Pyrimidine Dimer Excision Repair of DNA in *Bacteroides fragilis*
Wild-type and Mitomycin C-sensitive/UV-sensitive Mutants

By VALERIE R. ABRATT, GEORGE L. LINDSAY and DAVID R. WOODS

CSIR Microbial Genetics Research Unit, Department of Microbiology and Department of Biochemistry, University of Cape Town, Rondebosch 7700, South Africa

(Received 31 December 1985; revised 21 April 1986)

An enzyme preparation purified from *Micrococcus luteus* was shown to be specific for UV-induced pyrimidine dimers and was suitable for the detection of DNA excision repair systems. The wild-type *Bacteroides fragilis* Bf-2 strain and a mitomycin C-sensitive mutant (MTC25) had constitutive dimer excision systems which functioned efficiently under anaerobic and aerobic conditions. A UV-sensitive mutant (UVS9) had markedly reduced levels of the constitutive dimer excision systems under anaerobic and aerobic conditions. Since liquid holding recovery under aerobic conditions was inhibited by chloramphenicol whereas the final level of excision repair in *B. fragilis* Bf-2 was not affected, it is concluded that pyrimidine dimer removal is not the process responsible for increased physiological aerobic liquid holding recovery.

INTRODUCTION

The repair of DNA damage in *Bacteroides fragilis* is interesting in that survival after far-UV irradiation (254 nm) is affected by O₂ (Jones et al., 1980; Jones & Woods, 1981; Slade et al., 1981). Furthermore, novel O₂- and H₂O₂-induced phage reactivation systems have been reported for *B. fragilis* (Slade et al., 1983a, b). The physiological responses of *B. fragilis* to UV damage have been investigated (Jones et al., 1980; Jones & Woods, 1981; Slade et al., 1981; Schumann et al., 1982), but the molecular mechanisms for repair of UV-irradiated DNA in this organism are unknown. We recently reported the isolation and physiological characterization of mitomycin C-sensitive mutants in *B. fragilis* (Abratt et al., 1985). One mutant (MTC25) was markedly sensitive to mitomycin C but had the same UV sensitivity as the wild-type; another mutant (UVS9) was sensitive to UV radiation but was only moderately sensitive to mitomycin C. We have investigated the excision repair capabilities of these mutants and the wild-type strain using the dimer-specific *Micrococcus luteus* UV endonuclease enzyme to detect the presence of pyrimidine dimers.

METHODS

Bacteria. The *B. fragilis* wild-type strain (Bf-2), and mitomycin C-sensitive (MTC25) and UV-sensitive (UVS9) mutants of this strain, were utilized; they have been described previously (Abratt et al., 1985).

Media. Difco brain heart infusion broth and agar supplemented with haemin, menadione and cysteine (Holderman & Moore, 1972) were used for bacterial growth at 37 °C. Anaerobic and aerobic one-quarter-strength Ringer’s solutions were used as dilution buffers. All anaerobic manipulations were done under stringent anaerobic conditions in an anaerobic glove cabinet (Forma Scientific) in an atmosphere of 75% N₂, 20% CO₂ and 5% H₂.

UV irradiation. Methods for irradiating cells under aerobic and anaerobic conditions were as described previously (Jones & Woods, 1981).

Purification of UV endonuclease from M. luteus. This was done by a modification of the methods of Grafstrom et al. (1982) and Hays et al. (1985). The crude *M. luteus* extract (fraction A of Grafstrom et al., 1982) was loaded onto an Affi-Gel Blue (Biorad) column, bed volume 50 ml, equilibrated with 0-3 M-NaCl in buffer containing 20 mM-Tris/HCl, pH 8-0, 1 mM-EDTA, 1 mM-2-mercaptoethanol and 10% (v/v) glycerol. The column was washed...
The wild-type B. fragilis strain was able to remove pyrimidine dimers during holding in buffer under both anaerobic and aerobic conditions (Fig. 1A, Table 1). Immediately after irradiation the chromosomal DNA was nicked by the M. luteus dimer specific endonuclease. After 1 h holding in buffer under aerobic and anaerobic conditions, the DNA was repaired and appeared as a band of high M, DNA. Densitometer tracings of the gels clearly reflected the gel pictures (Fig. 2). The DNA profiles for nicked and repaired DNA could be easily distinguished and the amount of repair estimated as a percentage of the undigested control of each sample (Table 1). The mitomycin C-sensitive (MTC25) mutant strain also showed dimer removal within 1 h under aerobic and anaerobic conditions (Figs 1B and 2B, Table 1). In comparison with the wild-type,
Dimer excision in Bacteroides fragilis

Fig. 1. Dimer excision by B. fragilis Bf-2, MTC25 and UVS9 strains under anaerobic conditions. The presence or absence of dimers in the irradiated DNA was assayed using the dimer specific M. luteus UV endonuclease. The enzyme was diluted 1:100 and 2 µl was added to 20 µl B. fragilis DNA. After incubation at 37 °C for 1 h the entire sample plus 5 µl alkaline tracking dye was electrophoresed on a 0.5% alkaline agarose gel. A, wild-type; B, MTC25; C, UVS9; D, wild-type unirradiated control. HM, high \(M_c \) chromosomal DNA; P, plasmid DNA.

