Staphylococcus aureus Bacteriophages mediating the simultaneous lysogenic conversion of β-Lysin, Staphylokinase and Enterotoxin A: Molecular Mechanism of Triple Conversion

By David C. Coleman*, Derek J. Sullivan, Ronnie J. Russell, John P. Arbuthnott, Brian F. Carey and Harriett M. Pomeroy

Department of Microbiology, University of Dublin, Moyne Institute, Trinity College, Dublin 2, Republic of Ireland

(Received 23 September 1988; revised 20 December 1988; accepted 18 January 1989)

A new group of serotype F bacteriophages of Staphylococcus aureus has been found which mediates the simultaneous triple-lysogenic conversion of enterotoxin A, staphylokinase and β-lysin. The phages were recovered from methicillin-resistant strains of S. aureus isolated in Irish hospitals between 1971 and 1988 and from strain PS42-D, which has been used as the propagating strain for the S. aureus typing phage 42D since before 1965. The molecular mechanism of triple conversion mediated by three of these phages was determined by molecular cloning, restriction endonuclease site mapping and hybridization analysis, and compared with the mechanism of β-lysin and staphylokinase conversion mediated by the serotype F, double-converting phage φ13. The genetic determinants mediating expression of enterotoxin A (entA) and staphylokinase (sak) were cloned from the DNA of the triple-converting phage and expression of the cloned determinants detected in Escherichia coli and S. aureus. The entA and sak determinants were closely linked in the phage DNA adjacent to the phage attachment site (attP) in each case and furthermore, the sak determinant of phage φ13 was also located near its attP. The restriction maps of the entA-, sak- and attP-containing DNA regions of the three triple-converting phages were very similar to each other and to the corresponding sak- and attP-containing DNA region of phage φ13. Hybridization analysis using a cloned β-lysin determinant (hlb) and cloned attP-containing DNA fragments as probes demonstrated that β-lysin conversion mediated by the triple-converting phages and phage φ13 was caused by insertional inactivation of the chromosomally encoded hlb determinant by orientation-specific integration of phage DNA following lysogenization.

INTRODUCTION

Carriage of lysogenic prophages by Staphylococcus aureus strains is common. Lysogeny can affect the expression of several extracellular toxins and enzymes produced by these organisms, some of which may be important virulence factors (Parker, 1983). Expression of β-lysin and lipase can be lost following lysogenization (negative phage conversion) (Winkler et al., 1965; Lee & Iandolo, 1985; Coleman et al., 1986), whereas the capacity to express staphylokinase and enterotoxin A can be acquired after lysogenization (positive phage conversion) (Winkler et al., 1965; Casman, 1965). Concomitant conversion of multiple phenotypic properties of some S. aureus strains following lysogenization has also been described (Duval-Iflah et al., 1977).

Two different groups of phages which mediate the lysogenic conversion of β-lysin and staphylokinase respectively, have been reported. Simultaneous negative conversion for β-lysin expression and positive conversion for staphylokinase activity can be mediated by double-converting phages belonging to phage serotype F (Winkler et al., 1965; Kondo et al., 1981).
Some serotype B phages mediate positive lysogenic conversion for staphylokinase activity only (Kondo & Fujise, 1977), and other serotype A phages can convert *S. aureus* strains causing loss of β-lisin activity (Coleman *et al.*, 1986).

Reports in the literature regarding lipase conversion in *S. aureus* indicate that such phages are single-converting phages only (Rosendal & Bulow, 1965; Duval-Iflah, 1972). It is not known whether enterotoxin A-converting phages affect the expression of other *S. aureus* factors.

Previous studies from our laboratory demonstrated that β-lisin conversion by the serotype F, β-lisin and staphylokinase double-converting phage φ13, and by the serotype A, single-converting phage φ42E, was caused by insertional inactivation of the chromosomally located β-lisin determinant by the integration of phage genomic DNA during lysogen formation (Coleman *et al.*, 1986). The mechanism of *S. aureus* lipase conversion by the lipase-converting phage L54a was also shown to be due to insertional inactivation of the chromosomal lipase gene (Lee & Iandolo, 1986a). Positive conversion for staphylokinase and enterotoxin A expression, respectively, has been shown to be due to the location of the genes for these proteins in the DNA of converting phages, which are expressed by the lysogenic bacteria, although this has only been established for one phage in the case of staphylokinase (Sako *et al.*, 1983; Betley & Mekalanos, 1985).

Casman (1965) reported that *S. aureus* strain PS42-D, the propagating strain for the *S. aureus* typing phage 42D, carried a phage which mediated positive conversion for enterotoxin A expression. This finding was recently confirmed by Betley & Mekalanos (1985). However, Kondo & Fujise (1977) also reported that strain PS42-D carried a serotype F, β-lisin and staphylokinase double-converting phage. The possibility that these phages carried by strain PS42-D are the same or similar, and thus triple-converting, has not been investigated. Recent studies from our laboratory revealed that of nine methicillin-resistant isolates from cases of *S. aureus* septicaemia seven produced enterotoxin A (EntA+) and staphylokinase (Sak+) and all nine were β-lisin negative (Hlb-) (Humphreys *et al.*, 1989). Since each of these properties can be affected by phage conversion, it seemed likely that these strains carried lysogenic converting phages. The present study was undertaken to establish the molecular basis for the EntA+, Sak+ and Hlb− phenotype expressed by *S. aureus* strain PS42-D and selected Irish methicillin-resistant strains, and to determine whether these stains harboured individual converting phages which affected the expression of all of these extracellular proteins or whether more than one converting phage was involved.

METHODS

Bacterial strains, plasmids, phages and culture conditions. The bacterial strains and plasmids used are listed in Tables 1 and 2. The methicillin-resistant *S. aureus* strains DCA1, DCA2, DCA3 and DCA4 were isolated from cases of nosocomial infection in separate Irish hospitals between 1971 and 1988. Strains DCA1 (phage type 47/54/75/77/85) and DCA3 (phage type 77/84) belonged to a group of isolates with similar plasmid content and location of resistance determinants that were prevalent in Dublin hospitals between 1971 and 1975 (Coleman *et al.*, 1985). Strain DCA2 (non-typable with the International Basic Set of typing phages) belonged to another group of strains, termed Dublin Phenotype II isolates, with distinct plasmid content and location of resistance determinants that were prevalent in Dublin hospitals between 1978 and 1984 (Coleman *et al.*, 1985). Strain DCA4 (phage type 77/84) was unrelated to the other three isolates on the basis of plasmid content and antibiogram. Bacteria were routinely cultured at 37°C for 18 h in Trypticase Soy Broth (TSB, Oxoid) for *S. aureus* strains or L-broth (LB), (Lennox, 1955) for *Escherichia coli* strains in an orbital incubator at 150 r.p.m. The corresponding agar media were also used. Brain Heart Infusion broth (BHI, Oxoid) was used for culturing *S. aureus* strains for enterotoxin A assays and as the growth medium for the *E. coli* strain DS410 and its derivatives harbouring recombinant plasmids. Sheep blood agar was prepared by incorporating packed sheep erythrocytes (5%, v/v), which had been washed three times in Tris-buffered saline (TBS: 0·14 M-NaCl, 20 mM-Tris/HCl, 10 mM-MgSO4, pH 7·2), into Trypticase Soy agar (TSA, Oxoid).

