Cloning and Expression of *Treponema pallidum* Antigens in *Escherichia coli*

By MARK J. BAILEY,† CHRISTOPHER M. THOMAS, ALAN COCKAYNE, RICHARD A. STRUGNELL AND CHARLES W. PENN*

School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, UK

(Received 23 January 1989; revised 7 June 1989; accepted 13 June 1989)

A library of *Treponema pallidum* genomic DNA fragments produced by partial Sau3A digestion was established in *Escherichia coli* K12 using the plasmid vector pAT153. The library was screened using immune syphilitic rabbit serum and six recombinant phenotypes expressing eight treponemal polypeptides were detected. With two exceptions, all the recombinant gene products were the same size as polypeptides detected on Western immunoblots of *T. pallidum*. The genes encoding three novel gene products, with molecular masses in SDS-PAGE of 42, 17 and 15.5 kDa, which had not been cloned previously from *T. pallidum* were also identified. Monoclonal antibodies which reacted with four of the eight recombinant polypeptides were generated.

INTRODUCTION

Studies on the immunobiology and pathogenicity of *Treponema pallidum* subsp. *pallidum*, the aetiological agent of venereal syphilis, have been restricted by the inability to culture the organism *in vitro*. Although sensitive analytical techniques such as SDS-PAGE and Western immunoblotting have allowed detailed analysis of the polypeptide and antigenic composition of *T. pallidum* (reviewed by Norris et al., 1987), the significance of individual treponemal components in the stimulation of immune responses relevant to the immunopathology of syphilis infection, or as potential virulence determinants, remains unclear. Detailed analysis of such components, using conventional fractionation techniques, is technically demanding, given the limited amount of material which can be obtained by growth of *T. pallidum* in the rabbit testis (Penn, 1983).

The inability to cultivate *T. pallidum in vitro* also necessitates the use of rabbit-grown treponemes for use as antigen in routine serological tests for syphilis. Problems of specificity may arise in such assays because of the observed cross reactivity of antigens present in *T. pallidum* with those of commensal and non-pathogenic treponemes (Pedersen et al., 1980; Lukehart et al., 1982). Antibody to such cross-reactive antigens has been detected in sera of non-syphilitic individuals (Hanff et al., 1983a). The specificity of serological tests for syphilis and their diagnostic value could be improved by the use of *T. pallidum*-specific antigens. Analysis of the humoral immune response to *T. pallidum* infection both in the rabbit model (Hanff et al., 1983b) and in humans (Hanff et al., 1982; Hensel et al., 1985) has identified a number of antigens of potential use in immunodiagnostic tests for syphilis. The specificity of individual antigens or antigenic determinants has also been demonstrated for some of the major *T. pallidum* immunogens (Bailey et al., 1987; Radolf & Norgard, 1988).

As a possible method of circumventing problems associated with the preparation of *T. pallidum* antigens, a number of workers have used recombinant DNA technologies to produce *T. pallidum* polypeptide gene products *in vitro*. A limited number of treponemal antigens have been

† Present address: NERC Institute of Virology and Environmental Virology, Microbiology, Mansfield Road, Oxford OX1 3SR, UK.

Abbreviation: IRS, immune rabbit syphilitic serum.

0001-5367 © 1989 SGM
cloned and expressed in *Escherichia coli* (Walfield et al., 1982; Stamm et al., 1982; van Embden et al., 1983; Norgard & Miller, 1983; Peterson et al., 1986; Hindersson et al., 1987; Hsu et al., 1988). In several instances the same polypeptide has been cloned in independent studies, e.g. an antigen of heterogeneous molecular mass of 35–28 kDa (Walfield et al., 1982; van Embden et al., 1983). A number of recombinant polypeptides have been purified from *E. coli* in sufficient quantity to allow their assessment as potential immunodiagnostics (Coates et al., 1986; Ljsselmaiden et al., 1989) or vaccinogens in the rabbit model of experimental syphilis (Borenstein et al., 1988). However, clones encoding several major immunogens of *T. pallidum*, e.g. the flagellum, have not yet been identified in *T. pallidum* recombinant DNA gene banks. We have therefore used recombinant DNA technology in an attempt to isolate additional *T. pallidum* gene products which may be of use both in the diagnosis of syphilis and in increasing understanding of the immunobiology of this disease. We describe the successful cloning and expression of five *T. pallidum* antigens which have been detected in earlier investigations, and three novel cloned antigens which have not been reported in previous studies.

