were inoculated with each bacterial strain and each experiment was performed twice.

Method II. Seeds of G. max (Peking) were surface-sterilized by successive soaking in 50% (v/v) ethanol (5 min) and 50% (w/v) sodium hypochlorite (5 min) and rinsing with copious amounts of sterile deionized water (Pueppke, 1983). Bacteria from late-exponential-phase cultures were collected by centrifugation, washed, and resuspended in water at a final concentration of 10⁶ cells ml⁻¹. Surface-sterilized seeds were soaked in this inoculum for 1 h and planted in vermiculite containing nitrogen-free salt medium (Schwinghamer, 1960) with 0.5 ml of the inoculum. The seeds were initially incubated in darkness for 4–5 d followed by the same regimen of temperature and light as above. Subsequent harvest and examination procedures were as described above.

Recovery of bacteroids from nodules. Nodules were excised from the roots and surface-sterilized in 50% (w/v) sodium hypochlorite for 2 min followed by five rinses with sterile water for 5 min. The nodules were then placed in MSY medium and aerated at 30 °C for 96 h. This procedure was followed by five rinses with sterile water for 5 min. The nodules were air-dried and homogenized in a mortar and pestle and then resuspended in 50% (w/v) sodium hydroxide for 30 min, washed with phosphate-buffered saline (pH 7.2) (Mort & Bauer, 1980), and then resuspended in the same buffer for 6 h at 4 °C. The supernatant culture fluid containing the CPS was collected by centrifugation at 6000 × g for 30 min at 4 °C. The culture fluid was freeze-dried, dissolved in a minimal volume of water, and dialysed in 10 mm-phosphate buffer (pH 7-0) containing 0.02% sodium azide (elution buffer) at 4 °C in dialysis tubing with a molecular mass cut-off of 1000 Da.

For CPS isolation, bacteria were grown under the same conditions as above, bacterial cells were pelleted by centrifugation at 6000 × g for 30 min, washed with phosphate-buffered saline (pH 7.2) (Mort & Bauer, 1980), and then resuspended in the same buffer for 40 min at 30 °C. The supernatant culture fluid containing the CPS was collected by centrifugation at 6000 × g for 30 min at 4 °C, concentrated by freeze-drying and dialysed against deionized water.

EPS or CPS samples were size-fractionated by column chromatography. Bio-Gel A-5m (BioRad) columns (1 × 40 cm) were loaded with polysaccharide samples normalized for culture optical density and percentage of total crude supernatant culture fluid. The elution rate was approximately 0.07 ml min⁻¹ with elution buffer at 4 °C. Fractions of 1 ml were collected, and their hexose contents were determined by anthrone analysis.

EPS samples were further fractionated into acidic and neutral EPS by anion-exchange column chromatography. EPS samples were loaded on a DEAE-Sephadex A-50 (Pharmacia) column (6.5 ml) at 25 °C which was subsequently washed with deionized water until no hexose was detected in the effluent by the phenol/sulphuric acid method (Ashwell, 1966). Bound EPS was eluted from the column with 1 M-sodium acetate. For the identification of neutral glucans, those fractions not binding to the anion exchanger were hydrolysed with 0.5 M-HCl at 100 °C for 5–20 min (Gardiol et al., 1987). The products of acid hydrolysis were separated on silica gel thin-layer plates (Analtech), using a solvent mixture of 2-propanol/acetic acid/water (27:4:9, by vol.), and were visualized with orcinol ferric chloride reagent (Sigma) (Bonn et al., 1986).
Plasmid separation and DNA hybridization. Plasmids were separated by agarose gel electrophoresis. Lysis of bacteria within the well (Hynes et al., 1986) was used to separate the large plasmids of *R. fredii* by agarose gel electrophoresis. DNA was transferred to nitrocellulose filters by the method of Southern (Maniatis et al., 1982) after partial depurination cleavage (Wahl et al., 1979). A biotin-labelled Tn5 probe (Leary et al., 1983) was prepared by nick-translating pSUP2021 DNA using a biotin-11-dUTP nucleotide (Bethesda Research Laboratories). DNA-DNA hybridization and detection of hybrids were done according to the manufacturer’s procedure.

Introduction of plasmids containing *R. meliloti* exo genes into *R. fredii* exo mutants. Plasmids carrying functional exo genes from *R. meliloti* were obtained from G. Walker: pD56 (exoF/B), pD2 (exoB), pD5 (exoD), pD34 (exoA), pD13 (exoC) (Finan et al., 1985). These plasmids, which are derivatives of the broad host-range plasmid pLAFR1, were transferred individually into the *R. fredii* exo mutants by triparental mating. The triparental matings were done using the helper plasmid pRK2013 by the filter mating procedure of Hom et al. (1984). Transconjugants were screened on MSY agar containing nalidixic acid, kanamycin sulphate and tetracycline hydrochloride.