Chemicals, antibiotics and enzymes. Chemicals and antibiotics were purchased from Sigma or BDH. Restriction endonucleases, T4 DNA ligase and other enzymes were purchased from Boehringer or New England Biolabs and were used according to the manufacturer's instructions. [α-32P]dATP (3000 Ci mmol−1; ~110 TBq mmol−1) was purchased from New England Nuclear.

Bacteriophage typing. This was done by the method of Blair & Williams (1961), using the International Basic Set of typing phages for human isolates of *S. aureus*, supplied by the Central Public Health Laboratory, Colindale,
Large-scale purification of phage and phage genomic DNA. *S. aureus* strain 80CR3 was used as the propagating strain for large-scale, broth-culture phage preparations as follows. An 18 h broth culture of strain 80CR3 was diluted 100-fold into 500–1000 ml TSB broth containing 5 mM-CaCl₂ and shaken (150 r.p.m.) at 37 °C until the OD₆₀₀ was about 0·2. Phage were then added to give a multiplicity of infection of 1·10 (p.f.u. : bacterial cells). The culture was incubated at 37 °C for 20 min without shaking and then with shaking (150 r.p.m.) for 3–5 h, after which time lysis was apparently complete as evidenced by the presence of large amounts of cell debris. Phage particles were purified from bulk culture lysates using caesium chloride block gradients, following precipitation with polyethylene glycol, as described by Coleman et al. (1986). Genomic DNA from purified phage preparations was recovered by formamide treatment as described by Davis et al. (1980).
Table 2. Plasmids

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Host</th>
<th>Resistance markers*</th>
<th>Comments</th>
<th>Source/reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBR322</td>
<td>E. coli</td>
<td>Ap' Tc'</td>
<td>Multicopy vector plasmid</td>
<td>Bolivar et al. (1977)</td>
</tr>
<tr>
<td>pACYC184</td>
<td>E. coli</td>
<td>Cm' Tc'</td>
<td>Multicopy vector plasmid</td>
<td>Chang & Cohen (1978)</td>
</tr>
<tr>
<td>PE194</td>
<td>S. aureus</td>
<td>Em'</td>
<td>Small multicopy plasmid</td>
<td>Horinouchi & Weisblum (1982)</td>
</tr>
<tr>
<td>pDC020</td>
<td>Shuttle</td>
<td>Ap' Em'</td>
<td>pBR322 linked to PE194 at Clal sites</td>
<td>Coleman et al. (1986)</td>
</tr>
<tr>
<td>pDC007</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 2.2 kb hbl-encoding HindIII DNA insert from S. aureus strain CN6708</td>
<td>Coleman et al. (1986)</td>
</tr>
<tr>
<td>pDC100</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 3.1 kb sak-encoding HindIII DNA insert from phage φ42</td>
<td>This study</td>
</tr>
<tr>
<td>pDC101</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 2.85 kb sak-encoding HindIII DNA insert from phage φA1</td>
<td>This study</td>
</tr>
<tr>
<td>pDC102</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 2.85 kb sak-encoding HindIII DNA insert from phage φA3</td>
<td>This study</td>
</tr>
<tr>
<td>pDC103</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 2.85 kb sak-encoding HindIII DNA insert from phage φ13</td>
<td>This study</td>
</tr>
<tr>
<td>pDC104</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pAT153 with 2.5 kb entA-encoding HindIII DNA insert from phage φ42</td>
<td>This study</td>
</tr>
<tr>
<td>pDC105</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pAT153 with 2.5 kb entA-encoding HindIII DNA insert from phage φA1</td>
<td>This study</td>
</tr>
<tr>
<td>pDC106</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pAT153 with 2.5 kb entA-encoding HindIII DNA insert from phage φA3</td>
<td>This study</td>
</tr>
<tr>
<td>pDC107</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 5.0 kb attP-encoding HindIII DNA insert from phage φ42</td>
<td>This study</td>
</tr>
<tr>
<td>pDC108</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 6.7 kb attP-encoding HindIII DNA insert from phage φA1</td>
<td>This study</td>
</tr>
<tr>
<td>pDC109</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 6.7 kb attP-encoding HindIII DNA insert from phage φA3</td>
<td>This study</td>
</tr>
<tr>
<td>pDC110</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 2.9 kb attP-encoding HindIII DNA insert from phage φ13</td>
<td>This study</td>
</tr>
<tr>
<td>pDC111</td>
<td>E. coli</td>
<td>Tc'</td>
<td>pACYC184 with 11.3 kb sak- and entA-encoding EcoRI DNA insert from phage φ42</td>
<td>This study</td>
</tr>
<tr>
<td>pDC112</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 6.1 kb EcoRI–SalI DNA insert from pDC111</td>
<td>This study</td>
</tr>
<tr>
<td>pDC113</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 5.2 kb sak- and entA-encoding EcoRI–SalI DNA insert from pDC111</td>
<td>This study</td>
</tr>
<tr>
<td>pDC114</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 2.2 kb sak-encoding EcoRI–HindIII DNA insert from pDC111</td>
<td>This study</td>
</tr>
<tr>
<td>pDC115</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 2.2 kb sak-encoding EcoRI–HindIII DNA insert from pDC100</td>
<td>This study</td>
</tr>
<tr>
<td>pDC116</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 3.8 kb attP-encoding EcoRI–HindIII DNA insert from pDC113</td>
<td>This study</td>
</tr>
<tr>
<td>pDC117</td>
<td>E. coli</td>
<td>Ap'</td>
<td>pBR322 with 1.2 kb EcoRI–HindIII DNA insert from pDC107</td>
<td>This study</td>
</tr>
<tr>
<td>pDC118</td>
<td>Shuttle</td>
<td>Ap' Em'</td>
<td>pBR320 with 2.5 kb entA-encoding HindIII DNA insert from pDC104</td>
<td>This study</td>
</tr>
</tbody>
</table>

* Abbreviations: Ap', ampicillin resistance; Tc', tetracycline resistance; Cm', chloramphenicol resistance; Em', erythromycin resistance.

Isolation of plasmid and genomic DNA. Plasmid DNA from E. coli and S. aureus strains, respectively, was purified from cleared lysates of 500 ml broth cultures by centrifugation in ethidium bromide/caesium chloride buoyant-density gradients as described by Clewell & Helinski (1970) and Coleman et al. (1986). For E. coli strains a rapid small-scale purification procedure from 20 ml broth cultures was also used (Coleman & Foster, 1981). Total genomic DNA from S. aureus strains and lysogenic derivatives was prepared from 50 ml exponential broth cultures, and purified by caesium chloride gradient centrifugation as described by Coleman et al. (1986). A rapid, small-scale procedure was also used as described by Mulvey et al. (1986).

Transformation. Transformation of plasmid DNA into CaCl₂-treated E. coli cells was done as described by Cohen et al. (1973). Transformation of protoplasts of S. aureus strain RN4220 with purified plasmid DNA was done by the method of Dowd et al. (1983).
Hybridization analysis. DNA probes were labelled in vitro by nick-translation to a specific activity \(\geq 10^6 \) d.p.m. (\(\mu g \) DNA)\(^{-1} \) using \([\text{32P}]\text{dATP} \), as described by Rigby et al. (1977). Restriction-enzyme-cleaved DNA was separated by electrophoresis in 0.8% or 1.0% (w/v) agarose gels, denatured, and transferred to nitrocellulose membrane filters (Schleicher & Schuell) by the method of Southern (1975). Filters were then processed under high stringency as described by Maniatis et al. (1982). In some experiments, filters were rehybridized with a number of different probes. In these cases, radioactively labelled probes were removed from filters by treatment with 50 mM-NaOH as described by Anderson & Young (1985) prior to hybridization with subsequent probes.