METHODS

T. pallidum. The Nichols strain of *T. pallidum* subsp. *pallidum* was used throughout this study. *T. pallidum* was maintained by intratesticular passage in New Zealand White rabbits (Penn, 1983).

Genetic manipulation. All techniques were essentially as described by Maniatis et al. (1982); enzymes, media and chemicals were purchased from Gibco-BRL, Northumberland Biologicals, Pharmacia, Difco, BDH and Sigma. *E. coli* strain HB101 [*F’* *hsdS20* (*r– m–*) *recA13* *ara-14* *proA2* *lacY1* *galK2* *rpsL20* (*Sm*) *xyl-5* *mit-1* *supE44* *λ–*] was used throughout this study. The high-copy-number plasmid pAT153 (Twigg & Sherratt, 1980) was used as the cloning vector.

Purification of *T. pallidum* DNA and genomic cloning. DNA was extracted from approximately 10¹⁰ cells of *T. pallidum* by SDS lysis and proteinase K digestion and purified by CsCl fractionation. The DNA was partially digested with *Sau*3A to an average size of 4 kbp, ligated into *Bam*HI-digested and dephosphorylated pAT153 DNA and transformed into *E. coli* HB101. Recombinants were selected on the basis of tetracycline sensitivity and ampicillin resistance.

Colony and Western immunoblotting. Recombinant HB101 colonies were transferred by lifting onto nitrocellulose filters (Amersham) and delipidated in chloroform vapour for 5 min. After fixing in ethanol and air-drying, the filters were incubated in 3% (w/v) bovine serum albumin (BSA)/0-1% (v/v) Tween 20 in phosphate-buffered saline (PBS) (Penn et al., 1985) for 1 h at room temperature to block non-specific binding sites on the nitrocellulose. Extensive washing in PBS removed unfixsed bacterial debris and the residual filter-bound material was reacted (Broome & Gilbert, 1978) with pooled immune rabbit serum (IRS). Bound antibody was detected as described for Western immunoblotting (see below).

Western immunoblots were prepared from linear 10 or 12-5% (w/v) acrylamide SDS-PAGE gels as described previously (Penn et al., 1985). *E. coli* cells expressing recombinant proteins were grown in LB broth (Maniatis et al., 1982), in the presence of 100 µg ampicillin ml⁻¹, pelleted by centrifugation and electrophoresed at a final concentration of approximately 5 × 10⁶ cells per lane using the electrophoresis buffer system of Laemmli (1970). Following transfer to nitrocellulose membranes (Penn et al., 1985) Western immunoblots were reacted with IRS, 1/200 dilution, for 3 h at room temperature. Immunoblots were washed thoroughly in PBS and bound antibody detected using second antibodies conjugated to either alkaline phosphatase (O’Connor & Ashman, 1982) or horseradish peroxidase (Bailey et al., 1987) and their respective substrates. Migration of polypeptides was compared with those of known molecular mass standards (Bio-Rad).

Monoclonal antibodies. Monoclonal antibodies were produced as described previously (Bailey et al., 1987). Mice were immunized with multiple injections of *T. pallidum*, the spleens removed and splenocytes fused with NS-1 myeloma cells grown in RPMI 1640 medium supplemented with 10% (v/v) foetal calf serum. Hybrids surviving treatment with HAT were assayed for specific antibody production by ELISA. Hybridomas producing reactive supernatants were recloned by limiting dilution and expanded to produce supernatants for analysis against Western immunoblots of *T. pallidum*. Where specific monoclonal antibodies were not available, monospecific polyclonal antibody was eluted from excised regions of Western immunoblots carrying proteins transferred from SDS-PAGE gels loaded with approximately 5 × 10⁶ recombinant *E. coli*, according to the method of Beall & Mitchell (1986). Monoclonal HATR-125 was the generous gift of Dr P. Hindersson (Statens Seruminstitut, Copenhagen, Denmark).

