Impact of Cloning in *Bacillus subtilis* on Fundamental and Industrial Microbiology

The Eighth Griffith Memorial Lecture

By FRANK E. YOUNG

Department of Microbiology, University of Rochester, Medical Center, Rochester, New York 14642, U.S.A.

(Delivered at the General Meeting of the Society for General Microbiology on 24 March 1980)

The Griffith Memorial Lecture is a time for both reflection on and analysis of our branch of science. It marks the commemoration of a notable discovery by a remarkable, thorough, humble bacteriologist (Griffith, 1928). In the ‘normal pursuit of science’, discoveries are made within the framework of existing paradigms as suggested by Kuhn (1970). Few of us provide the well-documented anomalous observations that eventually precipitate the clash of opposing paradigms. The studies of Griffith, Avery, Watson and Crick stand in stark relief to the landscape of ‘Normal Science’ as portrayed by Kuhn. Their work led to the ultimate demise of the tetranucleotide hypothesis and the birth of the chemical basis of heredity as encoded by the double helix. In an earlier Griffith Lecture, Pollock (1970) added the discovery of DNA to the ‘three really outstanding events in the evolution of human knowledge’ as allegedly described by Freud: the Copernican Theory of the Solar System, the Darwinian Theory of Evolution, and the Recognition of Unconscious Mental Processes. I submit that the advent of recombinant DNA technology will introduce a new paradigm that embodies the philosophy, theology, technology and ethics of the manipulation of life. Few advances have so significantly impacted on our society. Accordingly, I shall use the recent work within the *Bacillus subtilis* model system to describe the new advances and potential lines of research that have emanated from this seminal discovery.

Traditional studies with DNA-mediated transformation

Bacillus subtilis was the first non-pathogenic organism to be transformed by DNA (Spizizen, 1958). As with Griffith’s tangential migration into the field of genetics from his studies on the epidemiology of infectious disease, Spizizen began his work on transformation from the perspective of another branch of science, viral replication. Following his initial studies on the mechanism of competence (Anagnostopoulos & Spizizen, 1961; Young & Spizizen, 1961, 1963), Spizizen focused on the use of the newly discovered genetic system to unravel the biochemical genetics of sporulation (Spizizen, 1965). The research of others led to the development of many fields of study using the primary tools and techniques of transformation and/or transfection (for a review, see Young *et al.*, 1977). All of these investigations on DNA-mediated transformation, however, were limited to the use of random fragments of DNA and genetic exchange among closely related species. Therefore, the basic steps in recombination were studied with a heterogeneous population of molecules. Early in the development of this model system, transformation was accomplished among closely related bacilli (Marmur *et al.*, 1963). These observations provided an opportunity to study the factors that influenced integration of foreign DNA. The need for extensive nucleotide homology was documented in our laboratory and illustrated in the studies described in Table 1. In these experiments homologous transformation was normalized to...
Fig. 1. Fate of heterologous transforming DNA. Double-stranded DNA is represented by two thick horizontal bars. Regions of identical base sequences are solid black. Fine vertical lines indicate proper base pairing between the two strands of DNA. The area enclosed by the parentheses is the site of recognition of a site-specific endonuclease. (From Wilson & Young, 1972a)

Table 1. Interspecific transformation of B. subtilis 168

DNA from B. amyloliquefaciens and B. amyloliquefaciens lysogenic for bacteriophage ϕ105 was used to transform B. subtilis 168 (heterologous transformation). DNA from these transformants was used to transform the same B. subtilis recipient (intergenotic transformation). DNA from B. subtilis 168 and from B. subtilis 168 lysogenic for bacteriophage ϕ105 was used to transform B. subtilis (homologous transformation). All values are normalized to the frequency of homologous transformation (= 1.0). (Data from Wilson & Young, 1972a, b)

<table>
<thead>
<tr>
<th>Marker</th>
<th>Homologous</th>
<th>Heterologous</th>
<th>Intergenotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>His</td>
<td>1.0</td>
<td>0.0002</td>
<td>0.70</td>
</tr>
<tr>
<td>Rif²</td>
<td>1.0</td>
<td>0.12</td>
<td>2.57</td>
</tr>
<tr>
<td>ϕ105</td>
<td>1.0</td>
<td>0.08</td>
<td>0.45</td>
</tr>
</tbody>
</table>