Western immunoblotting. Polypeptides were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) in 12.5% (w/v) gels and were electrophoretically transferred (0.5 A, 2 h) onto nitrocellulose filters (Schleicher & Schuell) as described by Burnette (1981). The \(S. \text{aureus extracellular proteins} \) \(\beta \)-lysin and enterotoxin A were detected by the method of Russell et al. (1985) using specific anti-\(\beta \)-lysin and anti-enterotoxin A sera, respectively, and a Protein A-peroxidase conjugate (20 \(\mu g \); Sigma). The substrate used for visualization was 4-chloro-1-naphthol (Sigma).

Antiserum. Purified \(S. \text{aureus enterotoxin A} \) together with the corresponding rabbit antiserum were the gifts of Professor Merlin Bergdoll (Food Research Institute, University of Wisconsin, Madison, USA). The anti-enterotoxin A serum was sequentially absorbed with concentrated suspensions of sonicated \(S. \text{aureus strain 80C3R3} \) and \(E. \text{coli strain DS410} \) prior to use to remove non-specific antibodies. Rabbit antibodies raised against purified \(S. \text{aureus \(\beta \)-lysin} \) were supplied by Dr C. Adlam (Wellcome Research Laboratories, UK).

Enterotoxin A, \(\beta \)-lysin and staphylokinase assays. \(S. \text{aureus strains} \) were tested for enterotoxin A production by reverse passive latex agglutination using kits (Oxoid) according to the manufacturer’s instructions, and by Western immunoblotting of culture supernatant proteins, concentrated 50-fold by ammonium sulphate precipitation (Coleman et al., 1986), with anti-enterotoxin A serum. Expression of enterotoxin A by \(E. \text{coli strain DS410} \) harbouring chimaeric pAT153 plasmids containing cloned fragments of \(S. \text{aureus bacteriophage DNA} \) was determined by colony immunoblotting with anti-enterotoxin A serum by a modification of the method described by Helfman et al. (1983), using a Protein A-peroxidase conjugate (20 \(\mu g \), Sigma) and 4-chloro-1-naphthol as substrate. Enterotoxin A production was confirmed by Western immunoblotting of polypeptides from 50-fold concentrated culture lysates as described for \(S. \text{aureus strains} \). \(S. \text{aureus strains PS42-D} \) and RN4220 were used as the EntA\(^+\) and EntA\(^-\) control strains respectively (Table 1). \(E. \text{coli strain DS410} \) harbouring the cloning vector pAT153 was used as the EntA\(^-\) \(E. \text{coli} \) strain (Tables 1 and 2).

Production of \(\beta \)-lysin by \(S. \text{aureus strains, their lysogenized derivatives} \) and derivatives cured of prophages was determined by haemolytic titration of 50-fold concentrated culture supernatant proteins and by Western immunoblotting of the concentrated preparations with specific rabbit anti-\(\beta \)-lysin serum, as described by Coleman et al. (1986).

Production of staphylokinase by \(S. \text{aureus strains} \) and their lysogenized and cured derivatives was tested on fibrin agar plates, with and without added canine serum 0.5% (v/v) following incubation at 37 \(^\circ \text{C} \) for 48 h. Putative Sak\(^+\) clones were further purified on fibrin agar supplemented with ampicillin and with and without added canine serum and incubated as above. \(E. \text{coli strains 6C600, HB101, and DS410} \) harbouring pBR322 were included as Sak\(^-\) controls.

Molecular cloning, restriction endonuclease cleavage site mapping and recovery of DNA fragments from agarose gels. Cloning, subcloning and restriction endonuclease site mapping experiments were done using standard techniques (Maniatis et al., 1982). For cloning phage-encoded sak and entA determinants, the restriction endonuclease HindIII was used because no sites for this enzyme were found in the coding region of a \(S. \text{aureus staphylokinase (sak)} \) or enterotoxin A (entA) determinant, respectively, previously cloned and sequenced (Sako & Tsuchida, 1983; Betley & Mekalanos, 1988). Restriction-endonuclease-generated phage DNA fragments were recovered from low-melting-point agarose gels using Elutip-d minicolumns (Schleicher & Schuell), according to the manufacturer’s instructions.

RESULTS

Screening of \(S. \text{aureus for lysogenic converting phages} \)

Five EntA\(^+\), Sak\(^+\) and Hlb\(^-\) \(S. \text{aureus strains} \) were tested for carriage of lysogenic converting phages, namely PS42D and the methicillin-resistant clinical isolates DCA1, DCA2, DCA3, and
DCA4 (Table 1). Phage-containing extracts were recovered from all strains following mitomycin C induction, and phages from these preparations were separately propagated on the non-lysogenic, restriction-impaired *S. aureus* strain 80CR3 (Table 1). Phages from four randomly chosen, well-separated plaques from each lysate were single-plaque purified and further propagated on strain 80CR3, yielding a total of 20 purified phage preparations.

Properties of carried phages

Putative lysogens were isolated as non-β-haemolytic colonies on sheep blood agar from areas of confluent lysis produced by purified phage preparations on a lawn of *S. aureus* strain 80CR3. In each case, lysogeny was confirmed by demonstrating resistance to lysis by the phage used to generate lysogens and by production of phage lytic for *S. aureus* strain 80CR3 after mitomycin C induction. None of the phage isolates obtained from strain DCA2 were β-lysin converting. Four lysogens generated by separate experiments with each of the remaining 16 purified β-lysin-converting phage preparations were tested for production of staphylokinase and enterotoxin A. All 64 were Sak+ and EntA+.

Representative β-lysin converting phage isolates from each of the parental *S. aureus* strains PS42D, DCA1, DCA3 and DCA4 and a representative derivative of *S. aureus* strain 80CR3 lysogenized with each phage were chosen for detailed study. Phages were designated φ42, φA1, φA3 and φA4 and lysogens 42CR3-L, A1CR3-L, A3CR3-L and A4CR3-L (Table 1). Three independently generated, cured derivatives of each of these lysogens, prepared by UV treatment, were all found to be Hlb+, Sak− and EntA− (Table 1). Phage φ42, isolated from *S. aureus* strain PS42D, also converted the *S. aureus* strain W57 to the Hlb−, Sak+ and EntA+ phenotype (Table 1). These results indicated that φ42, φA1, φA3 and φA4 were triple-converting phages, which upon lysogenization caused the simultaneous negative conversion of β-lysin and positive conversion of staphylokinase and enterotoxin A.