Restriction mapping and construction of deletion derivatives. DNA from recombinant plasmids was prepared by CsCl centrifugation and samples containing 1–2 µg of DNA restricted with 10 units of the relevant restriction enzyme at 37 °C for 2 h. Digestions using *Sma*I were incubated at 30 °C. Restriction fragments were analysed on
Cloning of Treponema pallidum antigens

20-cm-long gels run in Tris/borate/EDTA buffer (Maniatis et al., 1982). In order to define more closely the regions of DNA encoding T. pallidum polypeptides and for use in future studies of DNA sequence analysis, recombinant plasmids were digested with appropriate restriction enzymes and religated to form deletion derivatives. Plasmid DNA isolated from these transformants was analysed by restriction mapping and antigen expression was analysed by both colony and Western immunoblotting. The following abbreviations were used for designation of deletion derivatives: -01-SsrI; -03-EcoRI; -04-SalI; -05-HindIII; -06-ClaI; -07-SstI; -08-PvuII; -09-BamHI; -003(a and b)-Xhol; and -005(b and c)-BglII.

RESULTS

Western immunoblot analysis of cloned antigens

A gene bank of chromosomal T. pallidum DNA was constructed in E. coli by inserting DNA which had been partially digested with Sau3A into the restricted and dephosphorylated BamHI site of the vector pAT153. Ampicillin-resistant recombinants were identified by sensitivity to tetracycline in replica plates. The plasmid DNA from 172 randomly selected ampicillin-resistant, tetracycline-sensitive recombinants was analysed by restriction-enzyme digestion. The average insert size was 4.1 kbp (maximum 11.6, minimum <1). Colonies were screened initially by blotting against IRS on nitrocellulose filters. Those colonies which were reactive were picked into liquid cultures and analysed by Western immunoblotting. Six clones representative of six phenotypes which reacted positively on Western immunoblots were designated pMJBlO–60 (Fig. 1, Table 1). None of the cloned polypeptides was consistently visualized in SDS-PAGE gels stained with PAGE Blue 83 (BDH) (data not shown). The gene products of pMJBlO–60 were compared with T. pallidum polypeptides reacted in Western immunoblots with IRS. Only the gene products of pMJBlO, pMJB20 and pMJB60 could be classified under the system of Norris et al. (1987) (Table 1). With the exception of that encoded by pMJB40, all the recombinant polypeptides were essentially equivalent in SDS-PAGE mobility to those produced in T. pallidum. (Minor differences in mobility of approximately 1 kDa were detected between the recombinant 37 and 42 kDa polypeptides expressed by pMJBlO and pMJB20 respectively and the respective T. pallidum polypeptides.) In the screening of approximately 14500 colonies (considered to be a representative T. pallidum gene bank) some of the six phenotypes were detected a number of times. The phenotype pMJBlO (44.5/37 kDa antigens) was detected most often (six times).

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Molecular mass (kDa)</th>
<th>Norris classification*</th>
<th>Previous cloning (Reference † and strategy ‡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMJBlO</td>
<td>44.5</td>
<td>Protein g</td>
<td>1*</td>
</tr>
<tr>
<td>pMJB10</td>
<td>44.5</td>
<td>Protein h</td>
<td>None</td>
</tr>
<tr>
<td>pMJB20</td>
<td>37</td>
<td>Unclassified</td>
<td>1*, 2*, 3*</td>
</tr>
<tr>
<td>pMJB30</td>
<td>29–35</td>
<td>Unclassified</td>
<td>1 (TmpC)*</td>
</tr>
<tr>
<td>pMJB40</td>
<td>29</td>
<td>Unclassified</td>
<td>1 (TpE)*</td>
</tr>
<tr>
<td>pMJB50</td>
<td>24–28</td>
<td>Unclassified</td>
<td>None</td>
</tr>
<tr>
<td>pMJB60</td>
<td>24</td>
<td>Unclassified</td>
<td>None</td>
</tr>
<tr>
<td>pMJB60</td>
<td>17</td>
<td>Protein p</td>
<td>None</td>
</tr>
<tr>
<td>Other recombinant antigens</td>
<td>47</td>
<td>Protein f</td>
<td>4*, 5*, 7*</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>Protein a</td>
<td>6*, 3*</td>
</tr>
</tbody>
</table>