1.0. Note that the initial transformation with heterologous DNA was extremely inefficient. DNA extracted from the transformants that have integrated the foreign gene (intergenotic DNA), however, was usually only slightly less efficient in subsequent transformations than homologous DNA. One exception existed. The gene encoding rifampin resistance transformed B. subtilis at a higher frequency than homologous DNA. These and other studies in our laboratory led to the hypothesis that the efficiency of integration of the foreign gene was primarily related to the nucleotide homology at the site of integration, as shown in Fig. 1. Transformation was not substantially influenced by restriction or modification. Procedures to modify the cell to prevent degradation of foreign genes did not improve the frequency of transformation. Once a gene was introduced, it could be transferred only among closely related bacilli. Therefore, the capacity of the cell to become competent (i.e. bind DNA irreversibly) was the rate-limiting step and transformation would occur if there was sufficient nucleotide homology.
Table 2. Transformation of Thy- B. subtilis by thyP3 from pCD1 and bacteriophage φ3T

DNA at various concentrations was incubated with a competent culture of B. subtilis 168 carrying thyA and thyB. Thy+ transformants were selected.

<table>
<thead>
<tr>
<th>DNA concn (ng ml⁻¹)</th>
<th>pCD1</th>
<th>Mature φ3T</th>
<th>Prophage φ3T</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>5.0 × 10⁴</td>
<td>1.0 × 10⁶</td>
<td>ND</td>
</tr>
<tr>
<td>50</td>
<td>1.4 × 10⁵</td>
<td>2.9 × 10⁶</td>
<td>10.1 × 10⁵</td>
</tr>
<tr>
<td>5</td>
<td>7.8 × 10⁵</td>
<td>3.6 × 10⁶</td>
<td>8.8 × 10⁵</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5 × 10⁶</td>
<td>3.9 × 10⁶</td>
<td>3.0 × 10¹</td>
</tr>
<tr>
<td>0.05</td>
<td>2.7 × 10⁶</td>
<td>3.2 × 10⁵</td>
<td>< 10¹</td>
</tr>
<tr>
<td>0.005</td>
<td>5.5 × 10⁵</td>
<td>3.5 × 10⁴</td>
<td>< 10¹</td>
</tr>
</tbody>
</table>

ND, Not determined.

Impact of DNA technology on the understanding of transformation

The discovery of recombinant DNA technology led to a flurry of experimentation in the Escherichia coli model system that has revolutionized molecular genetics. Though initially less dramatic, new experiments were performed in the eutransformation system, B. subtilis, that enabled investigators to explore the mechanism of recombination. First, using recombinant plasmids, Erhlich (Erhlich et al., 1977) and Young, Duncan & Wilson (Young et al., 1977b) simultaneously and independently established that the gene encoding thymidylate synthetase from bacteriophage φ3T could transform E. coli when inserted into plasmids indigenous to E. coli. Furthermore, this gene within the chimeric plasmid transformed B. subtilis at frequencies approaching the transformation frequency of the gene isolated from B. subtilis (Table 2). It was possible to remove the gene encoding thymidylate synthetase from plasmid pCD1 and form the plasmid pCD2 (Fig. 2). This plasmid has a 0.51 megadalton (Md) segment that is homologous to the host chromosome and contains a BglII site (Duncan et al., 1978). If the gene in the chimeric plasmid showed extensive homology with the chromosome, it was excised from the plasmid and integrated into the chromosome. Under these circumstances, covalently closed circular (CCC) DNA could transform bacteria as well as linear DNA. Thus, it was possible to study the integration of only one gene under carefully defined conditions.

To explore the nature of the integration event, we constructed a series of chimeric plasmids using the gene from bacteriophage β22 encoding thymidylate synthetase (Fig. 3). All plasmids were constructed from pCD2 which contains the E. coli plasmid pMB9 (Duncan et al., 1978). In some of these we used the combination of two site-specific endonucleases that were isolated in our laboratory, BamHI (Wilson & Young, 1975) and BglII (Wilson & Young, 1977). In the presence of both site-specific endonucleases and ligase, it is possible to select 100% recombinants and exclude the parental molecules, as shown in Fig. 4 (Young & Wilson, 1978). These plasmids were then used to study the integration and expression of foreign DNA by varying the extent of homology to the chromosome of B. subtilis. Table 3 summarizes the capacity of the various plasmids to transform and integrate within the chromosome of B. subtilis. The frequency of transformation was markedly influenced by the extent of homology. If there was no homology, there was no transformation. Furthermore, transformation occurred only with CCC DNA. Through the use of radioactive probes made by nick translation of pMB9 and pCD4, it was possible to establish that the entire plasmid was integrated into the chromosome of B. subtilis by a Campbell-like model resulting in the integration of an extensive stretch of foreign DNA. Furthermore, the reversion frequency of the trait encoded by the foreign gene was proportional to the size of the region of homology. These experiments established the existence of at least two types of transformation events: integration of linear DNA as a func-
Fig. 2. Physical maps of plasmids pCD1 and pCD2. The pMB9 segment of pCD1 and pCD2 is the 3.4 Md fragment between the two EcoRI sites. Plasmid pCD2 was formed by excising the fragment between the BglII sites in pCD1 leaving a small region of homology to the B. subtilis chromosome (0.51 Md) that contains a BglII site. Other genes are cloned with the BglII site resulting in flanking regions of homology (Fig. 3). (Data from Young & Wilson, 1978)