Results

Isolation of exo mutants

Suicide plasmid pRK602 containing transposon Tn5 was mobilized from *E. coli* MM294A(pRK602) to *R. fredii* YKL999 by filter mating. From this mating, kanamycin-resistant transconjugants (Tn5 insertion mutants) of *R. fredii* were obtained at a frequency of 1 × 10⁻⁵ per recipient. *exo* mutants with a nonmucoid appearance on the selective medium were isolated at a frequency of about 1 × 10⁻³. Eighty-five *exo* mutants were isolated and, of these, five phenotypically unique, nonmucoid colonies were chosen for further study (Table 1). Wild-type *R. fredii* colonies were highly mucoid in appearance and produced large, wet, and opaque colonies. *R. fredii* YKL224 (exo-I) produced colonies that were nonmucoid and whiter in colour than the wild-type strain. YKL224 produced only 4% of the acetone-precipitable EPS of wild-type. YKL257 (exo-2) was slightly mucoid and produced 43% of the acetone-precipitable EPS of wild-type. YKL285 (exo-3) was translucent and produced 12% of the amount of EPS compared to the wild-type strain. *R. fredii* YKL288 (exo-4) and YKL293 (exo-5) were nonmucoid and produced only 2% and 4%, respectively, of acetone-precipitable EPS compared to the wild-type. In addition, YKL293 (exo-5) grew slowly and formed smaller colonies than the other *exo* mutants.

R. fredii USDA 191 contains at least three large plasmids of 65 kb, 229 kb, and >300 kb in size (Appelbaum et al., 1985; Heron & Pueppke, 1984). DNA hybridizations probing for Tn5 insertions within these plasmids were performed on the five *exo* mutants. Bacteria were lysed within an agarose gel well, the three large plasmids were separated by agarose gel electro-phoresis and DNA was transferred to nitrocellulose filters. A biotin-labelled probe of pSUP2021 containing Tn5 was hybridized to the DNA on the nitrocellulose filters. A positive hybridization signal was detected from *E. coli* MM294A(pRK602) plasmid DNA as well as pSUP2021 unlabelled DNA, but was not detected from plasmid DNAs from any of the *R. fredii* exo mutants or *R. fredii* YKL999. Positive hybridization signals were detected around the agarose gel well on the top of the agarose gel where large chromosomal DNA fragments migrate (data not shown) suggesting that the Tn5 insertions may be located in the chromosome.

Analysis of the exopolysaccharides produced by the exo mutants

Acetone-precipitable EPS is a measure of bulk EPS. In order to determine whether the variant levels observed were due to changes in specific polysaccharide fractions, EPS samples from the culture fluid were separated by size on a Bio-Gel A-5m column (Fig. 1). Culture fluid from wild-type *R. fredii*, YKL999, contained a set of heterogeneous polysaccharides. High-molecular-mass material eluted in fractions just after the void volume.

Table 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strains and plasmids</th>
<th>Characteristics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM10</td>
<td>C600, recA, Mu* with integrated plasmid</td>
<td>Simon et al. (1983)</td>
</tr>
<tr>
<td>Rhzobiium fredii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USDA 191</td>
<td>Wild-type</td>
<td>Barbour et al. (1985)</td>
</tr>
<tr>
<td>YKL224</td>
<td>Tn5-induced exo-1 mutant of YKL999, Km Sm*</td>
<td>This study</td>
</tr>
<tr>
<td>YKL257</td>
<td>As YKL224, but exo-2</td>
<td></td>
</tr>
<tr>
<td>YKL285</td>
<td>As YKL224, but exo-3</td>
<td></td>
</tr>
<tr>
<td>YKL288</td>
<td>As YKL224, but exo-4</td>
<td></td>
</tr>
<tr>
<td>YKL293</td>
<td>As YKL224, but exo-5</td>
<td></td>
</tr>
<tr>
<td>YKL999</td>
<td>Na* derivative of USDA 191</td>
<td></td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRK602</td>
<td>pRK2013 Km*::Tn9 containing Tn5, Km Sm*</td>
<td>Leigh et al. (1987)</td>
</tr>
<tr>
<td>pSUP202</td>
<td>Ap* Cm* Tc*</td>
<td>Simon et al. (1983)</td>
</tr>
<tr>
<td>pRK2013</td>
<td>Helper, Km*</td>
<td>Ditta et al. (1980)</td>
</tr>
</tbody>
</table>

Km, kanamycin; Sm, streptomycin; Na, nalidixic acid; Nm, neomycin; Cm, chloramphenicol; Ap, ampicillin; Tc, tetracycline.