* Only those polypeptides which could be stained with Coomassie Blue were classified by Norris et al. (1987).
† Reference: 1, van Embden et al. (1983); 2, Swancutt et al. (1986); 3, Hindersson et al. (1986); 4, Norgard et al. (1986); 5, Peterson et al. (1986); 6, Fehniger et al. (1984); 7, Hindersson & Bangsdorg (1987).
‡ Cloning strategy: a, Sau3A partial digestion; b, BamHI partial digestion; c, AluI/HaeIII partial digestion.
§ Only weakly reactive on a Western immunoblot.

Table 1. Designation of polypeptides encoded by PMJBlO–60 according to Norris et al. (1987) and previous reports of repeated cloning of T. pallidum polypeptide antigens
Fig. 1. Western immunoblot of antigens expressed by pMJB10–60. Cell proteins from overnight cultures of E. coli HB101 (H) containing plasmids pMJB10–60 (10–60) were separated by SDS-PAGE and transferred to nitrocellulose membrane. Antigen profiles, detected by reaction with IRS, were compared with T. pallidum (T) and E. coli HB101 (H). Treponemal antigens expressed by recombinant plasmids are arrowed, and their molecular masses indicated by kDa. ◄ and ◄ denote products of cloned genes.

Reaction with monoclonal antibodies and construction of deletion derivatives

pMJB10 encoded two polypeptides of 44.5 and 37 kDa (Fig. 2a). The larger polypeptide reacted with monoclonal antibody 2B11 (Fig. 2b). No hybridoma producing monoclonal antibody reactive with the lower-molecular-mass protein was detected in screenings of cell fusions. The restriction map of pMJB10 shows a high degree of similarity with that of pRIT4694 of Hansen et al. (1989), where two proteins of 44.5 and 36.5 kDa, designated TmpA and TmpB were found to be expressed by a 2.4 kbp T. pallidum DNA fragment (coordinates 5.9–2.4, Fig. 2c). Sequence analysis of the TmpA gene (data not shown) revealed that the gene possessed a signal peptide which was encoded downstream from the SmaI site in Fig. 2 (c) (coordinate 5.9)
Figs 2–7. Antigen expression and restriction maps of pMJB10–60. Duplicate Western immunoblots of E. coli HB101 (H), E. coli HB101 containing pMJB10–60 (10–60) and T. pallidum (T) reacted with IRS are shown in each Figure. Where appropriate replicate Western immunoblots reacted with monoclonal antibodies or monospecific polyclonal antibodies are included. Restriction maps of each plasmid and the DNA remaining in each deletion derivative are shown in Figs 2–6(c) and in Fig. 7(d). The following abbreviations are used to identify restriction sites: B, BamHI; Bg, BglII; C, ClaI; E, EcoRI; H, HindIII; K, KpnI; P, PstI; Pvu, PvuII; S, SalI; SI, SstI; SII, SstII; Sm, SmaI; Sp, SphI; X, XhoI. Scales indicate the insert size (kbp) and the bold lines above the scales, the location of the coding region of the insert. Ag? indicates production of the antigen by the deletion derivatives.

Fig. 2. Antigen expression and restriction map of pMJB10. IRS detected two polypeptides expressed by pMJB10, a larger polypeptide of 44.5 kDa (∙) and a smaller polypeptide of 37 kDa (<) (a). The 44.5 kDa polypeptide reacted with monoclonal antibody 2B11 (b). The two genes were present on a 2.3 kbp HpaI–SstI fragment (c).
Fig. 3. Antigen expression and restriction map of pMJB20. IRS detected a single broad polypeptide band of approximately 42 kDa (a). Monoclonal antibody 33a detected two polypeptides of 42-43 kDa, (arrowed) possibly representing precursor and mature forms of the antigen, that ran at a slightly higher molecular mass than the equivalent polypeptide in *T. pallidum* (b). The gene encoding the polypeptide was present on a 3-2 kbp *HindIII–PvuII* fragment (c).
Cloning of *Treponema pallidum* antigens