Key:

<table>
<thead>
<tr>
<th>Lane...</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV (15 J m(^{-2}))</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>*HT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endonuclease</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

* HT, Post-irradiation holding time (h).

Table 1. Effect of chloramphenicol on the maximum levels of dimer excision in B. fragilis

Chloramphenicol (Cm) (10 µg ml\(^{-1}\)) was added 15 min before irradiation and during holding in buffer under aerobic and anaerobic conditions. The cells were incubated until no further repair took place and the final percentage of high \(M_c \) DNA present was determined by triangulation of the peak occurring within 5 mm from the end of the well (Fig. 2). The amount of high \(M_c \) DNA in the digested sample after the various treatments was expressed as a percentage of its undigested control. The range of results obtained in four experiments is given.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Anaerobic</th>
<th>Aerobic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-) Cm</td>
<td>(+) Cm</td>
</tr>
<tr>
<td>Wild-type</td>
<td>81–100</td>
<td>85–100</td>
</tr>
<tr>
<td>MTC25</td>
<td>52–69</td>
<td>46–73</td>
</tr>
<tr>
<td>UVS9</td>
<td>16–30</td>
<td>18–31</td>
</tr>
</tbody>
</table>

the MTC25 mutant showed slightly lower levels of dimer removal under anaerobic conditions. The UV-sensitive (UVS9) mutant showed very much reduced dimer removal under both aerobic and anaerobic conditions (Figs 1C and 2C, Table 1).

The effect of chloramphenicol on the excision of dimers was determined by the addition of 10 µg chloramphenicol ml\(^{-1}\) 15 min before irradiation and during holding in buffer under anaerobic and aerobic conditions. Schumann et al. (1984) showed that this concentration of
V. R. ABRATT, G. L. LINDSAY AND D. R. WOODS

Fig. 2. Densitometer tracing of alkaline agarose gels shown in Fig. 1. A, wild-type; B, MTC25; C, UVS9. The ethidium bromide stained gels were photographed using Polaroid negative film and scanned with a Beckman DU8 spectrophotometer. ——, 0 h post-irradiation holding time (lane 4, Fig. 1); ——, 2 h post-irradiation holding time (lane 6, Fig. 1). HM, high M, chromosomal DNA; W, gel well.

chloramphenicol inhibits protein synthesis in this strain. In the presence of chloramphenicol the same maximum level of total repair was ultimately obtained as in the absence of chloramphenicol (Table 1) but it took longer. The rate of repair was approximately halved by chloramphenicol. The rate of repair was also affected by the physiological state of the cells. Cells grown under sub-optimal conditions before irradiation showed slower rates of repair. The addition of chloramphenicol to the holding buffer immediately after irradiation did not affect the rate or final level of repair.

Since dimer excision was not abolished by chloramphenicol it is concluded that there is a constitutive dimer excision system in B. fragilis. The decrease in the rate of dimer excision in cells pre-treated with chloramphenicol could be due to either the effect of chloramphenicol on the physiological state of the cells, or to the inhibition of synthesis of another induced dimer excision system which enhanced the rate of repair.

Jones et al. (1981) reported that liquid holding recovery occurred in B. fragilis Bf-2 only under aerobic conditions and that this was completely inhibited by 10 μg chloramphenicol ml⁻¹ added to the holding buffer immediately after irradiation (Jones, 1979). The results reported here show that dimer excision was not inhibited under these experimental conditions. Removal of pyrimidine dimers from irradiated B. fragilis DNA was therefore not the process responsible for increased physiological recovery during aerobic liquid holding. This observation was supported by the fact that dimer excision was found to occur under anaerobic conditions where no physiological liquid holding recovery was observed (Jones et al., 1981). Furthermore, the UV-sensitive mutant of B. fragilis showed very low levels of dimer excision under aerobic conditions (20–40%), while maintaining the same level of physiological liquid holding recovery as the wild-type (Abratt et al., 1985). This result differs from that found in Escherichia coli K 12 recA mutants where dimer excision is essential for liquid holding recovery (Ganesan & Smith, 1969). The mitomycin C-sensitive mutant showed slightly reduced levels of dimer excision compared with the wild-type under anaerobic conditions (50–70%) in spite of having wild-type resistance to UV. This suggests that dimer removal is not the only repair system functional in B. fragilis. The UV-sensitive mutant was not totally deficient in repair. It retained a low level of excision repair and had a residual shoulder (indicating repair) in the UV survival curve at low UV doses (Abratt et al., 1985). The low level of repair in the UVS9 mutant could be interpreted as either evidence for a second repair system or, alternatively, the mutant has a leaky mutation and excision repair is only reduced. However the chloramphenicol experiments indicate that B. fragilis possesses at least two UV repair systems; a constitutive dimer excision mechanism, and a further, as yet unidentified, cellular response.
Dimer excision in Bacteroides fragilis

REFERENCES