Serotyping triple-converting phages and phage typing of lysogens

Separate preparations of phages φ42, φA1, φA3 and φA4 were consistently neutralized by anti-serotype F serum, but not by anti-serotype A or B serum, indicating that the triple-converting phages belonged to *S. aureus* phage serotype F. *S. aureus* strain 80CR3 was lysed at Routine Test Dilution (RTD) by all 23 phages of the International Basic Set of typing phages for human *S. aureus* and by the further eight phages used for typing bovine *S. aureus*. The lysogen 42CR3-L, harbouring phage φ42, was lysed only by the bovine typing phage 42D at RTD. Phage φ42 mediated a similar effect in strain 42W57-L, a lysogenic derivative of *S. aureus* strain W57. Phage φA1 blocked lysis of a lysogenic derivative of strain 80CR3 by 14 of the 31 typing phages: 11 from the International Basic Set (52, 52A, 79, 80, 55, 71, 47, 53, 83A, 95 and 96) and three from the bovine set (102, 107 and 118). Phages φA3 and φA4 did not affect the typing pattern when they lysogenized *S. aureus* strain 80CR3.

Molecular cloning of staphylokinase determinants from phages φ42, φA1, φA3 and φ13

*Hind*III-cleaved genomic DNA from the triple-converting phage φ42 was ligated with *Hind*III-cleaved vector plasmid pBR322 DNA and transformed into *E. coli* strains C600, HB101 and DS410. Transformants were selected on LB agar supplemented with ampicillin (100 μg ml⁻¹) and recombinants identified by their tetracycline-sensitive phenotype by replicating on LB agar supplemented with tetracycline (10 μg ml⁻¹). Fifty transformants of each of the *E. coli* host strains harbouring chimaeric plasmids were stab-inoculated into fibrin agar containing canine serum and ampicillin and incubated at 37 °C for 24 h, after which time the plates were examined for evidence of clearing of the fibrin agar around the bacterial growth. Narrow zones of clearing of the agar (2–3 mm diam.) with sharply defined edges were observed for two transformants of strain DS410. After 48 h incubation, the zones had increased substantially (7–8 mm diam.). Similar but narrower zones of clearing (2–3 mm diam.) were visible around one each of the transformants of strains HB101 and C600. All four of these transformants was stab-inoculated into fibrin agar with and without added canine serum and...
incubated for 48 h at 37 °C. Sharply defined zones of clearing were detected for all four recombinants only on the canine-serum-supplemented fibrin agar. After 48 h the four putative Sak+ recombinants and their E. coli parental strains harbouring plasmid pBR322 exhibited no detectable clearing effect on the fibrin agar without added canine serum. This evidence strongly suggested that the four recombinants harboured and expressed the staphylokinase determinant (sak) of phage φ42. Analysis of the plasmid DNA of these four recombinants revealed that they all harboured a HindIII fragment of 3.1 kb, which corresponded in size with a HindIII-generated fragment of purified phage φ42 DNA.

Similar experiments were done with DNA from the triple-converting phages φA1 and φA3 and the double-converting phage φ13 using E. coli strain DS410 as the host strain for transformation. Sak+ recombinants were recovered from each of these phages at a frequency of approximately one per fifty recombinants. Analysis of the plasmid DNA from four independently generated Sak+ recombinants in each case revealed that all 12 harboured a HindIII fragment of 2.85 kb and in all cases the fragments corresponded in size to a HindIII-generated fragment of the respective parental phage genomic DNAs. Representative chimaeric plasmids harbouring the cloned sak determinant from each of the triple-converting phages φ42, φA1 and φA3 and the double converting phage φ13 were chosen for further study (Table 2).

Molecular cloning of enterotoxin A determinants from phages φ42, φA1 and φA3

Approximately 100 transformants of E. coli strain DS410, harbouring recombinant derivatives of the cloning vector pAT153 containing cloned HindIII fragments of the triple-converting phage φ42, were screened for expression of enterotoxin A by colony immunoblotting with specific anti-enterotoxin A serum. Three putative EntA+ recombinants were tested for expression of enterotoxin A by Western immunoblotting of 50-fold concentrated cell lysates with anti-enterotoxin A serum. In each case a single polypeptide of 27 kDa was detected, which corresponded in molecular mass to purified staphylococcal enterotoxin A (Fig. 1, tracks 1 and 5).
Fig. 2. Restriction map of the 2.2 kb HindIII fragment cloned in plasmid pDC007 which encodes the cloned S. aureus β-lysin determinant (hlb), and which was used as the source of the 0.75 kb DdeI-generated and the 2.2 kb HindIII-generated hlb probes. The unshaded portion of the figure refers to a 0.15 kb sequence of bacterial DNA to which the insertion site (attB) of phages φ42, φA1 and φA3 was localized in the corresponding genomic DNA of S. aureus strain 80CR3, and to a similar 0.15 kb sequence in the corresponding genomic DNA of S. aureus strains RN4220 and W57 in the cases of phages φ13 and φ42, respectively. Abbreviations for restriction endonuclease cleavage sites: H, HindIII; D, DdeI; B, BclI.

Similar experiments were done with DNA from the triple-converting phages φA1 and φA3 and the double-converting phage φ13. In the case of the former, EntA+ clones were recovered at a frequency of approximately one per forty recombinants; these behaved like the φ42 EntA+ clones in immunoblotting experiments (Fig. 1, tracks 3 and 4; Table 2). No EntA+ clones were detected among recombinants generated from genomic DNA of phage φ13, even when 300 recombinants generated from eight separate cloning experiments were screened.

Analysis of the plasmid DNA of representative EntA+ transformants revealed that each harboured a single HindIII insert of 2.5 kb which corresponded in size to a single HindIII fragment detected in native phage genomic DNAs. Representative chimaeric plasmids harboring the cloned enterotoxin A determinants (entA) of phages φ42, φA1 and φA3 were chosen for further study (Table 2). No detectable homology was observed when HindIII-cleaved phage φ13 DNA was probed with the 2.5 kb entA-containing HindIII fragment of phage φ42, indicating that phage φ13 did not encode an entA determinant (Fig. 3, panel 7, track 2).

Expression of cloned sak and entA determinants in S. aureus

The cloned HindIII fragments encoding the sak and entA determinants, respectively, of phages φ42, φA1, φA3 and φ13 were subcloned into the single HindIII site of the shuttle vector pDC020 (Table 2), which is capable of replicating in E. coli and S. aureus, and transformed separately into protoplasts of S. aureus strain RN4220. Transformants were selected on agar containing 10 μg erythromycin ml⁻¹ and purified on agar containing 50 μg erythromycin ml⁻¹. Twenty transformants in each case, which contained the cloned sak determinants of the phages, were stab-inoculated into fibrin agar containing erythromycin (50 μg ml⁻¹) with or without canine serum. Following incubation at 37°C for 18 h, sharply defined zones of fibrin clearing (3–5 mm diam.) on canine-serum-supplemented agar were observed around the vast majority of transformants, but not on the agar without canine serum, even after 48 h incubation. Transformants of strain RN4220 harbouring only the shuttle vector were Sak⁻ on both types of media.

Five RN4220 transformants each, respectively, harbouring shuttle plasmid derivatives containing the cloned entA-encoding HindIII fragments of phages φ42, φA1 and φA3 were EntA+ when tested by reverse passive latex agglutination assay. Transformants harbouring the shuttle plasmid pDC020 only were EntA⁻. These results were confirmed for two representative transformants in each case by immunoblotting of concentrated culture supernatant proteins with anti-enterotoxin A serum. A single polypeptide of 27 kDa, corresponding in molecular mass to purified enterotoxin A from S. aureus, was detected in each case. An example is shown in Fig. 1, track 9.