Fig. 3. Physical maps of plasmids pCD4, pCD5 and pCD6. The gene encoding thymidylate synthetase from bacteriophage \(\phi 22\) was inserted either directly into the BglII site of pCD2 or by Bam/BglI fusion into pCD2. The location of cleavage by the site-specific endonucleases and the fragment sizes (Md) are included. The fine lines of the circles denote the DNA segment(s) from bacteriophage \(\phi 3T\) that are homologous to the chromosome of B. subtilis, the moderately thick lines denote DNA from pMB9, and the thickest lines denote DNA from bacteriophage \(\phi 22\).

Integration of nucleotide homology and integration of either the entire plasmid CCC DNA or merely the homologous segment depending on the extent of nucleotide homology. These models are summarized in Fig. 5. Recent studies (Mottes et al., 1979) indicate that the plasmid DNA involved in transformation is a concatamer. Possibly, an intracellular recombinational event involving more than one copy may be required. Alternatively, extensive degradation during uptake may reduce the efficiency of monomers (Contente & Dubnau, 1979; Mottes et al., 1979). The exact mechanism of this integration remains to be elucidated.
The Eighth Griffith Memorial Lecture

BamHI
\[\text{GATCC} \]
\[\text{CTAGA} \]

BglII
\[\text{GATCT} \]
\[\text{CTAGA} \]

Fig. 4. Bam/Bgl fusion. Incubation of DNA with site-specific endonucleases BamHI and BglII in the presence of ligase produces a unique site and results in survival of only the recombinant molecules.

Table 3. Transformation of B. subtilis 168 by chimeric plasmid DNA

A competent culture of B. subtilis 168 carrying thyA and thyB was incubated with various preparations of chimeric plasmid DNA carrying a gene encoding thymidylate synthetase. The gene encoding thymidylate synthetase was derived from bacteriophage ϕ3T in pCD1 and bacteriophage λ22 in pCD4, pCD5 and pCD6. Note pCD5 does not have a homology with the chromosome of B. subtilis and lacks the 0.51 Md homologous segment present in pCD4 and pCD6. Relative transformation frequencies are normalized to the transformation of the recipient with B. subtilis chromosomal DNA (= 1.0). (Data from Duncan et al., 1978)

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Homologous segment</th>
<th>Relative transformation frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Region</td>
<td>Origin</td>
</tr>
<tr>
<td>pCD1</td>
<td>thyA</td>
<td>ϕ3T</td>
</tr>
<tr>
<td>pCD5</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>pCD4</td>
<td>0.51 Md</td>
<td>ϕ3T</td>
</tr>
<tr>
<td>pCD6</td>
<td>0.51 Md</td>
<td>ϕ3T</td>
</tr>
</tbody>
</table>

To obtain a foreign gene analogous to the B. subtilis gene encoding thymidylate synthetase, we chose a completely heterologous system. We concluded that the best control for transformation studies and physical analysis was a gene isolated from E. coli that was cloned in an E. coli plasmid. Because there was only 4% DNA:DNA hybridization between E. coli K12 and B. subtilis (Lovett & Young, 1969), we anticipated that the E. coli gene encoding thymidylate synthetase could not transform B. subtilis. Accordingly, chromosomal DNA was isolated from E. coli, introduced into pMB9 and used to transform Thy- auxotrophs of E. coli to Thy+. The chimeric plasmid pER2 contains only E. coli DNA with no detectable homology to the B. subtilis chromosome by the Southern technique (Rubin et al., 1980). To our surprise, the frequency of transformation was approximately one-third the frequency of transformation with B. subtilis DNA. Transformation was markedly reduced if the DNA was made linear with site-specific endonucleases (Table 4). Three experiments were performed to determine whether the DNA existed as a plasmid or was integrated into the chromosome of the cell. First, the DNA from the transformants was analysed on sucrose gradients. As shown in Fig. 6, the Thy+ transforming activity is located within the peak of chromosomal DNA and not in the portion of the gradient where plasmid DNA sediments. Second, a radioactive probe made from the donor plasmid hybridized to endonuclease digest of the chromosome of the transformants at two distinct bands in the chromo-
Fig. 5. Plasmid-mediated transformation. A: Transformation of a recipient by a plasmid; the plasmid is maintained if there is no homology or if the recipient carries recE. B: Transformation of a recipient by a plasmid with extensive homology to the chromosome, such as pCD1. C: Transformation of a recipient by a plasmid with limited homology; the homologous segment is denoted by 'SCAFFOLDED' DNA.

