Effect of Alkylating Agents on the Expression of Inducible Genes of Escherichia coli

By J.-ALBERT VERICAT,* RICARDO GUERRERO AND JORDI BARBÉ
Department of Microbiology and Institute for Fundamental Biology, Autonomous University of Barcelona, Bellaterra (Barcelona), Spain

(Received 11 March 1986; revised 23 May 1986)

Increasing doses of alkylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine, diethyl sulphate and ethylmethane sulphonate cause an inhibition of the expression of the recA and sfiA genes of wild-type Escherichia coli. This behaviour was not observed in a lexA56 mutant which has a defective LexA repressor that is unable to bind to the SOS operator. Furthermore, an ada-1 mutant showed the same behaviour as the wild-type strain indicating that the adaptive proteins are not responsible for the inhibition of recA and sfiA at high doses of alkylating agents. These results suggest that the inhibitory effect of these alkylating agents may be found in the interaction between the LexA repressor and the control regions of sfiA and recA. On the other hand, high doses of either UV light or mitomycin C produced only a slight decrease in the induction of recA and sfiA, whereas bleomycin had no effect. The fact that a repressor structurally related to LexA repressor, such as Lac1 protein, showed the same behaviour as the LexA repressor when a Lac+ strain was treated with alkylating agents, suggests that these compounds can modify the binding abilities of repressors to DNA, producing a limited or even abolished release of repressors, and so decreasing the expression of inducible genes.

INTRODUCTION

When normal DNA replication is inhibited by different physical (UV or γ radiation), chemical (alkylnitrosoguanidines, mitomycin C, bleomycin), or physiological (thymine starvation, dnaB mutants growing at 42 °C) treatments, a set of cellular responses are induced that are known collectively as the SOS functions (Witkin, 1974; Walker, 1984). These functions include inhibition of cell division, cessation of respiration, induction and reactivation of prophages, error-prone repair activity and increased synthesis of RecA protein. This pleiotropic response depends on the recA, lexA and ssb genes (Little & Mount, 1982). It has been shown that LexA protein is the repressor of the SOS genes. The basal level of RecA protein is activated to a protease by an inducing signal after DNA damage. This signal is increased by the activity of the RecBC enzyme exonuclease V (Oishi et al., 1979; Barbé et al., 1985). Once activated, RecA protease can cleave LexA repressor and other SOS-related repressors, resulting in the expression of the SOS genes (Roberts et al., 1978; Little et al., 1980; Kenyon & Walker, 1981; Schendel et al., 1982).

Previous studies have shown that the induction of several SOS functions is not an all-or-none process but a discriminated one (Guerrero & Barbé, 1982). This discriminated expression of the SOS system is specially clear in the case of alkylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), diethyl sulphate (DES) and ethylmethane sulphonate (EMS) (Barbé et al., 1983). Thus, UV irradiation or bleomycin treatment induce cessation of respiration, filamentous cell growth and prophage induction. In contrast, the three alkylating

Abbreviations: MNNG, N-methyl-N'-nitro-N-nitrosoguanidine; DES, diethyl sulphate; EMS, ethylmethane sulphonate; IPTG, isopropyl β-D-thiogalactopyranoside.

0001-3317 © 1986 SGM
agents only induce cessation of respiration. All of these previous results suggest that this discriminated behaviour in the induction of SOS functions depends on the type of DNA lesion caused (Barbè et al., 1983). We have also shown that this discriminated response is not related to the degree of non-specific DNA degradation or DNA synthesis arrest (Barbè et al., 1983), the level of protein synthesis (Vericat et al., 1984) or the amplification of RecA protein synthesis (Barbè et al., 1985). The molecular basis of this discriminated induction of the SOS genes by the alkylating agents is not yet completely understood.

For this reason, and to determine the possible role of DNA alkylations on the discriminated induction of the SOS system, we have studied the induction of recA and sfiA when cells are treated with increasing doses of MNNG, DES or EMS, using UV light, bleomycin and mitomycin C as positive controls. We have also analysed the effect of all of these treatments on the induction of the lac operon by isopropyl-β-D-galactopyranoside (IPTG).