Mechanism of negative β-lysin conversion mediated by triple-converting phages

To determine the mechanism of negative β-lysin conversion of S. aureus strain 80CR3 by triple-converting phages, it was necessary to compare the structure of the β-lysin determinant (hlb) of strain 80CR3 with its lysogenic derivatives.
The 2.2 kb HindIII fragment of plasmid pDC007 (Table 2; Fig. 2), which harboured the cloned hlb determinant of S. aureus strain CN6708 (Coleman et al., 1986), was used as the source of a hlb probe. The 0.75 kb internal DdeI segment of DNA encoding most of the hlb structural determinant from pDC007 was used to probe genomic DNA of S. aureus strain 80CR3 cleaved separately with DdeI and HindIII. Single DdeI (Fig. 3, panel 1, track 2) and HindIII fragments of 0.75 kb and 2.2 kb, respectively, hybridized with the probe, indicating that homologous hlb sequences were present in both plasmid pDC007 and S. aureus strain 80CR3. Hybridization experiments with the 0.75 kb hlb probe and strain 80CR3 DNA digested separately with the restriction enzymes Clal and EcoRI, which do not cleave within the hlb determinant (Coleman et al., 1986), detected the presence of single homologous fragments in each case, respectively (data not shown), indicating that a single copy of the hlb determinant was present in strain S. aureus 80CR3. Additional hybridization experiments with the 2.2 kb HindIII fragment of pDC007 as the hlb probe and S. aureus strain 80CR3 DNA cleaved with (i) DdeI, (ii) DdeI and HindIII, (iii) BclI and HindIII and DdeI, or (iv) HindIII and BclI demonstrated that the 2.2 kb hlb-containing HindIII fragment of S. aureus strain 80CR3 had a similar structure to that cloned in plasmid pDC007 from strain CN6708 (Fig. 2). Similar experiments established that S. aureus strain W57 harboured a single copy of the hlb determinant, encoded on a 2.2 kb HindIII fragment, which was homologous with and had a structure similar to that of plasmid pDC007 and S. aureus strain 80CR3 (Fig. 2; Fig. 3, panel 1, track 3, and panel 2, track 7).

Hybridization studies were then performed using the 0.75 kb hlb probe with HindIII-cleaved and DdeI-cleaved genomic DNA from the pairs of S. aureus strains 42CR3-L/42CR3-C, A1CR3-L/A1CR3-C, A3CR3-L/A3CR3-C and 42W57-L/42W57-C, derivatives of S. aureus strains 80CR3 and W57 which had been lysogenized with and cured of triple converting phages respectively (Table 1). Single 0.75 kb DdeI and 2.2 kb HindIII fragments, respectively, from the cured strains hybridized with the probe as occurred previously with the parental strains 80CR3 and W57. These were replaced by single fragments of 2.7 kb (DdeI) and 5.7 kb (HindIII) in strains 42CR3-L and 42W57-L, and 2.0 kb (DdeI) and 7.25 kb (HindIII) in strains A1CR3-L and A3CR3-L, suggesting that β-lysin conversion in these lysogens occurred by insertional inactivation of hlb by integration of phage DNA (Fig. 3, panel 1, tracks 5-7). If this was the case, it would be expected that the hlb-containing DdeI and HindIII fragments would be split into two parts separated by integrated phage DNA sequences. Furthermore, since each of the phages 442, φA1 and φA3 had several HindIII and DdeI restriction sites (data not shown), the 0.75 kb hlb probe should have identified two junction fragments in both the DdeI- and HindIII-cleaved lysogen DNA, composed partly of phage DNA and partly of the hlb-containing fragments in each case. Failure to detect the second junction fragment could have been due to the location of the phage insertion site(s) near one end of the 0.75 kb hlb-containing DdeI fragment. This would have resulted in the generation of second junction fragments composed predominantly of phage DNA and containing only short sequences homologous with the 0.75 kb hlb probe, which under the high stringency conditions used, would not hybridize effectively with the probe.

Evidence supporting this suggestion was obtained following hybridization experiments with HindIII-cleaved lysogen DNA using the 2.2 kb pDC007-derived hlb probe. Because this probe was longer than the 0.75 kb DdeI probe, it was likely that it would overlap the genomic sequences of the lysogens containing both junction fragments. Two junction fragments were detected in the genomic DNA of all four lysogens (42CR3-L, A1CR3-L, A3CR3-L and 42W57-L). These consisted of a large junction fragment, corresponding in size to those detected with the 0.75 kb hlb probe in HindIII-cleaved lysogen DNA, and a small junction fragment of 1.7 kb in each case (Fig. 3, panel 2, tracks 2, 3, 4 and 8). The small junction fragments were consistently detected as weaker signals compared with the large junction fragments, suggesting that the insertion site(s) for the three triple-converting phages tested was (were) located near to one end of the hlb-containing HindIII fragment in the bacterial genomic DNA. These experiments were repeated with DNA from three independently generated lysogenic derivatives of S. aureus strain 80CR3 for each of the phages φ42, φA1 and φA3 and with DNA from an additional three lysogenic derivatives of S. aureus strain W57 harbouring phage φ42. Results identical to those described above were obtained in each case.
Fig. 3. Southern hybridization analysis of restriction-endonuclease-digested chromosomal DNA of \textit{S. aureus} strains and lysogenized derivatives. The source of DNA in each track is shown above the track numbers of each panel; phages harboured by individual \textit{S. aureus} strains are shown in parenthesis. The restriction endonucleases used to cleave DNA are shown beneath each panel. The provenance of recombinant plasmids which were used as the source of molecular probes is shown in Table 2 and Fig. 4(b). DNA was hybridized with probes as follows: panel 1, 0.75 kb \textit{Ddel hlb} fragment of pDC007; panel 2, 2.2 kb \textit{HindIII hlb} fragment of pDC007; panel 3, 5.0 kb \textit{HindIII attP} fragment of phage \textit{42} from plasmid pDC107; panel 4, 2.9 kb \textit{HindIII attP} fragment of \textit{phi13} from plasmid pDC110; panel 5, 1.2 kb \textit{EcoRI–HindIII} fragment of plasmid pDC117; panel 6, 3.8 kb \textit{EcoRI–HindIII} fragment of plasmid pDC116; panel 7, 2.5 kb \textit{HindIII entA} fragment of \textit{phage 42} from plasmid pDC104; panel 8, \textit{phage 42} genomic DNA. In panel 8, the position of the small \textit{HindIII} junction fragments of the lysogens (tracks 1–4) is shown on the left, as are the \textit{HindIII} fragments encoding \textit{sak} and \textit{entA}, respectively, of lysogens DC001, A1CR3-L and A3CR3-L (tracks 1–3); the large \textit{HindIII} junction fragment of lysogen 42CR3-L (track 4), the \textit{HindIII} fragments encoding \textit{sak} and \textit{entA}, respectively, of lysogen 42CR3-L and \textit{phage 42} (tracks 4 and 5), and the \textit{attP}-containing \textit{HindIII} fragment of \textit{phage 42} (track 5) are indicated on the right.
Similar results have previously been reported from this laboratory in regard to β-lysin conversion of \textit{S. aureus} strain RN4220, mediated by the β-lysin and staphylokinase double-converting phage \textit{φ}13 (Coleman et al., 1986). These studies also demonstrated that the \textit{hlb} determinant of RN4220 was located on a 2.2 kb HindIII fragment indistinguishable from that cloned in plasmid pDC007 (Fig. 2). To directly compare, in the same experiment, the mechanisms of double and triple phage-mediated conversion, HindIII-cleaved genomic DNA of strain DC001 (RN4220 lysogenized with phage \textit{φ}13, Table 1) was included in adjacent tracks to HindIII-cleaved DNA of strain 80CR3 lysogens (harbouring triple-converting phages) in hybridization experiments using the 2-2 kb pDC007-derived \textit{hlb} probe. Two junction fragments were detected following hybridization with DNA from strain DC001: a large junction fragment of 3-3 kb and a weaker, small junction fragment of 1-7 kb indistinguishable in size from that detected with the strain 80CR3 lysogens (Fig. 3, panel 2, track 1). Identical results were obtained with DNA from three additional, independently generated, lysogenic derivatives of strain RN4220 harbouring phage \textit{φ}13.