(Hansen et al., 1985). Monoclonal antibody 2B11 reacted with the TmpA gene product of Hansen et al. (1985) (data not shown), confirming that the larger gene product encoded by pMJBlO was the same as that described as TmpA. In this study, the TmpB protein was truncated by deletion of an XhoI fragment (coordinates 4-1-3-2) suggesting that the C'-terminus of the 37 kDa protein fell between these two XhoI sites (Fig. 2c). DNA sequence analysis of subclones containing the BglII fragment (coordinates 6-7-5-2) (data not shown) confirmed the identity between regions of pMJBlO and pRIT4600, the recombinant plasmid of Hansen et al. (1985) which encodes TmpA and TmpB (unpublished observations).

Analysis of pMJ20

pMJ20 encoded a single polypeptide of 42 kDa in Western immunoblots reacted with IRS (Fig. 3a). Reactivity with monoclonal antibody 33a resolved the gene product into a doublet, suggesting that the protein was initially translated with a signal peptide (Fig. 3b). The molecular mass of the *E. coli* product was approximately 1 kDa larger than the equivalent protein in *T. pallidum*. Restriction endonuclease analysis and characterization of deletion derivatives of pMJ20 mapped the gene to a 2-9 kbp region of DNA which fell between HindIII and PvuI sites (coordinates 0-0-2-9, Fig. 3c).

Analysis of pMJ30

The gene product of pMJ30 was a diffuse band of molecular mass 28-34 kDa (Fig. 4a). Monoclonal antibody 10c, which also recognizes the treponemal protein TpD (Norris et al., 1987) (data not shown) reacted with the gene product of pMJ30. Restriction mapping and analysis of deletion derivatives of pMJ30 (Fig. 4c) revealed that the activity of the gene was retained on a 1-6 kbp HindIII-BamHI fragment (coordinates 2-6-4-2) (Fig. 4c). The similarity between the restriction maps of pMJ30 and two other plasmids known to encode an antigen of similar molecular mass and electrophoretic characteristics - pRIT3200 (van Embden et al., 1983; Hindersson et al., 1986) and pMN20 (Swancutt et al., 1986) - suggests that the polypeptide cloned in all three studies is identical.

Analysis of pMJ40

The recombinant plasmid pMJ40 encoded a single polypeptide of 29 kDa (Fig. 5a). Monoclonal antibody 15 recognized both the 29 kDa pMJ40 polypeptide in *E. coli* as well as a larger polypeptide of 35 kDa in *T. pallidum* (Fig. 5b). It has been shown (S. J. Norris, unpublished observations) that this monoclonal antibody reacts with an antigen known as TmpC, cloned previously by van Embden et al. (1983). The reduced molecular mass of the pMJ40 gene product in *E. coli* suggests that the gene has been truncated at the C'-terminus during cloning. From analysis of deletion derivatives of pMJ40 (Fig. 5c), it would appear that the gene encoding the 35 kDa *T. pallidum* polypeptide probably contains a Sau3A site at coordinate 0-0 (Fig. 5c) which was cleaved during partial digestion of the treponemal DNA prior to ligation into the vector pAT153. Termination of translation of the truncated gene in the recombinant *E. coli* must be provided by an in-phase termination codon present in the vector. No restriction map of pRIT9000, the plasmid encoding TmpC (J. D. van Embden, personal communication), has been published so comparisons with the restriction map of pMJ40 have not been made. It is probable, however, that pMJ40 contains a fragment of *T. pallidum* DNA, the cloning of which was reported by van Embden et al. (1983).

