Isolation and Characterization of the Outer Membrane Proteins of
Azospirillum brasilense

By ANAND K. BACHHAWAT AND SUDHAMOY GHOSH*

Department of Biochemistry, Bose Institute, Acharya J. C. Bose Centenary Building, P-1/12, CIT Scheme VII M, Calcutta 700054, India

(Received 22 July 1986; revised 11 February 1987)

The outer membrane of _Azospirillum brasilense_ was isolated from the total membrane fraction by sucrose density gradient centrifugation and by Sarkosyl extraction; both preparations showed an identical outer membrane protein profile in slab gels after electrophoresis under denaturing conditions. The profile showed a major 42 kDa protein constituting about 60% of the total outer membrane proteins. This major protein and a minor 40 kDa protein were tightly but non-covalently associated with peptidoglycan. In addition, a 23 kDa heat-modifiable protein, resistant to trypsin digestion, was detected in the outer membrane. Growth of _A. brasilense_ under iron deficiency induced four additional high molecular mass proteins (87, 83, 78 and 72 kDa) in the outer membrane. A comparison of the outer membrane protein profiles of the three different _Azospirillum_ species suggests that such profiles might be useful in taxonomic classification.

INTRODUCTION

_ Azospirillum_ species are Gram-negative soil bacteria that fix nitrogen under microaerophilic conditions both in isolated cultures and in their unique kind of association with roots of members of the grass family, including many important cereal crops (Von Bulow & Dobereiner, 1975; Umali-Garcia _et al._, 1980; Van Berkum & Bohlool, 1980). Most of the bacteria belonging to the genus _Azospirillum_ have been classified within the two species _A. brasilense_ and _A. lipoferum_, depending on their nutritional characteristics and DNA homology (Tarrand _et al._, 1978). Recently, a new species, _A. amazonense_ (Magalhaes _et al._, 1983), has been identified within this genus by modifying the selection procedure (Falk _et al._, 1985), an approach which may reveal further new species of _Azospirillum_ (Franche & Elmerich, 1981).

In addition to root colonization activity, chemotaxis of _Azospirillum_ towards different nutrients has also been demonstrated (Barak _et al._, 1983; Heinrich & Hess, 1985; Reinhold _et al._, 1985). It is likely that the outer membrane has an important role in chemotaxis and in 'associative symbiosis', possibly via specific recognition properties inherent in some of the outer membrane proteins. Several workers have suggested the existence of species-specific differences in the cell surface of _Azospirillum_ species based on their preferential association with specific plant roots (Baldani & Dobereiner, 1980; De-Polli _et al._, 1980), but this has not been definitely established (Elmerich, 1984). Although the cell envelope proteins of many Gram-negative bacteria, particularly members of the _Enterobacteriaceae_ (Lugtenberg & Van Alphen, 1983) are well characterized, no information is available on the outer membrane proteins of _Azospirillum_ species. Differences in outer membrane protein profiles reflect changes in growth conditions (Sterkenburg _et al._, 1984; Brown & Williams, 1985). For example, when iron becomes growth-limiting, induced synthesis of a number of proteins has been observed (Williams _et al._, 1984; Hoe _et al._, 1985; Neilands, 1982). Some of these act as receptors for high-affinity iron siderophore uptake systems (Neilands, 1982). Studies with some rhizobacteria (Schroth &

*Abbreviations: LBS, Luria broth-succinate; SMM, succinate minimal medium-NH_4_Cl; LB Sucr, Luria broth-sucrose; EDDA, ethylenediamine-di(o-hydroxyphenylacetic acid).
Hancock, 1982) and the identification of siderophores in soil samples (Powell et al., 1983) provide strong indications that soil microbes face an iron-deficient environment.

We report here the isolation of the outer membrane of *A. brasilense* and the identification of its associated proteins including those induced under iron deficiency. We have also compared outer membrane protein profiles of different members of the genus *Azospirillum* in an attempt to identify species-specific differences in their cell surfaces.