\textit{Cloning of phage attachment sites}

If the two junction fragments identified in the HindIII-cleaved lysogen DNA using the 2-2 kb \textit{hlb} probe were generated by the integration of phage DNA sequences, similar hybridization experiments using cloned HindIII fragments containing phage attachment sites (\textit{attP}) as molecular probes, should allow the detection of the same two junction fragments in each case, respectively.

An approximate estimate of the sizes of the \textit{attP}-containing HindIII fragments of phages \textit{φ}42, \textit{φ}A1, \textit{φ}A3 and \textit{φ}13 was obtained by combining the sizes of the two junction fragments detected in the HindIII-cleaved DNA of the lysogens 42CR3-L, A1CR3-L, A3CR3-L and DC001 (Table 1; Fig. 3, panel 2, tracks 1–4) with the 2-2 kb pDC007-derived \textit{hlb} probe, and subtracting the size of the \textit{hlb}-containing HindIII fragment (2-2 kb) of the unlysogenized parental strains 80CR3 and RN4220, respectively. The size of the \textit{attP}-containing HindIII fragment of phage \textit{φ}42 was estimated as 5-2 kb, whereas those of phages \textit{φ}A1, \textit{φ}A3 and \textit{φ}13 were estimated to be 6-75, 6-75 and 2-8 kb, respectively.

In order to identify the \textit{attP}-containing HindIII fragments of phages \textit{φ}42, \textit{φ}A1, \textit{φ}A3 and \textit{φ}13, HindIII-cleaved DNA of these phages and genomic DNA of the corresponding lysogens 42CR3-L, A1CR3-L, A3CR3-L and DC001 was examined by hybridization analysis using the native phage genomes in each case as molecular probes. The pattern of fragments detected with both phage \textit{φ}42 and 42CR3-L DNA using phage \textit{φ}42 DNA as the probe was similar, but a \textit{φ}42 DNA fragment of approximately 5-0 kb was absent in the DNA of the \textit{φ}42 lysogen 42CR3-L, and replaced by a single detectable fragment of 5-7 kb (Fig. 3, panel 8, tracks 4 and 5). HindIII fragments of 6-7 kb detected in the digested DNA of both phages \textit{φ}A1 and \textit{φ}A3, and of 2-8 kb detected with digested phage \textit{φ}13 DNA, were absent in the DNA of the corresponding lysogens and replaced by fragments of 7-25 kb in the case of phages \textit{φ}A1 and \textit{φ}A3, and of 3-3 kb in the case of phage \textit{φ}13. The larger fragments detected in the lysogen DNAs corresponded in size to the large junction fragments detected in hybridization experiments with \textit{hlb} probes. Failure to identify the expected 1-7 kb second junction fragment in the lysogen DNAs was probably due to masking by other phage DNA fragments, as all the native phage DNAs had HindIII fragments of approximately 1-7 kb. An example of these results is shown in Fig. 3 (panel 8, tracks 4 and 5) in respect of phage \textit{φ}42.

The \textit{attP}-containing HindIII fragments of phages \textit{φ}42, \textit{φ}A1, \textit{φ}A3 and \textit{φ}13 were cloned into pBR322 following extraction from agarose gels (Table 2). Each of the cloned \textit{attP}-containing HindIII fragments was used to probe its HindIII-cleaved native parental phage DNA and corresponding \textit{S. aureus} strain 80CR3 lysogen DNA. In each case, respectively, single HindIII fragments corresponding in size to the \textit{attP} probes were detected with the digested phage DNA. The \textit{attP} probes hybridized with two fragments in the lysogen DNAs, respectively, which corresponded in size to the junction fragments detected previously using the 2-2 kb pDC007-derived \textit{hlb} probe (Fig. 3, panel 3, track 1, and panel 4, track 2). No homology was detected with
Phages causing triple conversion of *S. aureus* 1691

Fig. 4. (a) Restriction endonuclease cleavage site map of linear phage φ42 genomic DNA. The black rectangular box represents the linear phage φ42 genome. (b) Restriction endonuclease cleavage site map of a 17.4 kb DNA region from within the phage φ42 genome, which is represented by the large rectangular box. The dotted diagonal lines indicate the portion of phage φ42 DNA which was mapped in detail. The DNA sequences to which the entA (diagonal shading) and sak (vertical shading) determinants were localized are indicated. The small unshaded area of the rectangular box represents a 0.15 kb DNA sequence to which attP was localized. The thin horizontal lines in the lower portion of the figure refer to sequences of DNA which were cloned in the corresponding plasmids listed to the right. Plasmid pDC120 was derived from pDC111 by deletion of the DNA sequences between the ClaI sites of the cloned DNA of pDC111, and this deletion is represented by an open rectangular box. Abbreviations: P, *PstI*; M, *MluI*; S, *SalI*; B, *BglI*; E, *EcoRI*; H, *HindIII*; C, *CpaI*. *The exact juxtaposition of the two small *HindIII* fragments indicated was not established.*

DNA of *S. aureus* strains 80CR3 or RN4220 and any of the phage DNA or attP-fragment probes (Fig. 3, panel 3, track 2, and panel 4, track 1).

These results confirmed that the mechanism of β-lysin conversion mediated by the triple-converting phages was due to insertional inactivation of the *hlb* determinant by integration of phage DNA, and that the mechanism was very similar to that mediated by the double-converting phage φ13.

Organization of sak, entA and attP sequences in phage genomic DNA

A restriction map of phage φ42 DNA was generated using the restriction enzymes *PstI, MluI, SalI* and *BglI* (Fig. 4a). Following agarose gel electrophoresis of duplicate samples of *MluI*-cleaved phage φ42 DNA, one sample of which had been incubated at 70 °C for 10 min, a fragment of 13 kb which was present in the unheated phage DNA digest was markedly reduced in intensity in the corresponding heated sample, with a concomitant increase in the intensity of appearance of two bands of 10.5 and 2.5 kb, respectively. The latter fragments corresponded in size to the two *MluI*-generated end fragments of phage φ42 DNA (Fig. 4a). This evidence indicated that the genome of phage φ42 consisted of a linear DNA molecule with cohesive ends which could anneal to form a circular molecule. The approximate location of the phage φ42 entA, sak and attP determinants was established following hybridization experiments with phage φ42 DNA co-digested with *MluI* and *SalI* (Fig. 4a) and using the excised phage φ42 sak-, entA- and attP-*HindIII* fragments cloned in plasmids pDC100, pDC104 and pDC107 as molecular probes (Table 2). In separate experiments, all three probes hybridized with the central
18 kb SalI fragment of phage φ42 DNA, indicating that both the entA and sak determinants and the attP site were located within this fragment (Fig. 4a).

