Expression and Flavinylation of *Arthrobacter oxydans* 6-Hydroxy-D-nicotine Oxidase in *Bacillus subtilis*

By RODERICH BRANDSCH1 AND LARS HEDERSTEDT2*

1 Biochemisches Institut der Universität, Hermann-Herder Strasse 7, D-7800 Freiburg im Breisgau, FRG
2 Department of Microbiology, University of Lund, Sölvegatan 21, S-223 62 Lund, Sweden

(Received 17 October 1988; revised 24 January 1989; accepted 30 January 1989)

6-Hydroxy-D-nicotine oxidase (6-HDNO) of *Arthrobacter oxydans*, an enzyme inducible by DL-nicotine, contains FAD covalently bound via an 8a-N(3)His linkage. Expression of the gene encoding 6-HDNO and flavinylation of the protein were studied in *Bacillus subtilis*. In this heterologous system the following findings were made. 1. An enzymically active covalently flavinylated 6-HDNO of normal size can be expressed in *B. subtilis*. 2. The natural promoter of the 6-HDNO gene appeared inefficient in *B. subtilis*. The *B. subtilis* sdh promoter, when inserted upstream of the *A. oxydans* promoter, increased 6-HDNO expression >50-fold. 3. Expression of the 6-HDNO gene from plasmids in *B. subtilis* was, independently of the promoter construct used, stimulated more than fivefold by DL-nicotine in the growth medium. It is concluded that flavinylation of 6-HDNO is possibly autocatalytic and mediated by factors generally found in bacterial cells.

INTRODUCTION

About two dozen different enzymes are known to contain a flavin covalently attached to a His, Tyr or Cys residue (Singer & McIntire, 1984). The mechanism(s) by which these covalent bonds are formed in cells is not known. Autocatalysis as well as a requirement for specific factor(s), not present in the final flavoprotein, have been proposed for the process (Decker, 1982). FAD linked via its 8a-carbon to N-3 of His was first discovered in succinate dehydrogenase (SDH) (Salach et al., 1972). The same type of covalently bound FAD is present in 6-hydroxy-D-nicotine oxidase (6-HDNO; EC 1.5.3.6) from *Arthrobacter oxydans* (Mohler et al., 1972). 6-HDNO is a 48 kDa monomeric enzyme functioning in the nicotine degradative pathway of this bacterium (Brühmüller et al., 1972). It is encoded on a large catabolic plasmid and enzyme synthesis is induced by DL-nicotine (Brandsch et al., 1986; Gloger & Decker, 1969).

SDH, the analogous fumarate reductase, and 6-HDNO are at present the only proteins with 8a-N(3)His FAD for which the structural gene has been isolated and sequenced (Wood et al., 1984; Phillips et al., 1987; Cole, 1982; Brandsch et al., 1987b). With the cloned gene available, new approaches can be used to elucidate why the prosthetic group in particular flavoenzymes is covalently bound and how the bond is formed (cf. Cecchini et al., 1988). One approach to these problems is to express the flavoprotein in a heterologous system. *Bacillus subtilis* SDH expressed from the cloned *sdh* operon in *Escherichia coli* lacks covalently bound flavin despite the fact that *E. coli* SDH in the same cell is flavinylated (Hederstedt et al., 1987). The *B. subtilis* apoprotein synthesized in *E. coli* is correctly processed at the N-terminus and the cloned *sdh* operon encodes functional SDH when reintroduced into *B. subtilis*. These previous results indicate that a cell-specific factor is required or that in *E. coli* the flavinylation of the heterologous polypeptide is

**Abbreviations:** Ap, ampicillin; Cm, chloramphenicol; 6-HDNO, 6-hydroxy-D-nicotine oxidase; Km, kanamycin; PEP, phosphoenolpyruvate; SDH, succinate dehydrogenase.

0001-5194 © 1989 SGM
Methods

Bacterial strains and plasmids. The strain of *A. oxydans* used was described by Eberwein et al. (1961).

*B. subtilis* 3G18 (trpC2 ade met) was obtained from G. Venema, University of Groningen, the Netherlands. Plasmids pDB121 (Brandsch et al., 1986) and pDB222 (Brandsch et al., 1987a) are both Ap' and contain the *A. oxydans* 6-HDNO gene under the control of its natural promoter and the *E. coli* tac promoter, respectively. These plasmids were propagated in *E. coli* HB101 (F− hsdS20 supE44 ara-14 galK2 lacY1 proA2 rpsL20 xyl-5 mtl-1 recA13) (Boyer & Roulland-Dussoix, 1969). *B. subtilis* plasmids pUB110 (Km') (Gryczan et al., 1978) and pSDP4 (Km' Cm') (Melin et al., 1987) have been described before; pHB2 (Km') and pHB41 (Km') were constructed during this work.