Table 4. Thy\(^+\) transforming activity of chimeric plasmids in B. subtilis 168

A competent culture of B. subtilis 168 carrying thyA and thyB was incubated with various preparations of plasmid and chromosomal DNA (1 \(\mu\)g ml\(^{-1}\)). Thy\(^+\) transformants were selected. One sample of DNA was treated with BamHI site-specific endonuclease prior to transformation. (Data from Rubin et al., 1980)

<table>
<thead>
<tr>
<th>Donor DNA</th>
<th>Transformants per 10(^8) cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No enzyme treatment</td>
</tr>
<tr>
<td>B. subtilis 168 chromosomal</td>
<td>3·0 × 10(^4)</td>
</tr>
<tr>
<td>E. coli K12 chromosomal</td>
<td>< 10</td>
</tr>
<tr>
<td>pER2 (pBR322+ E. coli ThyA)</td>
<td>6·0 × 10(^4)</td>
</tr>
<tr>
<td>pER4 (pBR322− E. coli ThyA)</td>
<td>< 10</td>
</tr>
<tr>
<td>pER5 (pMB9+ E. coli ThyA)</td>
<td>4·1 × 10(^4)</td>
</tr>
</tbody>
</table>

ND, Not determined.
The Eighth Griffith Memorial Lecture

Fig. 6. Transformation of \(B. subtilis\) with DNA from pER2-transformed cells. (a) 40 \(\mu\)g DNA isolated from \(B. subtilis\) RUB890 (Trp\(^+\) thyA thyB) that had been transformed to Thy\(^+\) with pER2 DNA was layered on 9 ml CsCl/ethidium bromide and adjusted to a refractive index of 1.398. The mixture was centrifuged on a Beckman model L3-50 ultracentrifuge with a Ti50 rotor at 40,000 rev. min\(^{-1}\) at 15 °C for 60 h. Six drop fractions were collected from the top of the gradient and 50 \(\mu\)l of each sample was assayed for its ability to transform \(B. subtilis\) RUB8930 to either Thy or Trp independence. (b) The experiment was similar to that in (a) except that the source of DNA was 0.92 \(\mu\)g plasmid pER2 plus RUB890 (Trp\(^+\) thyA thyB) DNA. ○, Trp\(^+\) transformants; □, Thy\(^+\) transformants. (Data from Rubin et al., 1980)

Fig. 7. Hybridization of pER2 with DNA from Thy\(^+\) transformants of \(B. subtilis\): (A) EcoRI digest of pER2; (B) DNA from \(B. subtilis\) RUB830 transformed with pER2 DNA; (C) EcoRI digest of pER2-transformed \(B. subtilis\) DNA; (D) Autoradiograph of radiolabelled pER2 hybridized to pER2-transformed \(B. subtilis\) DNA; (E) Autoradiograph of radiolabelled pER2 hybridized to EcoRI digest of pER2-transformed \(B. subtilis\) DNA. (From Rubin et al., 1980)

some (Fig. 7). In other experiments, it was possible to demonstrate that the pMB9 segment as well as the thyA gene were incorporated into the chromosome. Therefore, a plasmid without substantial homology to the chromosome of \(B. subtilis\) transformed the recipient cells at a high frequency. These and other studies in our laboratory indicate that additional factors besides extensive nucleotide homology must influence recombination. The integration of the plasmid vector as well as the foreign gene is not restricted to the \(B. subtilis\) chromosome. Yeast can be transformed by a chimeric plasmid that consists of ColE1 and the leu gene from yeast. In one class of recombinants, the chimeric plasmid was integrated into the yeast chromosome (Hinnen et al., 1978).