Additional cloning experiments were done in order to localize these determinants. EcoRI fragments of phage φ42 DNA were cloned into the plasmid vector pACYC184 and transformed into E. coli strain HB101. One of these transformants harboured an EcoRI DNA insert of 11.3 kb and mediated the expression of staphylokinase and enterotoxin A activity, although weakly; the recombinant plasmid was termed pDC111 (Table 2; Fig. 4b). Attempts to transform pDC111 into E. coli strain DS410 failed, probably due to instability of the DNA insert. A 2.5 kb HindIII fragment located centrally in the cloned DNA of plasmid pDC111 corresponded in size and structure to the entA-containing HindIII fragment originally cloned in pDC104 (Fig. 4b; Table 2).

The 6-12 kb and 5-17 kb SalI–EcoRI fragments of pDC111 were subcloned into pBR322 and the recombinant plasmids termed pDC112 and pDC113 respectively (Fig. 4b; Table 2). Derivatives of E. coli strain DS410 harbouring pDC113 were EntA+ and Sak+. The sak determinant was further localized by subcloning the 2.2 kb EcoRI–HindIII fragment of pDC113 into pBR322 yielding the sak+ plasmid pDC115 (Fig. 4b). These results were confirmed by subcloning the 2.2 kb EcoRI–HindIII fragment of the sak+ plasmid pDC100 into pBR322, yielding the sak+ plasmid pDC114 (Fig. 4b). Additional cloning, mapping and hybridization experiments revealed that the attP-containing 5.0 kb HindIII fragment of phage φ42, cloned in plasmid pDC107, was located to the right of the sak determinant as drawn in Fig. 4(b).

The position of the φ42 attP site was further localized by using the cloned inserts of plasmids pDC116 and pDC117 as probes (Fig. 4b; Table 2). The 1.2 kb EcoRI–HindIII insert of plasmid pDC117 detected corresponding fragments of 1.2 kb in EcoRI–HindIII-cleaved φ42 DNA and in strain 42CR3-L DNA (Fig. 3, panel 5, tracks 1 and 2). This probe also hybridized with the 5.0 kb attP-containing HindIII fragment in HindIII-cleaved φ42 DNA and with a fragment of 1.7 kb, corresponding to the small junction fragment previously detected with hlb probes, in HindIII-cleaved strain 42CR3-L DNA (Fig. 3, panel 5, tracks 3 and 4). These results demonstrated that the attP site of phage φ42 was located to the right of the internal EcoRI site of the 5.0 kb attP-containing HindIII fragment as drawn in Fig. 4(b). Confirmation of these findings was obtained by using the 3.8 kb EcoRI–HindIII insert of plasmid pDC116 to probe HindIII-cleaved and EcoRI–HindIII-cleaved φ42 and strain 42CR3-L DNA (Fig. 3, panel 6, tracks 1–4).

A more precise location for attP was deduced by calculating the relative proportions of phage and bacterial DNA which comprised the large and small HindIII junction fragments of the phage φ42 lysogen 42CR3-L. Since the 1.2 kb EcoRI–HindIII fragment cloned in plasmid pDC117 hybridized with a corresponding fragment in EcoRI–HindIII-cleaved lysogen 42CR3-L DNA but with the 1.7 kb HindIII small junction fragment in HindIII-cleaved lysogen 42CR3-L DNA, the small junction fragment must have consisted of (i) 1.2 kb of phage φ42 DNA corresponding to the DNA of the probe, (ii) phage DNA sequences located to the right of the 1.2 kb EcoRI–HindIII fragment harboured by plasmid pDC117 (Fig. 4b), and (iii) DNA sequences from the chromosomally located 2.2 kb hlb-containing HindIII fragment of the S. aureus parental strain 80CR3 (Fig. 2; Fig. 4b). Thus, DNA sequences from (ii) and (iii) above would only have contributed 0.5 kb to the size of the small HindIII junction fragment, indicating that the attP site was located close to the internal EcoRI site of the attP-containing HindIII fragment (Fig. 4b). Furthermore, since the chromosomal insertion site of phage φ42 was positioned in the 0.75 kb DdeI fragment of the 2.2 kb hlb-containing HindIII fragment of S. aureus strain 80CR3, one of the two DdeI–HindIII fragments of 1.1 kb and 0.35 kb, respectively, flanking the 0.75 kb DdeI fragment must also have formed part of the small HindIII junction fragment in the DNA of the lysogen (Fig. 2). Seeing that only 0.5 kb of the small junction fragment remained unaccounted for, the 0.35 kb DdeI–HindIII fragment flanking the chromosomal phage insertion site must have formed part of the small junction fragment in the corresponding DNA of the lysogen. The remaining 0.15 kb of the small HindIII junction fragment must have consisted of part of the 0.75 kb hlb-containing DdeI fragment of S. aureus strain 80CR3 (Fig. 2) and part of the DNA of phage φ42 to the right of the EcoRI site within the attP-containing HindIII fragment of phage φ42, as drawn in Fig. 4(b).
Phages causing triple conversion of S. aureus

![Diagram showing EcoRI and HindIII cleavage site maps of the entA-, sak- and attP-containing DNA regions of the triple-converting phages φ42, φA1 and φA3 and the sak- and attP-containing DNA region of the double-converting phage φ13. The 2.5 kb HindIII fragments to which the entA determinants were localized and the 2.2 kb EcoRI-HindIII fragments to which the sak determinants were localized are indicated. For each phage attP was localized to a 0.15 kb region of DNA.]

Fig. 5. EcoRI and HindIII cleavage site maps of the entA-, sak- and attP-containing DNA regions of the triple-converting phages φ42, φA1 and φA3 and the sak- and attP-containing DNA region of the double-converting phage φ13. The 2.5 kb HindIII fragments to which the entA determinants were localized and the 2.2 kb EcoRI–HindIII fragments to which the sak determinants were localized are indicated. For each phage attP was localized to a 0.15 kb region of DNA.

Similar experiments were done to map the entA-, sak- and attP-containing sequences of phages φA1, φA3 and φ13 (Fig. 5), all of which were found to have cohesive termini. The position of the HindIII site to the right of attP (as drawn in Fig. 5) varied for three of the phages φ42, φA1, φA3 and φ13, accounting for the differences in the sizes of the large junction fragments detected with hlb probes in HindIII-cleaved lysogen DNA (Fig. 5).

Hybridization analysis of HindIII-cleaved DNA of phages φA1, φA3 and φ13 using phage φ42 DNA as a probe demonstrated that phages φA1, φA3 and φ13 shared some homology with phage φ42, but the homology detected was considerably less than that detected between phage φ42 and the probe (Fig. 3, panel 8, tracks 1–5). These results indicated that phages φA1, φA3 and φ13 were more distantly related to phage φ42 than was initially apparent on the basis of similarities in their respective DNA regions encoding entA, sak and attP.