General genetic techniques. Digestion of DNA with restriction endonucleases, agarose gel electrophoresis and ligation with T4 DNA ligase were done according to standard methods (Berger & Kimmel, 1987). DNA fragments separated in agarose gels were isolated by the use of Geneclean after the agarose had been dissolved in 4 M-NaI. Enzymes and antibiotics. The two genera are evolutionarily only distantly related (Woese, 1987) but comprise Gram-positive aerobic bacteria commonly found in the soil. Comparatively little is known about gene organization and control in *Arthrobacter* species. These aspects were additional reasons to determine whether the 6-HDNO gene could be expressed and be regulated by nicotine in *B. subtilis*.

Preparation of soluble cell extract. The bacteria were grown aerobically overnight at 30 °C in yeast-tryptone medium (YT; Berger & Kimmel, 1987) with and without added dl-nicotine (0-1%, v/v). The growth medium for plasmid-containing cells was further supplemented with 100 μg ampicillin ml−1 or 5 μg kanamycin ml−1, as appropriate. Cells were harvested by centrifugation at 4 °C, washed once with cold 0-1 M-sodium phosphate buffer pH 7-5 and lysed in the same buffer by sonication. *B. subtilis* cells were incubated at 20 °C for 10 min in buffer containing 0-1 mg lysozyme ml−1 before sonication. The lysate was centrifuged at 12000 g for 10 min at 4 °C and the resulting supernatant was used as the soluble cell fraction.

Labelling with radioactive flavin. In vivo labelling with 20 μCi (740 kBq) D-[2-14C]riboflavin 1− in the growth medium has been described before (Hedersted, 1983). For *in vitro* labelling with flavin, the cell extract was incubated with 10 μM [1−14C]FAD and 8 mM-phosphoenolpyruvate (PEP) at 30 °C for 60 min.

Analytical methods. 6-HDNO activity was measured photometrically at 30 °C as described by Decker & Bleeg (1965). Chloramphenicol acetyltransferase was assayed as described by Shaw (1975). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was done by the method of Laemmli (1970). Gels for autoradiography were treated with Amplify before they were exposed to X-ray film. Identification of 6-HDNO antigen by SDS-PAGE followed by immunoblotting was performed as before (Brandsch et al., 1987a). Protein was determined by the Lowry method with serum albumin as the standard.
**A. oxydans 6-hydroxy-β-nicotine oxidase**

![Physical map of pHB2 and pHB41](image)

Fig. 1. Physical map of pHB2 and pHB41. Both plasmids are pUB110 derivatives. The fragment corresponding to *A. oxydans* DNA is indicated by a thicker line and the open reading frame of the 6-HDNO gene is marked by a box. The filled and open dots indicate the location of the *A. oxydans* natural promoter for the 6-HDNO gene and the *B. subtilis* *sdh* promoter respectively. Arrows show direction of transcription. Selected endonuclease restriction sites are indicated: B, BamHI; E, EcoRI; H, HindIII; P, PstI; Pv, PvuII.

**Materials.** Restriction enzymes and T4 DNA ligase were obtained from Boehringer Mannheim; d-[2-14C]riboflavin (46 Ci mol⁻¹; 1702 GBq mol⁻¹) and Amplify were from Amersham; [14C]FAD was synthesized *in vitro* from d-[2-'14C]riboflavin (Brandsch & Bichler, 1987); DL-nicotine and 6-hydroxy-β-nicotine were obtained as described previously (Decker et al., 1961; Gloger & Decker, 1969). Geneclean was purchased as a kit from BIO 101 Inc. X-ray film was XR from Fuji.

**RESULTS AND DISCUSSION**

**Expression of 6-HDNO activity in B. subtilis**

To study expression of *A. oxydans* 6-HDNO in *B. subtilis*, the structural gene with flanking DNA was transferred to *B. subtilis* plasmid vectors. Two plasmids, both based on pUB110, were constructed as described in Methods. The first plasmid, pHB2, contains the 6-HDNO gene with its natural promoter (Fig. 1). The second construct, pHB41, has the *B. subtilis* *sdh* promoter region placed upstream and in tandem with the natural promoter of the 6-HDNO gene (Fig. 1).

Soluble cell extracts of *B. subtilis* harbouring pHB2 and pHB41, but not of cells containing PUB110 or pSDP4, showed 6-hydroxynicotine oxidase activity with specificity for the D-enantiomer. Extracts prepared from cells in the stationary phase of growth had higher specific enzyme activities than those of exponentially growing bacteria. Stationary phase cells were therefore used throughout this work.