Low-molecular-mass material continued to be eluted up to an elution volume of 85 ml, with a major peak between 65 and 75 ml (Fig. 1a). In contrast, all the exo mutants possessed polysaccharide that was much less heterogeneous. EPS extracted from strain YKL224 (exo-I) (Fig. 1b) eluted as one sharp peak between volumes 65 and 75 ml. YKL257 (exo-2) (Fig. 1f) and YKL288 (exo-4) (Fig. 1e) synthesized polysaccharides that were similar to YKL224 polysaccharide but with the addition of two minor peaks of high-molecular-mass polysaccharide fractions. exo mutants YKL285 (exo-3) (Fig. 1d) and YKL293 (exo-5) (Fig. 1c), displayed little polysaccharide even within the major peak. This residual peak had a brownish colour instead of the normal greenish-blue colour observed in YKL999, YKL224, YKL257 and YKL288, which suggests that it is not likely to be a hexose fraction. YKL285 had a trace amount of high-molecular-mass polysaccharide eluting after the void volume.

Since EPS consists of both acidic and neutral components, the polysaccharides were further fractionated on DEAE-Sephadex columns to examine the relative contributions of both types. Less than 5% of the total EPS of the wild-type was neutral polysaccharide. In contrast, EPS of strain YKL224 consisted of 55% neutral and 45% acidic polysaccharide (Fig. 2a). EPS of YKL288 was primarily of neutral polysaccharide, which in turn constituted 70% of the total EPS (Fig. 2b).

Complete acid hydrolysis of neutral EPS yielded only a single component, corresponding to glucose on silica gel thin-layer plates. Partial hydrolysis, on the other hand, produced glucose polymers of varying length. Thus, the neutral EPS fraction is probably a glucan. In Table 2, the amount of neutral glucan produced by the exo mutants is presented for comparison with the wild-type.

Since no notable differences were discernible between YKL285 (exo-3) and YKL293 (exo-5) based on EPS analysis, the production of CPS was examined in these strains. CPS from the wild-type strain, when analysed on a Bio-Gel A-5m column, migrated as a single peak of low-molecular-mass polysaccharide (Fig. 3a). Both YKL285 (Fig. 3b) and YKL293 (Fig. 3c) mutants exhibited very little if any CPS.

Complementation of R. fredii exo mutants EPS with plasmids containing R. meliloti exo genes

In R. meliloti 1021, six genetic loci involved in exopolysaccharide synthesis have been identified by gene cloning and complementation assays (Finan et al., 1985; Leigh et al., 1985). Four of the exo mutations were mapped to megaplasmids within R. meliloti, and two mutations were located on the chromosome (Finan et al.,
exo mutants of R. fredii USDA 191

1985; Leigh & Lee, 1988). Plasmids carrying functional exo genes from R. meliloti were obtained: pD56 (exoF/B), pD2 (exoB), pD5 (exoD), pD34 (exoA), pD15 (exoC) (Finan et al., 1985). They were introduced individually into the exo mutants of R. fredii using triparental matings. The restoration of exopolysaccharide production was assayed. Transconjugants of YKL288 by pD56 (exoF/B), but not by pD2 (exoB), produced only 66% as much EPS as the wild-type, YKL999. Transconjugants of YKL293 by pD15 (exoC) produced 86% as much EPS as the wild-type. YKL285, YKL257 and YKL224 were not affected in EPS synthesis by the introduction of any plasmid encoding an exo gene from R. meliloti.

Nodulation ability of the exo mutants

The five R. fredii exo mutants were examined for ability to induce nodulation of soybean plants. The nodules that formed on the plant roots consisted of two types. The first class were typical spherical nodules that were large, determinate, and pink-pigmented. Bacteroids were recovered from these nodules after surface sterilization of the nodule. The second class of nodules were small, irregular in shape, and white, with a vascular bundle in the centre. No bacteroids could be recovered from these atypical nodules. Scanning electron micrographs of both nodule types are shown in Fig. 4.

The average numbers of nodules induced per plant by the wild-type and exo mutants of R. fredii USDA 191 on G. soja and on G. max are presented in Table 2.