METHODS

Bacteria. The major part of this study was done with *A. brasilense* RG, a strain isolated as a spontaneous streptomycin-resistant colony (Maulik & Ghosh, 1986) from a culture of *A. brasilense* sp. 81 obtained from N. R. Krieg (Virginia Polytechnic Institute, USA). *A. brasilense* sp. 7, *A. lipoferum* 59b and *A. amazonense* Y1 were also obtained from N. R. Krieg. *A. brasilense* K67 was obtained from C. Elmerich (Pasteur Institute, Paris).

Media and growth conditions. *A. brasilense* and *A. lipoferum* were grown in Luria broth (Miller, 1972) supplemented with 0.1% sodium succinate and adjusted to pH 7.0, (LBS), or in the succinate minimal medium of Okon et al. (1976) supplemented with 0.1% NH₄Cl (SMM). *A. amazonense* Y1 was grown in Luria broth supplemented with sucrose (5 g l⁻¹) and adjusted to pH 6.0 (LB Sucr). The bacteria were grown at 32 °C in a shaker-incubator (100 r.p.m.).

Preparation of crude cell envelope. Unless otherwise stated, all operations described below were done at 0–4 °C. Exponential phase cells (OD₅₉₀ = 0.6–1.0) grown in LBS or LB Sucr medium were harvested (6000 g, 5 min), washed with Tris/HCl buffer (10 mM, pH 8.0) (subsequently referred to as 'Tris buffer'), and resuspended in the same buffer containing 15% (w/v) sucrose. The cells were disrupted in an ultrasonic disintegrator and the cell lysate was digested with DNAase and RNAase [20 μg of each (ml lysate)⁻¹] for 20 min. The lysate, after removing intact cells and cell debris by low-speed centrifugation, was diluted with Tris buffer (2 vols) and centrifuged for 30 min at 180000 g for 1 h; the sedimented pellets were resuspended in Tris buffer and centrifuged at 100000 g for 1 h; the sedimented pellets were resuspended in Tris buffer and stored at −20 °C.

(b) By extraction with Sarkosyl NL97. Outer membrane proteins were isolated from the washed crude envelopes by treatment with 0.5% Sarkosyl NL97 (Ciba-Geigy) for 30 min at 28 °C (Filip et al., 1973) followed by centrifugation at 100000 g for 60 min. The pellet containing the outer membrane was washed once with Tris buffer, collected by centrifugation at 100000 g, resuspended in Tris buffer and stored at −20 °C.

Isolation of the peptidoglycan-protein complex. The presence of peptidoglycan-associated proteins was demonstrated by solubilizing the crude envelope in SDS-PAGE sample buffer (Lugtenberg et al., 1975) at 60 °C for 30 min and sedimenting the peptidoglycan along with the associated proteins by centrifugation at 180000 g for 90 min. The sedimented material was resuspended, washed with distilled water and collected by centrifugation at 180000 g for 90 min.

SDS-PAGE. Electrophoresis of membrane proteins was done in SDS-polyacrylamide gels as described by Lugtenberg et al. (1975). Protein bands were stained with Coomassie Blue R-250, and destained with 5% (v/v) methanol-7.5% (v/v) acetic acid solution. Densitometric scans were done with a LKB Laser densitometer (2202 Ultrascan). SDS (Sigma) was recrystallized from 80% (v/v) hot ethanol before use.

Enzyme assays. NADH oxidase and succinate dehydrogenase associated with the membrane preparations were assayed essentially as described by Osborn et al. (1972). One unit of NADH oxidase is defined as the amount of enzyme that catalyses the oxidation of 1 μmol NADH min⁻¹. One unit of succinate dehydrogenase is defined as the amount that brings about a change of 1.0 OD unit min⁻¹ at 550 nm using phenazine methosulphate (ε = 1.93 x 10⁴) in the presence of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide.

RESULTS

Isolation of outer membrane by sucrose density gradient centrifugation

Sucrose density gradient centrifugation separated the crude envelope into three bands which could be collected as three distinct membrane fractions with densities (g ml⁻¹) of 1.15, 1.19 and 1.24. The bands contained 0.56, 0.10 and 0.018 units of NADH oxidase, 2.29, 0.97 and 0.075 units of succinate dehydrogenase, respectively. These results indicate that the cytoplasmic...
membrane was concentrated in the top, lighter fraction. The bottom, heavier fraction banded at a density that corresponded to outer membrane associated with peptidoglycan (Burnell et al., 1980). This was expected as our method of isolation did not involve digestion of the peptidoglycan. The outer membrane fraction in the bottom layer showed very little contamination with cytoplasmic membrane-associated enzymes but the intermediate fraction appeared to contain unseparated cytoplasmic and outer membrane.