The basis for this unusually high frequency of recombination of \(E. coli\) genetic material into the \(B. subtilis\) chromosome is not understood. It must be recalled that the insertion into the chromosome occurs at a single, or at most, two sites (Rubin et al., 1980). Additionally, all recombinants showed the same pattern of integration into the recipient chromosome as evidenced by Southern hybridization. Finally, there was no evidence of homology between the chromosome of \(B. subtilis\) and this vector, at least as measured by the relatively crude Southern hybridization methodology. Studies on the extent of hybridization of DNAs from various bacilli with \(B. subtilis\) included, as a control, a sample of \(E. coli\) K12 DNA. As mentioned earlier, a hybridization of 4% was noted between \(E. coli\) K12 and \(B. subtilis\) in
the DNA:DNA filter binding technique (Lovett & Young, 1969). Although this degree of binding was originally considered to be a noise level, its significance may need to be reassessed. Assuming that the double-strand form was required for transformation, it is most plausible that a site-specific recombination had occurred. Furthermore, it is postulated that the number of sites for recombination are limited in the case of pCD4, pCD6, and pER2. Because *E. coli* plasmids used to construct the vectors are similar, the site of recombination must be in the foreign gene or the φ3T segment that is homologous to chromosomal DNA. The reason for the high frequency of transformation of the heterologous gene encoding thymidylate synthetase in pER2 is unclear. In addition to the double site-specific type of recombination (Low & Porter, 1978), there may be a protein associated with the *E. coli* gene encoding thymidylate synthetase that markedly stimulates recombination. Studies are in progress to elucidate the mechanism of this unexpected event. Because *B. subtilis* can incorporate a variety of plasmids, as initially discovered by Ehrlich (1977) and documented by Dubnau and co-workers (Gryczan & Dubnau, 1978), it is likely that selective pressure could result in substantial recombination of chimeric plasmids with the chromosome of *B. subtilis*. Thus, foreign genes could be scavenged by *B. subtilis*.

In addition to a new emphasis on plasmid biology in *B. subtilis*, the advent of cloning technology has stimulated the investigation of bacteriophages as potential cloning vectors. Three major candidates have emerged: bacteriophages φ3T, SPO2 and φ105 (Young & Wilson, 1978). Bacteriophage φ3T was originally suggested as a potential candidate for cloning experiments because of the presence of a gene encoding thymidylate synthetase (thyP3) within its genome (Young, 1976). The *thyP3* gene is similar to the chromosomal *thyA* gene as evidenced by genetic and biochemical studies (M. T. Williams & F. E. Young, unpublished observations); therefore, it can be readily used to select lysogens containing foreign DNA. The availability of well-characterized deletion mutants and the establishment

Fig. 8. Bacteriophage SPO2 endonuclease fragment map. The BglI, BglII, EcoRI, SalI, SmaI and XbaI sites were ordered using the heat-dissociable junction as an origin. Fragment sizes are in Md. (Data from Graham *et al.*, 1979)
Table 5. Comparison of the genomes of bacteriophages SPO2 and SPO2·Clh2

Preparations of DNA from bacteriophages SPO2 and SPO2·Clh2 were digested with the site-specific endonucleases _Bgll_ and _EcoRI_, electrophoresed and the sizes of the fragments were determined.

<table>
<thead>
<tr>
<th>SPO2 + Bgll</th>
<th>Clh2 + Bgll</th>
<th>SPO2 + EcoRI</th>
<th>Clh2 + EcoRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragment</td>
<td>Md</td>
<td>Fragment</td>
<td>Md</td>
</tr>
<tr>
<td>A</td>
<td>(8.31)</td>
<td>A</td>
<td>(7.80)</td>
</tr>
<tr>
<td>B</td>
<td>4.11</td>
<td>B</td>
<td>4.99</td>
</tr>
<tr>
<td>C</td>
<td>3.12</td>
<td>C</td>
<td>3.12</td>
</tr>
<tr>
<td>D</td>
<td>2.29</td>
<td>D</td>
<td>2.16</td>
</tr>
<tr>
<td>E</td>
<td>2.11</td>
<td>E</td>
<td>2.07</td>
</tr>
<tr>
<td>F</td>
<td>1.62</td>
<td>F</td>
<td>1.66</td>
</tr>
<tr>
<td>G</td>
<td>0.58</td>
<td>G</td>
<td>0.54</td>
</tr>
<tr>
<td>H</td>
<td>0.46</td>
<td>H</td>
<td>—</td>
</tr>
<tr>
<td>I</td>
<td>0.45</td>
<td>I</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>23.05</td>
<td></td>
<td>22.34</td>
</tr>
</tbody>
</table>

of a physical map of this virus (Cregg & Ito, 1979) should greatly aid the analysis of cloned segments of foreign genes.