METHODS

Bacterial strains and growth conditions. The bacterial strains used in this work are listed in Table 1. All are *Escherichia coli* K12 derivatives. Cultures were grown at 37 °C with shaking in AB liquid minimal medium (Clark & Maaloe, 1967) supplemented with thiamin (10 μg ml⁻¹), glucose (0.2%, w/v) or glycerol (0.2%, v/v), and Casamino acids (0.4%, w/v). In the case of mitomycin C or MNNG treatments the medium was adjusted to pH 5.5, which is optimal for the activity of both compounds (Crooke, 1981; Miller, 1972).

UV irradiation and lysogenization of bacterial strains. The procedures used were described by Barbè et al. (1985).

Chemical treatment. Cultures were grown to 2 × 10⁸ cells ml⁻¹ in supplemented AB medium with shaking at 37 °C. Mutagen was then added and incubation was continued at 37 °C for 100 min. Samples were taken every 20 min.

Determination of β-galactosidase activity. lacZ expression in *E. coli* cells harbouring fusions between SOS genes and lacZ, or the expression of the lac operon induced by IPTG, were determined as described by Barbè et al. (1985). All the results are means of three independent experiments.

Chemicals. Casamino acids were from Oxoid. Vitamins and mineral salts were from Merck. Mitomycin C, diethyl sulphate, ethylmethane sulphonate, and IPTG were from Sigma. Bleomycin was from Almirall (Barcelona, Spain). MNNG, o-nitrophenyl β-D-galactopyranoside and phenyl β-D-galactopyranoside (to control the β-galactosidase constitutive phenotype; Smith & Sadler, 1971) were from Fluka. Ampicillin and streptomycin were a generous gift of Antibioticos, SA (León, Spain).

RESULTS

Expression of recA and sfiA

MNNG, DES and EMS completely inhibited recA expression in *E. coli* when present at concentrations exceeding 10 μg ml⁻¹, 1 μl ml⁻¹ and 10 μl ml⁻¹, respectively (Fig. 1). UV light and mitomycin C caused only slight inhibition (Fig. 2a, b) and bleomycin had no effect (Fig. 2c).
Effects of DNA damage on inducible genes

Fig. 1. Induction of recA expression, measured as β-galactosidase activity, in cultures of the wild-type E. coli strain GC2375 after continuous treatment with MNNG (a), DES (b) or EMS (c). Concentrations of each were as follows: MNNG, 2 μg ml⁻¹ (■), 10 μg ml⁻¹ (○), 15 μg ml⁻¹ (▲), 20 μg ml⁻¹ (△); DES, 0.3 μl ml⁻¹ (■), 1 μl ml⁻¹ (○), 2 μl ml⁻¹ (▲) and 5 μl ml⁻¹ (△); EMS, 3 μl ml⁻¹ (■), 10 μl ml⁻¹ (○), 20 μl ml⁻¹ (▲) and 30 μl ml⁻¹ (△). The data are normalized with respect to the β-galactosidase activity present in this strain before treatment.

Fig. 2. Induction of recA expression, measured as β-galactosidase activity, in cultures of the wild-type E. coli strain GC2375 after irradiation with UV light (a), and after continuous treatment with mitomycin C (b) or bleomycin (c). Doses of each treatment were as follows: UV light, 5 J m⁻² (■), 10 J m⁻² (○), 20 J m⁻² (▲) and 40 J m⁻² (△); mitomycin C, 5 μg ml⁻¹ (■), 10 μg ml⁻¹ (○), 20 μg ml⁻¹ (▲) and 46 μg ml⁻¹ (△); bleomycin, 2.5 μg ml⁻¹ (■), 5 μg ml⁻¹ (○), 10 μg ml⁻¹ (▲) and 20 μg ml⁻¹ (△). The data were treated as in Fig. 1.
Similar results were obtained in the study of the expression of the $sfiA$::lacZ fusion (Figs 3 and 4). Nevertheless, at doses of alkylating agents where no induction of $recA$ was found (Fig. 1), there was a slight expression of $sfiA$ (Fig. 3), confirming previous work (Moreau et al., 1980; Barbé et al., 1985) which showed that SOS genes could be induced without amplification of the RecA protein.