Characterization of outer membrane proteins of A. brasilense RG by SDS-PAGE

SDS-PAGE gels of the total membrane, the cytoplasmic membrane and the outer membrane isolated by density gradient centrifugation and the Sarkosyl-extracted outer membrane of *A. brasilense* RG are shown in Fig. 1. There was very little cross-contamination between the outer membrane and the cytoplasmic membrane proteins prepared by density gradient centrifugation as revealed by SDS-PAGE analysis (Fig. 1; lanes B and C, respectively) and by enzyme analysis. The outer membrane prepared by the Sarkosyl extraction procedure gave a protein profile (Fig. 1; lane D) identical to that of the outer membrane isolated by density gradient centrifugation (Fig. 1; lane B). All subsequent experiments were therefore done with outer membrane proteins isolated by the more convenient Sarkosyl extraction procedure.

A major outer membrane protein of molecular mass 42 kDa constituted over 60% of the protein in the outer membrane of *A. brasilense* RG as determined by densitometer tracings of the gel. Other minor proteins were also observed in the gel and they were identified by their molecular mass values as shown in Fig. 1.

Fig. 1. SDS-PAGE (12%, w/v, acrylamide) of the membrane proteins of *A. brasilense* RG. A, Crude envelope; B, outer membrane proteins isolated by sucrose density gradient centrifugation; C, inner membrane proteins isolated by sucrose density gradient centrifugation; D, outer membrane proteins isolated by Sarkosyl extraction of crude envelope; E, peptidoglycan-associated proteins isolated as described in Methods. The pointers indicate molecular mass values: pointers on the left show the positions of standard molecular mass marker proteins; pointers in the middle indicate molecular masses of outer membrane proteins.

Fig. 2. SDS-PAGE (8%, w/v, acrylamide) showing the oligomeric and monomeric forms of the peptidoglycan-associated proteins. Proteins were released from the peptidoglycan by incubating the peptidoglycan–protein complex in 2% (w/v) SDS-PAGE sample buffer at 100°C for 5 min (A) or at 60°C for 30 min in sample buffer containing 0.4 M-NaCl (B).
Peptidoglycan-associated proteins

The peptidoglycan-associated proteins could be released from the peptidoglycan on incubation of the peptidoglycan–protein complex in 2% SDS-PAGE sample buffer at temperatures of 70 °C and above (Fig. 1, lane E; Fig. 2, lane A) or at 60 °C in the same buffer containing 0.4 M-NaCl (Fig. 2, lane B). This suggests that the major 42 kDa protein and a minor 40 kDa protein are tightly but non-covalently linked to the peptidoglycan. The peptidoglycan-associated proteins released from the peptidoglycan in the presence of 0.4 M-NaCl at 60 °C in 2% SDS-PAGE sample buffer remained in an aggregated or oligomeric form and appeared as high molecular mass bands (Fig. 2, lane B). The predominant oligomer observed on SDS-PAGE corresponded to a molecular mass of 70 kDa.

Heat-modifiable proteins

The solubilization experiments in 2% SDS-PAGE sample buffer at increasing temperatures revealed the presence of one outer membrane protein that was heat-modifiable (Fig. 3a). The heat-modifiable protein was solubilized even at 37 °C and had an apparent molecular mass of 23 kDa (hmp) below 80 °C, but above 90 °C the same protein had an apparent molecular mass of 28 kDa (hmp*). These experiments were done with cells grown in SMM which favoured production of the heat-modifiable protein (2–3-fold compared with cells grown in LBS as determined by Laser densitometer scans).
Outer membrane proteins of A. brasilense

Fig. 4. SDS-PAGE (12%, w/v, acrylamide) of the crude envelopes (A, C, E, G and I) and outer membrane proteins (B, D, F, H and J) respectively, of different Azospirillum species: A, B, A. brasilense RG; C, D, A. brasilense sp. 7; E, F, A. brasilense K67; G, H, A. lipoferum 59b; I, J, A. amazonense Y1.

