Effects of Oxygen Levels on the Transcription of *nif* and *gln* Genes in *Bradyrhizobium japonicum*

By THOMAS H. ADAMS*† AND BARRY K. CHELM‡

MSU/DOE Plant Research Laboratory and the Department of Microbiology, Michigan State University, East Lansing, Michigan 48824, USA

(Received 13 July 1987; revised 28 September 1987)

The transcription of genes that function in N₂ fixation (*nif*) and nitrogen assimilation (*gln*) in *Bradyrhizobium japonicum* is coordinately induced in response to O₂ limitation as well as symbiotic development. We have determined the relative steady-state mRNA levels for the *nifH, nifDK* and *glnII* transcription units in bradyrhizobial cells grown under a variety of levels of aerobiosis and in cells isolated from soybean root nodules. All three transcripts are found in cells grown in a rich medium sparged with O₂ concentrations of 5% (v/v) or less. This expression is qualitatively similar to that observed for *Bradyrhizobium* during symbiotic development. Potential physiological mechanisms for the coordinate control of these genes are discussed.

INTRODUCTION

Rhizobia and bradyrhizobia reduce atmospheric N₂ in symbiotic association with their leguminous host plants. Development of symbiotic N₂ fixation is a complex process requiring the coordinate differentiation of both plant and bacterial cells. This differentiation results in the formation of morphologically and functionally distinct N₂-fixing endosymbiotic bacteria termed 'bacteroids'. Very little of the ammonia produced from N₂ reduction by bacteroids is used to support bacterial growth (Brown & Dilworth, 1975; Stripf & Werner, 1978; Werner et al., 1980): most of it is exported (Bergerson & Turner, 1967) to the plant where it is assimilated (Miflin & Lea, 1976). The plant supplies reduced carbon compounds to the bacteria to meet the high energy demands of N₂ fixation and cell maintenance.

Nitrogen metabolism during asymbiotic N₂ fixation by bradyrhizobia is similar to that observed in bacteroids, as most of the fixed nitrogen is not used to support growth, but is instead exported (O'Gara & Shanmugan, 1976; Bergerson & Turner, 1978; Ludwig, 1980a, b). For at least some bradyrhizobial strains this failure to assimilate fixed nitrogen is partly due to an apparent decrease in glutamine synthetase (GS) activity (Ludwig, 1980a, b; Bergerson & Turner, 1978). Regulation of GS activity in rhizobia and bradyrhizobia is complicated by the fact that these bacteria contain two isoforms of the enzyme, GSI and GSII (Darrow & Knotts, 1977). The two distinct nitrogen-assimilatory enzymes are encoded by separate genes (Somerville & Kahn, 1983; Carlson & Chelm, 1986), and transcription of the genes is differentially regulated. Transcription of the gene encoding GSI (*glnA*) is constant under all conditions (Carlson et al., 1985). This enzyme is regulated post-translationally via adenylylation, such that activity decreases during growth in nitrogen-rich media (Bishop et al., 1976; Ludwig, 1978). In contrast, no post-translational modification of GSII has been observed. Transcription of the gene encoding GSII (*glnII*) under aerobic growth conditions is controlled by a mechanism that resembles the Ntr system (Carlson et al., 1987) of enteric bacteria (Magasanik, 1982; Gussin et al., 1986); growth conditions that limit nitrogen source activate transcription of the *glnII* gene.

† Present address: Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.

‡ This paper is dedicated to the memory of Barry Chelm.

Abbreviation: GS, glutamine synthetase.
We are interested in understanding the mechanisms through which gln and nif gene expression is controlled in *Bradyrhizobium japonicum*, a soybean symbiont, during symbiotic N₂ fixation as well as in free-living cultures. Some bradyrhizobial strains can be induced to fix N₂ in free-living culture under specialized conditions (Keister, 1975; Pagan et al., 1975; Kurz & Larue, 1975; McComb et al., 1975; Tjepkema & Evans, 1975). These conditions include both provision of a source of fixed nitrogen (preferably glutamate) and the presence of O₂ as an electron acceptor for oxidative phosphorylation. The requirement for O₂ must be maintained at levels that are high enough to allow the oxidative phosphorylation levels necessary to provide the ATP required for N₂ reduction, and low enough to prevent the irreversible inactivation of nitrogenase (Mortenson & Thornley, 1979). We have chosen to simplify the analysis by directly analysing the effect of microaerobiosis on nif transcription. We have determined the relative steady-state mRNA levels for the nifH, nifDK, glnA and glnI genes in *B. japonicum* grown under varying levels of aerobiosis. The results indicate that nifH, nifDK and glnI transcription is coordinately induced in response to both symbiotic development and microaerobic growth.