It has also been shown that the inhibitory effect of MNNG on the expression of the SOS functions is not related to a non-specific effect on the synthesis of proteins (Vericat et al., 1984), which suggests that alkylating agents can interfere specifically with the synthesis and activity of SOS-related proteins. For this reason, we tested the induction of $recA$ and $sfiA$ in a $lexA56$
Effects of DNA damage on inducible genes

Fig. 5. Effect of treatment with MNNG (a), DES (b) and EMS (c), either 10 min before (●) or 10 min after (▲) activation of the lac operon, measured as relative units of β-galactosidase activity, in E. coli strain CGSC 5073 induced by IPTG addition. The β-galactosidase activity of a culture induced by IPTG but without mutagenic treatment was used as a control (○). Concentrations of alkylating agents were as follows: MNNG, 20 μg ml⁻¹; DES, 3 μg ml⁻¹; and EMS, 30 μl ml⁻¹. The data were treated as in Fig. 1.

It is known that the adaptive response induced by alkylating agents interferes with the induction of the SOS response (Jeggo et al., 1977). To ascertain whether high concentrations of alkylating agents such as MNNG, DES or EMS could interfere with the expression of the SOS genes through the adaptive response, we did similar experiments with an ada-1 mutant, harbouring either the recA::lacZ or sfiA::lacZ fusions. Results obtained showed that the dose-related pattern of expression of the SOS genes in E. coli cultures treated with alkylating agents is independent of the intracellular level of adaptive proteins (data not shown).

Induction of the lac operon by IPTG

The above results suggested that there was some kind of ada-independent interaction between the action of high doses of alkylating agents and the expression of SOS genes. Furthermore, it has been shown that the LacI protein, the repressor of the lactose operon, has the same three-dimensional conformation as other repressors, such as the LexA repressor, Lambda CI repressor and other binding proteins such as Cro protein (Pabo & Lewis, 1982; Pabo et al., 1982). For these reasons, and to determine if the decreased expression of the SOS response after addition of alkylating agents was a specific event related to the SOS genes or a non-specific feature related to inducible genes in general, we studied the induction of the lac operon by IPTG under conditions where there was no expression of recA and sfiA. Fig. 5 shows the effect of MNNG, DES and EMS on β-galactosidase synthesis in the wild-type E. coli strain CGSC 5073. When cells were treated with IPTG before addition of the alkylating agents there was a significant increase in β-galactosidase synthesis. In contrast, when IPTG was added to the medium after the alkylating agents there was no synthesis of β-galactosidase. However, when the same experiments were done with the constitutive lac strain (CGSC 808), the alkylating agents had no effect on β-galactosidase synthesis (data not shown). On the other hand, cells treated with mitomycin C or UV light only showed a negligible inhibition of β-galactosidase synthesis independent of the time of activation of the lac operon; bleomycin did not affect β-galactosidase synthesis (Fig. 6).
DISCUSSION

Results presented in this work show that high doses of alkylating agents decrease or avoid the induction of recA, sfiA and lacZ (Figs 1, 3 and 5), whereas low doses stimulate slightly the expression of the two SOS genes. These results are in agreement with previous data showing that adaptive doses of MNNG induce a recA::trp fusion (Smith et al., 1983) and that sfiA is induced by MNNG and EMS (Ohta et al., 1984). On the other hand, higher doses of UV light or mitomycin C, which cause structural DNA alteration and few DNA alkylations, produce only a slight decrease in the level of expression of recA, sfiA and lacZ (Figs 2, 4 and 6). Bleomycin, which causes only single stranded DNA gaps (D'Andrea & Haseltine, 1978), does not produce any decrease in the induction of recA, sfiA and lacZ (Figs 2, 4 and 6). These results suggest the existence of some kind of relationship between the extent of alklylation of DNA and the level of induction of some inducible genes. However, the decrease in the expression of recA and sfiA by the alkylating agents cannot be attributed to any non-specific effect on their transcription, because the treatments do not affect the induction of recA and sfiA in the lexA56 mutant, which has a LexA repressor that lacks DNA-binding ability. Furthermore, in the case of the lacZ gene, when the system is completely induced in a constitutive Lac strain (CGSC 808), the alkylating agents did not prevent its expression.