Trypsin-sensitivity of the outer membrane proteins

Sensitivity to proteolytic digestion of the outer membrane proteins, which is an indication of the surface exposure, was tested by treating the isolated outer membrane with trypsin. The trypsin digestion of the outer membrane preparation (Fig. 3b) showed that the 42, 40 and 32 kDa proteins and the heat-modifiable protein (28 kDa) were among the proteins insensitive to trypsin.

Profiles of outer membrane proteins of Azospirillum species

A comparison of the total membrane and Sarkosyl-extracted outer membrane proteins of A. brasilense, A. lipoferum and A. amazonense was made by SDS-PAGE analysis (Fig. 4). A. brasilense sp. 7 had an almost identical profile to that of A. brasilense RG. The outer membrane protein profile of strain K67, a strain classified as A. brasilense (Franche & Elmerich, 1981), was totally different from the others in that relatively larger proportions of the total membrane proteins were not solubilized by Sarkosyl treatment. SDS-PAGE analysis revealed that A. lipoferum 59b contained a single major outer membrane protein (35 kDa) that constituted approximately 70% of the total protein in the outer membrane. A. amazonense Y1 was characterized by the presence of numerous proteins (i.e. Sarkosyl-insoluble proteins) in the outer membrane, the most prominent of which was the 38 kDa protein.

Effect of iron-limitation on the outer membrane protein profile of A. brasilense RG

Growth of cells in iron-limiting conditions resulted in the production of four new proteins in the outer membrane. The molecular masses of these proteins as determined by SDS-PAGE were 87, 83, 78 and 72 kDa (Fig. 5). These iron-regulated proteins were solubilized at 60 °C by 2% SDS-PAGE sample buffer and therefore they were unlikely to be associated with the peptidoglycan. Furthermore, trypsin digestion of the outer membrane isolated from iron-starved cells resulted in the cleavage of the iron-regulated outer membrane proteins to yield lower molecular mass fragments (data not shown). This suggests that the iron-regulated proteins were exposed and that they probably function as receptors for iron compounds.
DISCUSSION

As in many Gram-negative bacteria the outer membrane of \(A. \) brasilense RG contains only a few proteins, and a single 42 kDa protein constitutes over 60\% of the total protein in the outer membrane. This protein, along with another minor 40 kDa protein, is associated with the peptidoglycan, and they probably function as non-specific diffusion channels or porins as has been shown with the peptidoglycan-associated proteins of \(E. \) coli, \(P. \) aeruginosa and \(S. \) typhimurium (Lugtenberg & Van Alphen, 1983). Functional porins are generally formed from the oligomers of these proteins. The peptidoglycan-associated proteins of \(A. \) brasilense clearly have an oligomeric form although the nature of this oligomer has not been ascertained. The oligomer is stable even in 2\% SDS at 60 °C and has a molecular mass of 70 kDa as determined by SDS-PAGE. However, the molecular masses of these complexes are not correctly reflected by SDS-PAGE as most of these proteins have an increased \(\beta \)-structure and the oligomers bind far less SDS than the monomer (Nakae et al., 1979), which leads to their anomalous electrophoretic mobilities.

An unusual feature of the outer membrane proteins of \(A. \) brasilense RG is the trypsin-insensitivity of the heat-modifiable protein, as hitherto a characteristic feature of the heat-modifiable OmpA protein of \(E. \) coli and the highly conserved heat-modifiable OmpA-like proteins of other Gram-negative bacteria has been their sensitivity to cleavage by trypsin (Beher et al., 1980).