METHODS

Bacterial strains, media and growth conditions. All of the experiments in this paper used a small-colony derivative of *B. japonicum* 311b110, which we term BJ110, isolated as described previously (Kuykendall & Elkan, 1976; Meyer & Pueppke, 1980). Bacteria were grown in YEM (0.04% yeast extract, 1% mannitol, 3 mM-K₂HPO₄, 0.8 mM-MgSO₄, 1 mM-NaCl), YE2N (YEM with 10 mM-KNO₃), or YE2NA (YEMN with 10 mM-NH₄Cl) media. Ten-litre cultures of *B. japonicum* were grown using Microferm fermenters (New Brunswick Scientific) agitated at 200 r.p.m. and sparged with mixtures of O₂ and N₂ at rates of 500 ml min⁻¹. Gas flow rates were controlled using thermal mass flowmeters (Brooks Instruments, model 5850C) to provide the atmospheric O₂ concentrations reported. Inoculation was with 100 ml of a stationary-phase aerobic culture in YEM medium.

Nucleic acid techniques. Methods for RNA isolation were as described previously (Adams & Chelm, 1984). mRNA abundances were measured by a quantitative S1 nuclease protection method in which multiple mRNAs could be simultaneously quantified from a single reaction. Single-stranded 5' end-labelled probes were synthesized by primer extension as follows. A gene-specific oligonucleotide (80 ng) was labelled by reaction with T4 polynucleotide kinase at 37 °C for 1 h in 100 mM-Tris/HCl, pH 7.5, 10 mM-MgCl₂, 6 mM-dithioerythritol and 100 μCi [γ-³²P]ATP (approx. 3000 Ci mmol⁻¹, 111 TBq mmol⁻¹). In the experiments with mixed probes, the specific activity of each 5' end-labelled oligomer was adjusted to approximately 250 d.p.m. pg⁻¹ with unlabelled oligonucleotide prior to the elongation reaction. The labelled primers were combined with 20 μg of the appropriate single-stranded M13 recombinant phage template DNA, ethanol-precipitated, suspended in 50 μl 10 mM-Tris/HCl, pH 8.5, and 10 mM-MgCl₂, heated for 5 min at 90 °C, and allowed to hybridize for 1 h at 37 °C. The hybridized oligonucleotide primer was extended using 3 units (Bethesda Research Laboratories) of the large fragment of *Escherichia coli* DNA polymerase (Klenow fragment) for 3 h at 37 °C in 100 μl of the same buffer plus 0.6 mM each of dATP, dCTP, dGTP and dTTP. The reaction was stopped by heating at 65 °C for 5 min. The partially double-stranded DNA was ethanol-precipitated and resuspended in the appropriate restriction endonuclease buffer. To prepare the probes specific for the nifH and nifDK promoters, the product of the extension reaction was digested with BstNI for 3 h at 58 °C, ethanol-precipitated, and suspended in 200 μl 80% (v/v) formamide with tracking dyes. The glnA and glnI probes were prepared by digestion with Sall for 3 h at 37 °C. After denaturation by incubation at 100 °C and purification by electrophoresis on 8.4% polyacrylamide gels, the labelled, single-stranded probe was detected by autoradiography and eluted by the crush-and-soak method (Maxam & Gilbert, 1980).

The following recombinant M13 phages were constructed for use in synthesizing single-stranded DNA hybridization probes: M13H has a 704 bp BamHI-HindIII fragment from nifH and its upstream region (Adams & Chelm, 1984) in M13mp19; M13DK contains a 417 bp PstI-SphI fragment from the promoter region of the nifDK operon (Adams & Chelm, 1984) in M13mp19; M13glnII has the 2·1 kbp Sall fragment of pB196 containing the glnII promoter region (Carlson & Chelm, 1986) in M13mp18; and M13glnA has a 391 bp Sall fragment from the promoter region of glnA (Carlson et al., 1985) in M13mp18. Oligonucleotides for primer extension were synthesized and purified as described previously (Carlson & Chelm, 1986). The sequences of each primer were as follows: 5'-TGCTTTCATCAACCGA (nifH); 5'-CCGCAGCGAGTCGCG (nifDK); 5'-CCCTTGTGCTTGCG (glnA); and 5'-CGACGCGAATTCCTTGA (glnII). The partially protected fragments from S1 analyses with each of the probes generated by elongation of these primers are 150, 200, 125, and 170 nucleotides long, respectively. For mixed-probe experiments, approximately 6 x 10⁻¹⁵ mol of each 5' end-labelled single-stranded fragment was included in the hybridization. For the driver RNA quantities used in these
B. japonicum nif and gln genes