Analysis of pMJ50

The plasmid pMJ50 encoded a gene product of heterogeneous molecular mass (24-28 kDa, Fig. 6a) that was similar in Western blot appearance to the gene product of pMJ30. The monoclonal antibody HATR-125 (Norris et al., 1987) reacted with this gene product giving an identical profile to that seen with IRS (Fig. 6b). Norris et al. (1987) reported that this monoclonal also reacts with the polypeptide designated TpE described by van Embden et al. (1983). Restriction mapping and analysis of deletion derivatives revealed that the gene was
Fig. 4. Antigen expression and restriction map of pMJB30. IRS detected a diffuse antigenic polypeptide migrating over the molecular mass range 29–35 kDa (a). Monoclonal antibody 10c detected an identical antigen (b). The gene encoding the polypeptide was present on a 1.5 kbp HindIII–BamHI fragment (c).
Fig. 5. Antigen expression and restriction map of pMJB40. IRS detected a polypeptide of 29 kDa in E. coli HB101 containing pMJB40 (a). Monoclonal antibody 15 detected a polypeptide of 35 kDa (*) in T. pallidum and one of 29 kDa (**) in the recombinant E. coli. Monospecific antibodies eluted from a Western blot of this recombinant reacted with the 35 kDa polypeptide in T. pallidum (data not shown), confirming the relationship of the cloned and parent antigens (b). The gene encoding the polypeptide was present on a 3.0 kbp HindIII fragment (c).
Fig. 6. Antigen expression and restriction map of pMJB50. IRS detected a diffuse antigenic polypeptide migrating over the molecular mass range 29–25 kDa (a). Monoclonal antibody HATR-125 detected a polypeptide of identical mobility (b). The gene encoding the polypeptide was present on a 0.9 kbp PvuII–PstI fragment (c).
Fig. 7. Antigen expression and restriction map of pMJB60. IRS detected two polypeptides of 17 (●) and 15.5 kDa (●) (a). No monoclonal antibodies were available to confirm these molecular masses in T. pallidum. Monospecific antibodies were therefore eluted from preparative Western immunoblots of pMJB60 expressed in E. coli HB101, and were reacted with T. pallidum. Antibody eluted from the 17 kDa polypeptide reacted faintly with a polypeptide of 16.5 kDa (●) in T. pallidum (b). Antibody eluted from the 15.5 kDa polypeptide reacted with a polypeptide of identical molecular mass (●) in T. pallidum (c). (d) shows that the two polypeptides were encoded by different DNA fragments. The smaller polypeptide (●) was synthesized from a 0.7 kbp EcoRI-BamHI fragment, and the larger polypeptide (●) from a 2.3 kbp BamHI fragment, indicated by L (lower-band polypeptide) and U (upper-band polypeptide), respectively.
present on a 1.1 kbp PvuII–PstI fragment (coordinates 0.6–1.7, Fig. 6c). No restriction map of
pRIT7100, the plasmid encoding TpE (van Embden et al., 1983) has been published for
comparison with that of pMJB50.

Analysis of pMJB60

Plasmid pMJB60 encoded two polypeptides of 17 and 15.5 kDa (Fig. 7a). The larger
polypeptide was only weakly antigenic, whereas the smaller protein reacted strongly with IRS.
None of the monoclonal antibodies available reacted with either of these proteins. Antibody
eluted from preparative Western immunoblots of the larger polypeptide reacted weakly with an
antigen of 16.5 kDa in *T. pallidum* (Fig. 7b). Antibody similarly eluted from the smaller
polypeptide reacted strongly with the 15.5 kDa polypeptide of similar appearance in *T. pallidum*
(Fig. 7c). Analysis of deletion derivatives of pMJB60 showed that the two polypeptides were
synthesized independently (Fig. 7d). Deletion of the 2.1 kbp BamHI fragment (coordinates 3.6–
5.7) resulted in loss of expression of the larger polypeptide but retained expression of the smaller
polypeptide. The smaller polypeptide was mapped to a 800 bp EcoRI–BamHI fragment
(coordinates 2.8–3.6, Fig. 7d).