Table 2. Comparison of the nodulation ability and exopolysaccharide production of R. fredii USDA 191 wild-type and exo mutants

<table>
<thead>
<tr>
<th>Strains</th>
<th>Number of nodules per plant (T/A)*</th>
<th>Neutral glucan fraction† (% of wild-type)</th>
<th>CPS† (% of wild-type)</th>
<th>EPS‡ (% of wild-type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YKL999 (wild-type)</td>
<td>10±2/10</td>
<td>3±4/0-0</td>
<td>100±0</td>
<td>100±0</td>
</tr>
<tr>
<td>YKL224 (exo-1)</td>
<td>1±2/20</td>
<td>0±1/2-1</td>
<td>25±3</td>
<td>ND</td>
</tr>
<tr>
<td>YKL257 (exo-2)</td>
<td>1±2/32</td>
<td>0±1/4-7</td>
<td>10±0-0</td>
<td>ND</td>
</tr>
<tr>
<td>YKL285 (exo-3)</td>
<td>1±3/26</td>
<td>1±3±/15-2</td>
<td>2±5</td>
<td>4±0</td>
</tr>
<tr>
<td>YKL288 (exo-4)</td>
<td>0±4±/15</td>
<td>2±0±/3-4</td>
<td>25±3</td>
<td>ND</td>
</tr>
<tr>
<td>YKL293 (exo-5)</td>
<td>0±4±/16</td>
<td>0±5±/9-4</td>
<td>1±0-0</td>
<td>2±3</td>
</tr>
<tr>
<td>Control</td>
<td>0±4/0-0</td>
<td>0±0±/0-0</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND, not determined. NA, not applicable.

* Four to five seedlings of soybean were inoculated with each strain for two separate experiments and repeated once. The numbers are LS (least squares) means of typical (T) nodules and average numbers of atypical (A) nodules per plant. LS means superscripted by the same letter are not significantly different (P = 0.05) according to least significant difference tests performed on individual LS means.

† Neutral EPS fraction was determined from the elution profile on a DEAE-Sephadex A-50 column.

‡ CPS was estimated from the elution profiles on a Bio-gel A-5m column (Fig. 3).

§ EPS was determined by addition of 2 vols acetone to culture supernatant.
YKL293 (exo-5) was the only mutant strain that did not induce any typical spherical nodules on G. soja. The other four mutant strains induced typical nodules comparable in number to those induced by the wild-type strain YKL999. Bacteria recovered from the typical nodules induced by the exo mutants were phenotypically the same with regard to EPS production and antibiotic resistance as the inoculating bacteria. The low number of spherical nodules observed per plant (approximately one per root) was typical for wild-type R. fredii infection of this soybean (Heron & Pueppke, 1984). Interestingly, exo-5 mutant YKL293, as well as other exo strains and the wild-type, induced the formation of many small atypical "pseudonodules" on the infected roots of G. soja.

R. fredii was originally isolated from G. max (Peking) and this plant appears to be a preferred host (Keyser et al., 1982). When these same exo mutants were tested for nodulation on G. max, the nodulation efficiencies of mutants were different from those obtained on G. soja. Soybeans inoculated with YKL224 (exo-1) and YKL257 (exo-2) developed spherical nodules in only one plant in ten, though all plants produced two or more atypical pseudonodules. In contrast to G. soja, G. max inoculated with YKL293 (exo-5) developed typical nodules 50% of the time, and when inoculated with YKL288 (exo-4) it nodulated only slightly less than when inoculated with wild-type. A comparison of the nodule induction by R. fredii exo mutants and EPS production (last column of Table 2) indicated no strong correlation between EPS levels and ability to induce nodulation.

Discussion

The major question addressed in this paper is whether exo mutants of R. fredii USDA 191 are adversely affected in the induction of soybean nodulation. In R. meliloti–alfalfa symbiosis, bacterial exopolysaccharide synthesis was found to be essential in the induction of nodule formation: all the exo mutants of R. meliloti 1021 except exoD showed lack of nodule invasion and induced only pseudonodules in alfalfa roots (Leigh et al., 1985, 1987; Leigh & Lee, 1988). Similarly, exo mutants of R. leguminosarum were found not to induce effective nodule formation on peas (Borthakur et al., 1986). Both R. meliloti and R. leguminosarum form cylindrical indeterminate nodules on the roots of their respective hosts. In fact, the requirement for sufficient EPS appears to be stringent only for indeterminate nodule formation.

When Chen et al. (1985) tested Tn5-induced mutants of Rhizobium NGR234 (a strain with a broad host range) for nodulation on determinate and indeterminate nodule-forming hosts, these exo mutants induced normal-to-small nodules on the determinate host’s roots, but induced only small callus-like structures on the indeterminate host’s roots. Similarly, Borthakur et al. (1986), working with the same gene found that a single exo mutation in R. leguminosarum made the bacterium ineffective in the nodulation of peas, but in R. phaseoli had no effect on nodulation in beans. Thus, the dependence on exopolysaccharide synthesis for nodulation of plants appears to be stronger for the indeterminate nodule structure.