experiments, this proved to be an excess of probe since increasing RNA concentrations resulted in a proportional increase in the amount of hybrid detected (data not shown). Hybridization, S1 digestion, and identification of partially protected products were as described previously (Adams & Chelm, 1984).

Isolation of bacteria from soybean root nodules. Total bacterial populations from frozen soybean nodules were prepared as described previously (Adams & Chelm, 1984). Separation of these bacteria into the three developmental fractions, as first described by Ching et al. (1977), was done by two rounds of centrifugation through discontinuous sucrose gradients using a zonal ultracentrifuge rotor (Beckman 14Ti) as described by Carlson et al. (1985).

RESULTS

Effects of O2 concentration on B. japonicum gene expression

To study the role of O2 limitation in regulating nif and gln gene expression for B. japonicum, we examined total cellular RNA isolated from B. japonicum cultures grown in standard nitrogen-rich media at a variety of O2 concentrations. The results for one such set of experiments are shown in Fig. 1. The expression levels of the nifH, nifDK, glnII and glnA genes were monitored using a quantitative S1 protection assay system. Equal quantities of four single-stranded, S' end-labelled DNA probes specific for the nifH, nifDK, glnII and glnA promoters were mixed and hybridized to total cellular RNA under conditions where the probes were in excess to the respective RNAs (see Methods). After hybridization, the mixtures were treated with S1 nuclease and the residual undigested DNA fragments then separated by gel electrophoresis. The hybridization probes were designed such that the protected fragments would be well resolved on the gel, allowing for the simultaneous measurement of transcript abundance for all four genes using a single RNA sample. The radioactive content for each band on the gel was determined directly (see Methods). RNA abundance is reported as c.p.m. protected DNA probe per μg driver RNA and is taken from a point within the linear range of the RNA:probe titration.

When B. japonicum was grown in a standard rich medium (YEMN) continuously sparged with air, no transcript for the nifH, nifDK or glnII genes was observed (Fig. 1, lane 1, and Table 1). In contrast, the transcript from the glnA gene was present, as reported previously (Carlson et al., 1985). We have observed only small variations in glnA transcript levels between any two culture conditions. If B. japonicum was cultured in this same medium but continuously sparged with a mixture of N2 and O2 such that O2 availability limited growth (5% O2 or less in the YEMN experiments), then expression of all four transcription units was observed (Fig. 1, Table 1). Similar cultures were grown either with (YEMN) or without (YEM) added KNO3. Under microaerobic conditions, KNO3 helps to stimulate growth by serving as an alternative electron acceptor (Daniel et al., 1982; M. L. Guerinot & B. K. Chelm, unpublished). A similar pattern for the relative levels of transcripts for any of the genes monitored was observed but the oxygen concentration dependence was shifted (Table 1). A three- to fourfold decrease in mRNA abundance for nifH, nifDK and glnII was observed as O2 levels were increased above 1% in YEMN medium or above 0.1% in YEM medium. Despite the high levels of the two nif mRNAs observed in these cultures, no nitrogen-fixation activity, as measured by the acetylene reduction assay (Hardy et al., 1968), was detectable, in agreement with previous reports (e.g. Scott et al., 1979). Transcription of the nifB and fixA genes was also analysed (data not shown) and results identical to those obtained for nifH, nifDK and glnII were obtained.