DISCUSSION

Infection with *T. pallidum* elicits a high titre humoral immune response to a large number of
treponemal polypeptides (Hanff et al., 1982; Hensel et al., 1985), a response which is exploited in
the serodiagnosis of syphilis. Among the most immunogenic of these polypeptides are the major
flagellum polypeptide of 37 kDa and a putative outer-membrane protein of 47 kDa (Hanff et al.,
1982, 1983b; Lukehart et al., 1982; Jones et al., 1984). The 47 kDa polypeptide has been cloned
(Norgard et al., 1986; Peterson et al., 1986; Hindersson & Bangsdorg, 1987). This polypeptide is
considered to be *T. pallidum*-specific (Radolf & Norgard, 1988) and the immunodiagnostic
potential of responses to this antigen have recently been demonstrated in cases of congenital
syphilis (Sanchez et al., 1989). Cross-reactive and specific antigenic determinants have been
identified by the use of monoclonal antibodies on the 37 kDa flagellum-associated polypeptides
of *T. pallidum* (Bailey et al., 1987; Cockayne et al., 1987). Such *T. pallidum*-specific determinants
could be exploited as reagents in serodiagnostic tests and one of the major aims of the present
study was to try to isolate recombinants expressing this polypeptide from *T. pallidum* gene
banks. The failure to isolate such recombinants may be due to a number of possible reasons
which are considered below.

Several independent investigators have now successfully cloned polypeptides from *T.
pallidum* into *E. coli* (Walfield et al., 1982; Stamm et al., 1982; van Embden et al., 1983; Norgard
& Miller, 1983; Peterson et al., 1986; Hsu et al., 1988). All have used restriction enzymes to
produce partial digests of chromosomal DNA. Despite differences in vectors and restriction
enzymes employed, the total number of cloned treponemal polypeptides is relatively small.
While genes encoding several minor antigens have been detected in genomic libraries, those for
a number of very immunogenic proteins have yet to be found. The polypeptides that have been
cloned in two or more independent studies are shown in Table 1. There are several possible
explanations for the repeated cloning of these particular proteins. Either (a) multiple copies of
the genes are present in *T. pallidum*, (b) these genes possess relatively few restriction sites, (c)
the products of these genes are the most immunogenic and maintain their antigenicity during the
colony and Western immunoblotting procedures, or (d) these polypeptides are expressed better
than any others in *E. coli*. (Poor expression of the immunodominant 47 kDa recombinant
polypeptide in *E. coli* was reported in the study of Norgard et al., 1986). The failure to detect, for
example, the flagellum polypeptides in genomic libraries may be due to a number of factors.
Firstly, the genes encoding these polypeptides may be present on large coordinately expressed
operons which are unlikely to be cloned on intact fragments of genomic DNA. Secondly, genes
cloned from *T. pallidum* have generally relied on homologous promoter activity on *E. coli* for
detection, and the failure of, e.g., the flagellum promotors to function in *E. coli* may have
hindered the cloning of these genes. Lastly, it is possible that the flagellum components of *T.*
pallidum, if expressed, may be toxic for the E. coli host, although a recent report of the successful cloning of a Spirochaeta aurantia flagellum gene (Brahamsa & Greenberg, 1988) would suggest that this may not be the case. Some of the problems encountered in producing fully representative, expressed T. pallidum DNA may be alleviated by using mechanically sheared DNA cloned into expression vectors to generate genomic libraries, and oligonucleotide probes derived from N-terminal amino acid sequences of targetted proteins in their subsequent screening.

Despite the observed limitations on cloning targetted genes from T. pallidum, the cloned polypeptides that are available should assist studies on the pathogenesis and immunology of syphilis. Several treponemal antigens have been proposed as having a functional role in the development of immunity against T. pallidum (Strugnell et al., 1986; Bailey et al., 1987). Among these proteins is the 44-5 kDa protein expressed by pMJBl0 (Fig. 1, Table 1). To date, none of the proteins found in 'membrane' extracts of T. pallidum has been assessed for their ability to protect against syphilis infection. Apart from the flagellum-associated polypeptides, and the 60 kDa T. pallidum common antigen (Hindersson et al., 1987), no functional role has been definitely assigned to any polypeptides in T. pallidum. Recombinant DNA technology should assist the investigation of the assembly of treponemal proteins into membranes and study of their potential functions, for example as porins.

REFERENCES