Our data (Table 2) with exo mutants of R. fredii USDA 191 are consistent with the above correlation. R. fredii USDA 191 induces determinate nodules on soybeans. There was no apparent absolute requirement of exopolysaccharides for nodulation of G. max or G. soja. Four exo mutants of R. fredii, YKL224 (exo-1), YKL257 (exo-2), YKL285 (exo-3) and YKL288 (exo-4) induced typical spherical nodules on G. soja. Only one mutant, YKL293 (exo-5), was found unable to induce nodulation in this plant species. However, the exo-5 mutation must be considered pleiotropic because the mutant cells grew slowly compared with other exo mutants and the wild-type. The infection of G. soja with exo mutants and wild-type induced the production of a large number of small pseudonodules. This induction of
Fig. 4. Scanning electron micrographs of nodules induced in *G. soja* roots by *R. fredii* USDA 191. (a, b) Typical nodule and atypical nodule induced in *G. soja* roots by *R. fredii* USDA 191 after 4 weeks growth. (c) Cross-section of typical nodule and (d) enlargement of typical nodule centre. (e) Cross-section of atypical nodule and (f) enlargement of atypical nodule centre. Bar, 500 μm (a, b, c and e); bar, 5 μm (d and f).
plant cell differentiation without concomitant bacterial invasion indicates that it is not a preferred plant host of *R. fredii USDA 191*.

We tested nodulation on a different soybean species, *G. max* (Peking). Correlating with *G. max* being a preferred host for *R. fredii*, there was an increased number of nodules per plant root, an absence of atypical nodules upon wild-type infection and a lower number of atypical nodules from *exo* mutant infections. YKL-293 (*exo-5*) was able to induce nodules on 50% of the infected roots of this soybean. However, two different *exo* mutants, YKL224 (*exo-1*) and YKL257 (*exo-2*), were very inefficient in nodule formation in *G. max*, though a normal nodule could be found in one of ten plant roots infected. Interestingly, two mutants that displayed low production of neutral glucan fractions, YKL285 (*exo-3*) and YKL293 (*exo-5*), induced a large number of atypical nodules in *G. max*.

We tested for exopolysaccharide complementation by *R. meliloti* *exo* gene clones because *Rhizobium* species may share common pathways in exopolysaccharide synthesis. YKL293 (*exo-5*) was complemented by a *R. meliloti* *exo* gene clone. This was a pleiotropic mutation that affected strain growth rate and resulted in loss of both the high-molecular-mass acidic exopolysaccharides and the low-molecular-mass neutral glucans. Significantly, the phenotype of the *exoC* mutant of *R. meliloti* 1021 is similar to *exo-5*. The *exoC* mutant was also pleiotropic, grew slowly and produced little if any acidic or neutral polysaccharide (Leigh & Lee, 1988). Furthermore, recent studies of *Agrobacterium tumefaciens* indicate that it has a gene, *pscA*, that is closely related to *exoC* and a *pscA* mutant was defective in β-glucan production (Kamoan *et al.*, 1989). YKL288 was complemented by *R. meliloti* *exoF/B* but not by an *exoB* clone. This mutant was defective in the synthesis of the high-molecular-mass acidic polysaccharides but synthesized neutral glucans at about 25% of normal. The *exoF* mutant *R. meliloti* appears to have a similar phenotype because it was defective in succinoglycan production but still synthesized β-glucans (Leigh & Lee, 1988). Thus it is probable that the *exo-3* and *exo-5* mutations of *R. fredii* are in genes from a common pathway in exopolysaccharide synthesis. However, these probably similar *exo* gene mutations affect induction of nodules differently when in *R. fredii USDA 191* compared to when in *R. meliloti* 1021.

We conclude that a requirement for exopolysaccharide production is not as critical in the formation of determinate nodules as it is for formation of indeterminate nodules. This probably relates to the distinctly different mechanisms of morphogenesis observed for the two forms of nodules (Goodchild, 1977; Newcomb, 1981).

We thank Ray Tully for providing *G. soja* and *G. max* seeds and also the *R. fredii* strain, Gram Walker for providing us with *exo* gene clones of *R. meliloti*, and Cindy Henk and Marion Socolofsky for assistance with electron microscopy and photography. We also thank Michael Orlowski and Eric Achberger for critical reading of the manuscript. This work was supported by a grant from the Louisiana State University Agricultural Experiment Station. Hatch project LAB02450 to Agricultural Experiment Station.

References