Comparison of the SDS-PAGE outer membrane protein profiles of different \(A. \) brasilense species indicates that the profile is characteristic of each species and could be useful as an aid to taxonomy. For example, strain K67 was previously tentatively classified as \(A. \) brasilense (Franche & Elmerich, 1981) but its outer membrane protein profile now suggests that it may belong to a new species completely different from \(A. \) brasilense, \(A. \) lipoferum or \(A. \) amazonense. Although strain-specific chemotaxis has been recently demonstrated in \(A. \) brasilense (Reinhold et al., 1985), and strain-specific variations in the outer membrane of Gram-negative bacteria do occur and have been used as a basis of subtyping of species (Barenkamp et al., 1981), the significantly different profile of K67 from the typical \(A. \) brasilense profile, and the previous difficulty in classifying this strain (Franche & Elmerich, 1981), make it difficult to reconcile with the idea that the strain merely belongs to a different subgroup. Among the new isolates of the genus \(A. \) brasilense, however, subtyping of species along with species identification may
Outer membrane proteins of A. brasilense

1757

become important and outer membrane protein profiles could be an aid to a rapid taxonomic
grouping. Furthermore, comparison of the protein profiles of different groups and subgroups
could reveal interesting information regarding their association with roots of different plants.

Outer membrane proteins of the phytopathogen *Erwinia chrysanthemi* induced during iron-
limitation have been implicated in the plant pathogenic activity of this bacterium (Expert &
Toussaint, 1985). Moreover, phytopathogenic microbial species are, in general, siderophore
producers (Neilands & Leong, 1986). The four new outer membrane proteins induced under
iron-limited growth of *A. brasilense* RG probably act as receptors for iron-containing
compounds (accompanying paper: Bachhawat & Ghosh, 1987) but whether these proteins play
any significant role in 'associative symbiosis' remains to be investigated.

We thank Amit Mukherjee, Pushpita Maulik and Anuradha Lohia for helpful suggestions and Asraf Ali Molla
for assistance in microbiological work. A. K. B. was supported by a fellowship from the Council of Scientific and
Industrial Research, India. This work was partly supported from Grant no. 21(38)/82-STP-II(BT) of the
Department of Science and Technology, Govt of India, given to the Genetic Engineering Unit of Bose Institute.

REFERENCES

BARDANI, V. L. D. & DOBEREINER, J. (1980). Host plant specificity in the infection of cereals with *Azospirillum*
sp. *Soil Biology and Biochemistry* 12, 434–444.

Bacteriology* 53, 399–403.

BARENKAMP, M. M. (1976). A rapid and sensitive

FALK, E. C., DOBEREINER, J., JOHNSON, J. L. & KRIEG, N. R. (1985). Deoxyribonucleic acid homology of

Azospirillum amazonease Magalhaes *et al.* 1984 and
emendation of the description of the genus *Azospirillum.

FILIP, C., FLETCHER, G., WULFF, J. L. & EARHART, C. F. (1973). Solubilization of the cytoplasmic mem-
brane of *E. coli* by theionic detergent sodium lauryl

properties and plasmid content of several strains of
Azospirillum brasilense and *A. lipoferum*. *Anales de
Microbiologie* 132A, 3–18.

HANCOCK, R. E. W. & CAREY, A. M. (1979). Outer membrane of *Pseudomonas aeruginosa*: heat and 2-
mercaptoethanol-modifiable proteins. *Journal of
Bacteriology* 140, 902–910.

HEINRICHI, D. & HESS, D. (1985). Chemotactic action
of *Azospirillum lipoferum* by wheat roots and
characterisation of some attractants. *Canadian Journal of
Bacteriology* 31, 26–31.

Outer membrane proteins induced upon iron depriva-
tion of *Paracoccus denitrificans*. *Biochimica et
biophysica acta* 813, 338–342.

architecture and functioning of the outer membrane of
Escherichia coli and other Gram-negative bacteria.
Biochimica et biophysica acta 737, 51–115.

**LUGTENBERG, B., MEIJERS, J., PETERS, R., VAN DER
resolution of the major outer membrane protein of *E.

**MAHALHAES, F. M., BALDANI, J. I., SOTO, S. M.,
acid tolerant *Azospirillum* species. *Annals Academy
Brasil Genc.* 55, 417–430.

MAULIK, P. & GHOSH, S. (1986). NADPH/NADH-
dependent cold labile glutamate dehydrogenase in
Azospirillum brasilense. Purification and properties.

MILLER, J. H. (1972). *Experiments in Molecular
Spring Harbor Laboratory.

NAKAKE, T., ISHII, J. & TOKUNAGA, M. (1979). Subunit
structure of functional porin oligomers that form