Plasmid pHB41, with the *sdh* promoter placed in tandem with and in front of the natural promoter, resulted in >50-fold higher 6-HDNO activity compared to pHB2 (Table 1). This suggests that transcription, rather than translation, is limiting the expression of the protein from pHB2, assuming that the copy number is similar for pHB41 and pHB2. The promoter sequence of the *A. oxydans* 6-HDNO gene (Brandsch et al., 1987b) and the consensus promoter sequence recognized by the major (sigma-43) *B. subtilis* RNA polymerase holoenzyme (Doi & Wang, 1986) are identical in the -35 region but show 3 mismatches out of 7 bases in the -10 region. The potential ribosome-binding sequence of the mRNA for the 6-HDNO gene and the 3'-end of the *B. subtilis* 16S rRNA has a calculated (Tinoco et al., 1973) free energy of interaction of -58 kJ mol⁻¹ (-14 kcal mol⁻¹). This strength of interaction and also the 6 bp spacing between the ribosome-binding sequence and the TTG translational start codon are features commonly found for *B. subtilis* genes (Hager & Rabinowitz, 1985).

DL-Nicotine induces 6-HDNO in stationary-phase *A. oxydans* cells. The difference in activity between induced and non-induced bacteria is about 2000-fold. Expression of 6-HDNO activity in *B. subtilis* containing pHB2 or pHB41 was also stimulated by DL-nicotine (Table 1). In contrast and as observed before (Brandsch et al., 1986), nicotine had no effect on the expression of 6-HDNO activity in *E. coli* harbouring pBD121, although this plasmid contains the same
Table 1. Specific 6-HDNO activity in soluble cell extracts of different bacterial strains grown in the presence or absence of 0.1% (v/v) DL-nicotine

Extracts from cells in stationary growth phase were used: all strains showed the highest 6-HDNO activity in this growth phase. Results are means ± standard deviation (number of determinations).

<table>
<thead>
<tr>
<th>Strain</th>
<th>6-HDNO activity [mU (mg protein)^{-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without nicotine</td>
</tr>
<tr>
<td>A. oxydans (pAO1)</td>
<td>0±1*</td>
</tr>
<tr>
<td>E. coli HB101 (pDB121)</td>
<td>13 ± 1.5 (10)</td>
</tr>
<tr>
<td>B. subtilis 3G18 (pHB2)</td>
<td>0±1*</td>
</tr>
<tr>
<td>B. subtilis 3G18 (pHB41)</td>
<td>6.5 ± 1.8 (3)</td>
</tr>
</tbody>
</table>

* At the limit of detection.

Table 2. Enhancement of 6-HDNO activity in soluble cell extracts of B. subtilis 3G18 (pHB41) by incubation with FAD and PEP

The same extracts of B. subtilis 3G18 (pHB41) grown in the absence or presence of nicotine, and which showed 4 and 37 mU (mg protein)^{-1} of 6-HDNO activity, respectively, were used several times in activation assays with FAD and PEP.

<table>
<thead>
<tr>
<th>Extract</th>
<th>6-HDNO activity [mU (mg protein)^{-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+FAD</td>
</tr>
<tr>
<td>Without nicotine</td>
<td>4</td>
</tr>
<tr>
<td>With nicotine</td>
<td>37</td>
</tr>
</tbody>
</table>

* Results are means ± standard deviation (number of assays).

A. oxydans DNA fragment as pHB2. How nicotine can influence the expression of 6-HDNO in B. subtilis is not known. However, the effect was not specific since the expression of chloramphenicol acetyltransferase from the cat-86 gene transcribed from the sdh promoter in pSDP4 could also be stimulated (about six-fold) by nicotine.

Flavinylation of 6-HDNO

B. subtilis 3G18 (pHB41) contained 6-HDNO polypeptide of the same size as authentic 6-HDNO (Fig. 2). The increased 6-HDNO activity measured in extracts from cells grown in the presence of nicotine compared to cells grown without this alkaloid (Table 1) was accompanied by a corresponding increase in 6-HDNO protein (Fig. 2, lanes 2 and 3).

In nicotine-induced A. oxydans and also in E. coli HB101 harbouring pDB121 or the expression plasmid pDB222, a proportion of the 6-HDNO protein is in its apoenzyme form. Such apoenzyme can be flavinylated in vitro by incubation of soluble cell extracts with FAD and PEP (Nagursky et al., 1988). It is not understood why a fraction of the 6-HDNO protein exists as apoenzyme. The relative proportion of apoenzyme to holoenzyme is not related to the rate of protein synthesis, i.e. it does not result from a limiting supply of flavin. The formation of holoenzyme during the incubation can be monitored as an increase in enzyme activity and by incorporation of \[^{14}C\]FAD into the protein. A fraction of 6-HDNO expressed in B. subtilis 3G18 (pHB41) was similarly in the form of apoenzyme, since incubation of the cell extract with FAD and PEP resulted in increased 6-HDNO activity (Table 2).