Effect of ammonia on microaerobic growth and gene expression

Under aerobic growth conditions, glnII transcription is induced when growth is limited by a poor nitrogen source to carbon source balance (Carlson et al., 1987). Presumably this activation is an attempt by the cells to maximize their capacity to assimilate nitrogen. Conversely, limitation of growth by carbon source does not induce glnII transcription, presumably because increased nitrogen assimilation would not increase growth. This control is similar to the Ntr control system which operates in the Enterobacteriaceae (Maganasnik, 1982). To determine whether the microaerobic induction of glnII and nif gene transcription described above is under Ntr-like control, B. japonicum grown under microaerobic conditions in YEMN medium was tested for inhibition of nif and glnII transcription by the addition of 10 mM-NH4Cl (YEMNA
Fig. 1. A typical abundance measurement for the *nifH*, *nifDK*, *glnII* and *glnA* transcripts. *B. japonicum* was grown under a variety of atmospheric O₂ concentrations. Quantitative analyses were by the S1 protection method described in Methods. The migration positions of the four protected fragments are indicated by *P*_D (*nifDK*), *P*_H (*glnII*), *P*_H (*nifH*) and *P*_A (*glnA*). The other major radioactive bands observed represent residual undigested probe DNA. The total cellular RNAs used in the hybridization reactions (2 μg RNA in each) were isolated from *B. japonicum* cultured under the following conditions: 20% (v/v) O₂ in YEMN (lane 1); 0.2% O₂ in YEMNA (lane 2); 5% O₂ in YEMN (lane 3); 2% O₂ in YEMN (lane 4); 1% O₂ in YEMN (lane 5); 0.4% O₂ in YEMN (lane 6); 0.2% O₂ in YEMN (lane 7); and 0.1% O₂ in YEMN (lane 8). All media and growth conditions are described in Methods.
Table 1. Effects of \(\text{O}_2 \) concentration on transcription of \(\text{nif} \) and \(\text{gln} \) genes

<table>
<thead>
<tr>
<th>Medium*</th>
<th>Probe</th>
<th>(\text{O}_2) concentration (% v/v):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-1</td>
</tr>
<tr>
<td>YEM</td>
<td>(\text{nifDK})</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>(\text{nifH})</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>(\text{glnII})</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>(\text{glnA})</td>
<td>44</td>
</tr>
<tr>
<td>YEMN</td>
<td>(\text{nifDK})</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>(\text{nifH})</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>(\text{glnII})</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>(\text{glnA})</td>
<td>34</td>
</tr>
<tr>
<td>YEMNA</td>
<td>(\text{nifDK})</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(\text{nifH})</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(\text{glnII})</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(\text{glnA})</td>
<td>-</td>
</tr>
</tbody>
</table>

* Media and growth conditions were as described in Methods. Carbon and nitrogen sources are abbreviated as follows: YE, yeast extract; M, mannitol; N, nitrate; A, ammonia.
† C.p.m. of hybridization probe protected from \(\text{S1} \) nuclease digestion per \(\mu \text{g} \) of input total cellular RNA. This indicates the relative steady-state mRNA level for each gene. Data represent a mean value determined from two separate experiments. Variations between experiments were less than 20%. - , Not determined; 0, transcript levels were below the limit of detection of the assay.

Growth phase dependence of microaerobic \(\text{nif} \) and \(\text{gln} \) transcription

Previous studies on the role of microaerobiosis for nonsymbiotic \(\text{nif} \) gene induction in bradyrhizobia have relied upon the expression of nitrogenase enzyme activity. Those studies indicate that the presence of nitrogenase activity in free-living cultures of bradyrhizobia usually requires that the cells have stopped growing (e.g. Ludwig, 1984). For this reason, the cultures used for the experiments described above were grown for 2 d into stationary phase prior to harvesting (with the exceptions of the 1, 2, and 5\% \(\text{O}_2 \) cultures, which were harvested earlier due to more rapid growth). To determine whether the microaerobic transcriptional induction of \(\text{glnII} \) and \(\text{nif} \) genes has a growth phase requirement like that for nitrogenase activity, cells were harvested at different times during microaerobic growth and the abundances of the \(\text{nif} \) and \(\text{gln} \) transcripts were determined. The \(\text{nifH}, \text{nifDK} \) and \(\text{glnII} \) transcripts were all found at near maximal levels within 24 h of inoculation and expression remained at high levels throughout the 120 h growth period analysed (data not shown). These cultures do not enter stationary growth phase for at least 72 h (not shown).