This fact suggests that the inhibitory effect of the alkylating agents has to be related to some kind of interaction between LexA or LacI repressors and their operator-binding regions. Since UV light can fix proteins covalently to DNA, so the DNA polymerase of E. coli may be bound to DNA in vitro to an extent that is directly proportional to UV dose (Markovitz, 1972). Several authors have suggested that adducts between thymine and basic amino acids are very important in this binding (Simić & Dizdaroglu, 1985). Thus, it is possible to propose that high doses of UV light could link, or increase the affinity of, LacI, LexA and other SOS-related repressors to their operator binding targets, resulting respectively in a complete, or partial, decrease in the expression of inducible genes. It seems that this phenomenon is very general and that other proteins are bound to DNA by UV light (Kunkel & Martinson, 1978). Nevertheless, the situation remains more obscure for the alkylating treatments. It has been shown that many
DNA-binding proteins have very similar domains. The Cro protein and the cI and cII phage-repressors (lambda and P22) have more than 30% homology in α-helix regions associated with protein–DNA recognition (Anderson et al., 1982). Homology has also been demonstrated between the lambda repressor and many other proteins such as the repressor of phage 434, LacI and Gal (repressors of lac and gal operons), LexA protein, Cro protein from phage 434, cII protein from lambda and the CAP protein (Matthews et al., 1983; Steitz et al., 1983); the homologies are about 25% (Sauer et al., 1982a). It has also been shown that some repressors such as cI from lambda, c2 from P22, cI from 434 and LexA are cleaved by RecA protease between the same amino acids (Sauer et al., 1982b).

Thus, the fact that MNNG, DES and EMS modify preferentially guanines in DNA (Auerbach, 1976; Helène, 1977; Hoffmann, 1980; Lawley, 1974; Lawley & Orr, 1970) and that alkylnitrosoguanidines originate alkylations with the same efficiency in DNA and proteins (Yoda et al., 1982), giving rise to reactive centres that could produce covalent bonds between DNA and proteins, suggest that alkylating agents, when modifying DNA, could produce adducts between DNA and repressors. It is interesting to note that in the regulatory region of lambda there are eight guanines, three of which participate in the binding of the protein to DNA (Sauer et al., 1979). It has also been shown that substituting different bases for thymine in synthetic oligonucleotides results in either important decreases or increases in the affinity of LacI or CAP proteins for DNA (Lin & Riggs, 1972, 1976). This would avoid the release of the repressor and, as a consequence, the transcription of inducible genes.

Our results support this hypothesis. Increasing doses of alkylating agents inhibited expression of the inducible genes tested (recA, sfiA and lacZ); treatments that produce either some structural modifications or alkylations (UV light or mitomycin C) caused a slight decrease in the expression of these genes. However, non-alkylating compounds such as bleomycin did not reduce the activity of recA, sfiA or lacZ. Finally, and in agreement with the above hypothesis, neither alkylating agents nor UV light nor mitomycin C affected the expression of the genes studied in their respective constitutive mutants.

We thank Drs L. Archer, M. Blanco, R. D’Ari and B. Sedgwick for their generous gifts of several bacterial strains, and J. M. Cuartero for drawing the Figures. This work was partially supported by a grant (BT/85-0028) of the Comisión Asesora de Investigación Científica y Técnica, Spain. We acknowledge the help of the Comissió Interdepartamental de Recerca i Innovació Tecnològica of the Generalitat de Catalunya for a grant for the purchase of equipment.

REFERENCES

DNA interactions within chromatin. Isolation of histones from DNA-histone adducts induced in nuclei by UV light. Nucleic Acids Research 5, 4263–4272.