B. subtilis, but not E. coli cells, take up riboflavin efficiently from the growth medium and use it for FMN and FAD synthesis (Cecchini et al., 1979). This property was exploited to confirm that the 6-HDNO synthesized from the A. oxydans gene in B. subtilis contains covalently bound flavin. Soluble cell extract was prepared from B. subtilis 3G18 (pHB41) grown in the presence of \[^{14}C\]riboflavin. The cell extract was then incubated with \[^{14}C\]FAD and PEP to further increase
Fig. 2. Analysis of 6-HDNO antigens by Western blotting. Soluble cell extracts, each containing 50 μg protein, were run in SDS-PAGE (10%, w/v, acrylamide), electrobotted to nitrocellulose membrane and stained immunochemically using 6-HDNO-specific antiserum from rabbit. Lane 1, E. coli HB101(pDB222); lane 2, B. subtilis 3G18(pHB41) grown with nicotine; lane 3, B. subtilis 3G18(pHB41) grown without nicotine; lane 4, B. subtilis 3G18(pSDP4) (negative control). The arrow indicates the position of 48 kDa 6-HDNO polypeptide. Smaller-sized antigens seen in lane 1 are proteolytic degradation products of 6-HDNO.

Fig. 3. Covalently bound flavin in cell extracts. An autoradiograph of a SDS-polyacrylamide (10%, w/v, acrylamide) gel is shown. Extract of B. subtilis 3G18(pHB41) grown in the presence of m-nicotine and [14C]riboflavin (lane 2) and then incubated in vitro with [14C]FAD and PEP (lane 1). Extract of E. coli HB101(pDB222) in vitro incubated with [14C]FAD and PEP (lane 3). About 50 μg of protein was loaded on each lane.

radioactive labelling. The extracts were finally subjected to SDS-PAGE. Only covalently bound flavin is retained on protein after electrophoresis in the presence of SDS (Hederstedt, 1983). An autoradiograph of the resulting gel is shown in Fig. 3. Two radioactive polypeptides can be seen. The 65 kDa protein is the flavoprotein subunit of SDH. The 48 kDa band corresponds to 6-HDNO. This band was not present on autoradiographs of gels containing similarly prepared extracts from B. subtilis not expressing 6-HDNO. We conclude that A. oxydans 6-HDNO is flavinylated in B. subtilis.

CONCLUSION

A. oxydans 6-HDNO seems different with regard to the mechanism of flavinylation, when compared to the flavoprotein subunits of SDH and fumarate reductase. The 6-HDNO protein can be flavinylated in different organisms and it can also be flavinylated in vitro in the presence of FAD and PEP (Brandsch & Bichler, 1987; Nagursky et al., 1988). The flavoprotein of B. subtilis SDH, on the other hand, is not flavinylated in E. coli in vivo (Hederstedt et al., 1987) or in vitro even if B. subtilis extract is added (unpublished data). E. coli fumarate reductase could not be flavinylated when expressed in vitro in an E. coli coupled transcription–translation system.
(Cecchini et al., 1985). Furthermore, flavinylation of \textit{B. subtilis} SDH is very sensitive to structural changes: amino acid substitutions in the flavoprotein far from the flavin-binding His residue can affect the attachment of flavin (Maguire et al., 1986). 6-HDNO apparently can be flavinylated despite gross changes in the polypeptide, such as deletions and fusions (Brandsch et al., 1987a). FAD is bound to a His in the N-terminal part of the flavoprotein in 6-HDNO, SDH and fumarate reductase. The primary sequence around this His in 6-HDNO shows little similarity compared with those in SDH and fumarate reductase. In the flavoprotein of SDH and fumarate reductase, but not in 6-HDNO, the FAD-His residue is preceded by a sequence typical for nucleotide-binding proteins (Brandsch et al., 1987c). All these data together indicate that the mechanism for flavinylation of 6-HDNO is different from that of SDH and fumarate reductase. The flavinylation of the \textit{A. oxydans} protein could be autocatalytic and mediated by universal cell factors, such as PEP.

\textit{Note added in proof}. A mutation has been found in the \(-10\) region of the \textit{sdh} promoter in \textit{pSDP4} used for construction of \textit{pHB41}. The mutation, a T to C change at nucleotide position 163, decreases expression about fourfold.

We thank Beate Krauss for expert technical assistance. This work was supported by a short term fellowship from EMBO to R. B. and by grants from the Swedish Natural Science Research Council, Emil och Wera Cornells Stiftelse and the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg (SFB206).

\textbf{REFERENCES}