Transcription of \(\text{nif} \) and \(\text{gln} \) genes during symbiotic development

In order to evaluate the role of bacteroid development in \(\text{nif} \) and \(\text{gln} \) transcription, RNA was isolated from the bacteria within \(\text{B. japonicum} \) induced soybean root nodules and mRNA levels were determined. Two weeks after sowing and inoculation, transcript levels for both \(\text{nif} \) operons ranged up to four-fold higher in the nodule bacteria population than under any of the microaerobic growth conditions tested (Table 2). Transcript abundances for the \(\text{nifH} \) and \(\text{nifDK} \) genes were approximately equal under the microaerobic conditions. In contrast, bacterial RNA from soybean root nodules had an increased ratio of \(\text{nifH} \) to \(\text{nifDK} \) message, with \(\text{nifH} \) transcript about twice as abundant as that for \(\text{nifDK} \). This was accomplished mainly through an increase in the steady-state mRNA levels for \(\text{nifH} \). Whether these differences represent changes in transcription rate or changes in mRNA stability has not yet been determined. The \(\text{glnII} \) transcript levels in the nodule bacterial cell populations were approximately equal to those seen in microaerobic culture.

A method for fractionating the mixed populations of bacteria isolated from within soybean root nodules has been described (Ching et al., 1977; Carlson et al., 1985). This technique relieves
Table 2. mRNA abundance of nif and gln genes during symbiotic development

<table>
<thead>
<tr>
<th>RNA source</th>
<th>mRNA abundance*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nifH</td>
</tr>
<tr>
<td>Bacteria from 14-d-old nodules</td>
<td>498</td>
</tr>
<tr>
<td>Bacteria from 28-d-old nodules</td>
<td>636</td>
</tr>
<tr>
<td>'Nodule bacteria'†</td>
<td>579</td>
</tr>
<tr>
<td>'Transforming bacteria'†</td>
<td>767</td>
</tr>
<tr>
<td>'Bacteroids'†</td>
<td>442</td>
</tr>
</tbody>
</table>

* C.p.m. of hybridization probe protected from S1 nuclease digestion per µg of input total cellular RNA. Data represent mean values determined from duplicate experiments. Variation between experiments was less than 20%.
† 'Developmental' cell types isolated from the total population of bacterial cells within a soybean root nodule as described in Methods.

on the change in buoyant density of bacteroids which occurs due to their accumulation of polyhydroxybutyrate (PHB) granules. The expression of certain other 'bacteroid-specific' properties (including nitrogenase enzyme activity) parallels this PHB accumulation (Ching et al., 1977). mRNA levels were analysed from the three bacterial populations distinguished by this method (see Methods). No significant differences in nifH, nifDK or glnII gene expression patterns were observed between the three bacterial fractions (Table 2).

DISCUSSION

Under specialized cultural conditions, several bradyrhizobial strains, including B. japonicum, are able to reduce N₂ to ammonia in free-living culture (Keister, 1975; Pagan et al., 1975; Kurz & Larue, 1975; McComb et al., 1975; Tjepkema & Evans, 1975). Optimal conditions for asymbiotic N₂ fixation include the presence of organic acids as carbon and energy source, a growth-promoting nitrogen source, and extreme microaerobiosis. Microaerobic conditions are required for N₂ fixation because the nitrogenase enzyme is inactivated by intracellular O₂. Some O₂ is required for growth, however, as rhizobia are obligate aerobes. The highest free-living N₂ fixation rates by bradyrhizobia are achieved at extremely low O₂ tensions (Ludwig, 1984). We have directly studied the effect of O₂ limitation of growth on transcription. The requirements for the transcriptional induction of the genes encoding the nitrogenase structural polypeptides were found to be less complex than those for achieving nitrogenase enzyme activity. High levels of several nif mRNAs were found when O₂ levels were rate-limiting for growth. Extreme microaerobiosis was not required, nor were organic acids or any of the other specialized conditions previously reported (see references above) as necessary for the induction of nitrogenase activity.