DISCUSSION

Since Winkler et al. (1965) first described the concomitant lysogenic conversion of S. aureus β-lipase and staphylokinase, it has been well established that this phenomenon is invariably mediated by serotype F double-converting phages (Kondo & Fujise, 1977; Kondo et al., 1981). This paper reports the discovery and molecular analysis of a novel group of S. aureus serotype F phages, which mediate the simultaneous triple-lysogenic conversion of enterotoxin A, staphylokinase and β-lipase. Three of these phages were recovered from methicillin-resistant strains isolated in Irish hospitals between 1971 and 1988, and the fourth from strain PS42-D, which has been used as the propagating strain for the S. aureus typing phage 42D since before 1965 (Casman, 1965). This evidence suggests that the triple-converting phages have not evolved in the last twenty years and probably existed when Winkler et al. (1965) first described the double-converting phages. In support of this suggestion, Casman (1965) reported the recovery of an enterotoxin A converting phage from strain PS42-D, although he did not report whether this phage affected the conversion of other S. aureus characters. Also Kondo & Fujise (1977) described the isolation of a serotype F β-lipase and staphylokinase converting phage from S. aureus strain PS42-D, but did not report whether this phage affected the conversion of enterotoxin A. It is possible, in view of the present study, that the phages described by both of these reports were in fact triple-converting.

The triple-converting phages φ42, φA1 and φA3 were chosen for detailed molecular analysis because they could be differentiated on the basis of their effect on the phage typing pattern of S.
aureus strain 80CR3 upon lysogenization. In each case the entA and sak determinants of these phages were linked in the phage DNA in close proximity to the phage attachment site (attP) and furthermore, the sak determinant of the double-converting phage φ13 was also encoded close to its attP site. Analysis of several additional serotype F β-lysin and staphylokinase converting phages from clinical and bovine S. aureus strains revealed a similar situation with the sak determinants located adjacent to attP (D. C. Coleman, unpublished data). This evidence suggests that the triple- and double-converting phages at some time in the past may have acquired their entA and sak determinants, respectively, by imprecise excision events between chromosomally located entA and sak determinants and closely inserted prophages, and that these determinants have now become integral to the phage DNA. Similar mechanisms have been proposed to explain the findings that corynephage β and the streptococcal phage T12 carry the genes for diphtheria toxin and streptococcal pyrogenic exotoxin A very close to their respective attP sites (Laird & Groman, 1976; Johnson et al., 1986).

The restriction maps of the entA-, sak- and attP-DNA regions of phages φ42, φA1, φA3 and φ13 were remarkably similar, suggesting a close relationship. However, hybridization analysis using phage φ42 genomic DNA as a molecular probe indicated that phages φA1, φA3 and φ13 were distantly related to φ42. These findings are consistent with a recent report by Inglis et al. (1987) which demonstrated that some serotype F S. aureus phages share less than 50% sequence homology. Whether phage φ13 was originally derived from a triple-converting phage or acquired its sak determinant independently by an imprecise excision event is speculative.

The triple-converting phage φ42 dramatically altered the phage typing pattern of the S. aureus strains 80CR3 and W57 upon lysogenization. Phage φA1 had a similar but less extensive effect upon lysogenization of S. aureus 80CR3, whereas the triple-converting phages φA3 and φA4 did not affect the phage typing pattern at all. Similar observations concerning the narrowing of the phage typing pattern of S. aureus strains upon lysogenization by a range of bacteriophages have been reported previously (Rountree, 1959; Vickery et al., 1986). The basis for this phenomenon is not yet understood. However, the differences in the extent of narrowing of the phage typing pattern of S. aureus by three of the triple-converting phages suggests that although the phages belong to the same serotype and have other features in common, they are not identical.

The properties of the triple-converting phage φ42, which was recovered from S. aureus strain PS42-D, are very similar to those of the enterotoxin A converting phage PS42-D described by Betley & Mekalanos (1985), which was also recovered from a culture of strain PS42-D. However, these authors did not report whether their phage affected the expression of staphylokinase or β-lysin. The restriction enzyme cleavage site maps of the two phages are very similar; both phages encoded entA near to the attP site and both had linear genomes with cohesive termini. However, there is one major difference between the two studies. Betley & Mekalanos (1985) reported that the phage-free S. aureus strain 80CR3 when lysogenized with phage PS42-D contained integrated prophage DNA and linear phage DNA. In the present study, several independent derivatives of S. aureus strain 80CR3 lysogenized with phage φ42 contained integrated prophage DNA only. Similar results were obtained with derivatives of S. aureus strain W57 lysogenized with phage φ42. These findings suggest that the lysogens generated by Betley & Mekalanos (1985) with phage PS42-D were unstable and that a high frequency of spontaneous induction occurred, indicating that although phage φ42 and phage PS42-D are similar, they are probably not identical.

All of the evidence reported here suggests that the mechanism of β-lysin conversion mediated by the triple-converting phages φ42, φA1 and φA3 and the double-converting phage φ13 involves insertion mutation of the chromosomally located hlb determinant by the integration of circularly permuted phage genomes. The negative conversion of S. aureus lipase by phage L54a has been shown to occur by a similar mechanism (Lee & Iandolo, 1986a). Because the sizes of the small HindIII-generated junction fragments, detected in HindIII-cleaved genomic DNA of lysogens harbouring phages φ42, φA1, φA3 and φ13 with hlb and attP probes, were identical, it is likely that these phages integrated at the same site, or very closely linked sites, in the bacterial chromosome. Furthermore, because the sizes of the two junction fragments, detected with the 2.2 kb hlb probe in HindIII-cleaved genomic DNA of three
independently generated lysogens in the case of all four phages, were consistent, these data suggest that these phages integrate in one orientation only. Similar findings have been reported for the S. aureus phages L54a and φ11, both of which integrate into the S. aureus genome in one orientation (Lee & Iandolo, 1986b, 1988).

Expression of the cloned sak determinants by E. coli derivatives on fibrin agar was more readily detectable around colonies of strain DS410 than HB101 or C600. Similar findings have been observed with regard to the expression by E. coli of cloned S. aureus hib, entA and δ-lysin determinants (D. C. Coleman, unpublished data). Previous studies revealed that recombinant staphylokinase and β-lysin expressed by E. coli were preferentially located in the periplasmic space and cytoplasm, respectively, but in both cases the recombinant proteins escaped into the surrounding medium, probably due to lysis of ageing cells (Sako et al., 1983; Coleman et al., 1986). Because of the intrinsic properties of the minicell-producing strain DS410, it may be more leaky than either strain HB101 or C600, or it is possible that DS410 cells lyse earlier in the growth cycle. However, these findings indicate that DS410 is an extremely useful strain for studying the expression in E. coli of cloned genes derived from Gram-positive bacteria.

The discovery of triple-converting phages suggests that they can play an important role in controlling the expression of S. aureus extracellular proteins. This, together with transfer of virulence factors between S. aureus strains, may contribute to the generation of strains with enhanced pathogenicity. The presence of triple-converting phages in Irish methicillin-resistant isolates parallels the findings of a recent study from this laboratory which indicated that the capacity to produce enterotoxins by these organisms was an important contributory factor in their pathogenic potential (Humphreys et al., 1989).

This work was supported in part by the Irish Medical Research Council Hospital Infection Unit Programme grant (D. C. C., J. P. A. and H. P.), An Foras Taluntais (D. C. C. and R. J. R.) and Arthur Guinness and Son and Company, Dublin Limited (D. C. C. and J. P. A.). We are grateful to Professor Merlin Bergdoll and Dr Chris Adlam for supplying antisera. Many thanks to Dr Gordon Dougan and Dr Harry Birkbeck for their encouragement.

REFERENCES