In addition, we found that under these O₂-limited growth conditions transcription of the glnII gene, encoding GSII, was induced. Neither the nif genes nor glnII were transcribed in the same medium under fully aerobic conditions: they were induced only under conditions in which growth was directly affected by availability of O₂. Thus, expression of glnII appears to be activated coordinately with that of nif genes in response to O₂ limitation. Rao et al. (1978) reported that GSII activity decreased during microaerobiosis for some bradyrhizobia. The reported inhibition of GSII activity occurred at the same O₂ tension as that at which nitrogenase activity first became apparent (about 0.4% O₂ in the experiments described by Rao et al., 1978). Since no nitrogenase activity was observed in the experiments we describe, it is possible that at lower O₂ concentrations glnII transcription could have been repressed. However, we observed similar levels of glnII transcript in total cellular RNA populations isolated from the N₂-fixing bacteria in soybean root nodules and from bacteria grown in microaerobic, non-N₂-fixing culture (Tables 1 and 2). If GSII is inactive in nodules and under microaerobic conditions, it is possible that expression of this enzyme is regulated by an unknown post-transcriptional mechanism.
As shown here, the relationship between O\textsubscript{2} and nitrogen limitation in bradyrhizobia is complex. Addition of ammonia to aerobic cultures of *B. japonicum* in an amino-acid-based medium (YEMN) increases both growth rate and final cell density. Similar changes in growth properties can be achieved by increasing atmospheric O\textsubscript{2} levels, indicating that the amino acids present in yeast extract do not limit aerobic growth. These data imply that growth limitation during microaerobiosis results from nitrogen limitation brought about by changes in the cells’ ability to utilize amino acids as a source of nitrogen. O\textsubscript{2} limitation has been shown to induce an ammonium export system in *Bradyrhizobium* sp. 32H1 (Ludwig, 1980b; Gober & Kashkett, 1983). If such a system were induced here, nitrogen limitation could occur even if amino acids were catabolized normally, as active ammonium export would compete with its assimilation. Addition of ammonium to these cultures might then partially relieve nitrogen limitation and stimulate growth by shifting the intracellular/extracellular ammonium balance.

Of primary interest is the mechanism that controls the transcriptional induction of *nif* and *gln* genes. In aerobic culture, transcription of *glnII* is mediated by an Ntr-like system (Carlson et al., 1987). When *B. japonicum* is grown aerobically under nitrogen-limiting conditions, transcription of *glnII* is induced and when nitrogen nutrition does not limit growth, *glnII* is not transcribed. Transcript levels for the *nif* and *gln*II genes normalized to the level of *glnA* transcript are reduced by the addition of ammonium (Table 1). This result indicates that nitrogen limitation might be responsible in part for causing an Ntr-like induction of *glnII* and/or *nif* genes. Similar results have been observed in studies of ammonia effects on nitrogenase activity (Ludwig, 1980a, b; Bergerson & Turner, 1978). Ntr-like control of nitrogenase expression has previously been described for bradyrhizobia (Ludwig, 1980a, b; Bergerson & Turner, 1978) and rhizobia (Szeto et al., 1987). The *glnII* gene promoter shares sequence homology in the −10 to −25 region with *B. japonicum nif* promoters (Carlson et al., 1987) and with promoters from other bacteria that are controlled by nitrogen availability (Ntr control; Magasanik, 1982; Ausubel, 1984; Gussin et al., 1986). A gene, termed *nifA*, that is required for both microaerobic and symbiotic induction of *nif* and *glnII* gene expression in *B. japonicum* has been characterized (Fischer et al., 1986; Adams, 1986). The *nifA* gene product acts on a DNA sequence that is found upstream of *nif* genes (Alvarez-Morales et al., 1986) but not upstream of the *glnII* gene (Carlson et al., 1987). Mutations in *nifA* have no effect on the aerobic Ntr-like control of *glnII* expression (unpublished results). Taken together with the partial ammonium repression of *glnII* expression, the implication of these data is that the role of the *nifA* product on the O\textsubscript{2} limitation response of the *glnII* gene is indirect, possibly acting through the Ntr system. Isolation of Ntr mutants of *B. japonicum* defective in the aerobic Ntr-like control of *glnII* will help to clarify the microaerobic Ntr-like response described here and to define the hierarchy of *nifA* and Ntr-mediated control of *nif* gene expression in the bradyrhizobia.

We thank Mary Lou Guerinot for help in the early stages of this study. We also thank Michael Thomashow, William Timberlake and all the members of our laboratory for critical and helpful discussion. This work was supported by grant 85-CRCR-1-1739 from the US Department of Agriculture and by the Energy Division of Biological Energy Research under contract DE-AC02-76ER01-1338. This is article number 12430 from the Michigan Agricultural Experiment Station.

REFERENCES

glutamine synthetase and nitrogenase activities in the symbiotic association between *Rhizobium japonicum* and *Glycine max*. *Plant Physiology* 57, 542–546.