The genome of bacteriophage SPO2 was also characterized by physical techniques (Yoneda _et al._, 1979b). Although deletion mutants were obtained, all of them were confined to the region of the _Bgll_ site (Fig. 8). In other studies it was possible to extend the host range of this virus by plating 10^10 phage propagated on _B. subtilis_ 168 on _B. amyloliquefaciens_. One of these phages appeared to be a natural chimeric between bacteriophage SPO2 and an as yet unidentified resident bacteriophage from _B. amyloliquefaciens_. The differences in the site-specific endonuclease pattern of the parent SPO2 and the recombinant SPO2·Clh2 are shown in Table 5. Despite these changes _sus_ mutants of SPO2 can be rescued by DNA from SPO2·Clh2 in superinfection marker rescue experiments. These are only a few examples of the fundamental studies that have been stimulated by the attempt of investigators to develop cloning vectors.

Impact of cloning on industrial microbiology

The work which followed Griffith's discovery (1928) was limited by the heterogeneity of the DNA preparations. While this hindered fundamental molecular genetic studies, it was a more significant impediment to strain improvement for industrial purposes. The advent of cloning in _B. subtilis_ has enabled us to isolate pure genes and to devise a variety of non-selective methods to identify the desired clone. Because of the major commercial importance of bacillus products, these organisms have been used for the production of a variety of exoenzymes (Priest, 1977) and could be tailored for excretion of eukaryotic products. Furthermore, these organisms do not produce disease in the uncompromised host (Young _et al._, 1977b) and are consumed in large quantities in the Orient (Y. Yoneda, personal communication). Therefore, _B. subtilis_ should provide an ideal organism for production of a variety of prokaryotic and eukaryotic proteins. Currently, three major strategies are under investigation (Table 6).

First, plasmids from _Staphylococcus aureus_ introduced into _B. subtilis_ have been used to clone foreign genes (Keggins _et al._, 1978; Gryczan & Dubnau, 1978). If the _recE_ mutation is present within the recipient cell, homologous genes can also be cloned. In the absence of such a mutation the homologous gene is integrated into the chromosome of the host. The
Table 6. Major cloning strategies

<table>
<thead>
<tr>
<th>Method</th>
<th>Major advantages</th>
<th>Major limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus plasmids containing heterologous or homologous DNA</td>
<td>Multiple copies</td>
<td>Competent cells required</td>
</tr>
<tr>
<td></td>
<td>Selective markers</td>
<td>RecE mutation necessary</td>
</tr>
<tr>
<td>E. coli plasmids with homologous segment and heterologous DNA</td>
<td>Integration with host chromosome</td>
<td>Competent cells required</td>
</tr>
<tr>
<td></td>
<td>Scaffolding potential</td>
<td>Single gene copy</td>
</tr>
<tr>
<td>Bacteriophage vectors</td>
<td>Competent cells not required</td>
<td>Host range limitations</td>
</tr>
<tr>
<td></td>
<td>Multiple genes introduced</td>
<td>Induction of lysogens leading to lysis</td>
</tr>
</tbody>
</table>

Development of a chimeric plasmid by Ehrlich (1978) that replicates in both *B. subtilis* and *E. coli* has greatly increased the potential of this cloning system.

Second, it is possible to integrate foreign genes into the chromosome of *B. subtilis* through the development of chimeric plasmids with limited regions of homology as described in the previous section. In these experiments it is essential that the ratio of homologous to heterologous DNA be low to preclude excision of the homologous region. The addition of a new foreign segment of DNA should provide an opportunity for the introduction of additional segments of DNA through recombination in the new region of homology, as shown in Fig. 9. For example, the first gene introduced would be the gene for thymidylate synthetase from *E. coli* within the vector pBR322. Subsequently, another gene with a selective trait or a non-selective trait cloned in the same vector could be used to transform the first recipient. Thus, any gene previously cloned in pBR322 in *E. coli* could be readily integrated into the chromosome of *B. subtilis*. Such procedures could permit the industrial microbiologist to use a safer strain for larger scale industrial processes involving eukaryotic gene products. Because *B. subtilis* lacks endotoxin (Young et al., 1977b) that is found in the cell wall of Gram-negative microbes, it is a particularly attractive cloning system for human consumption.

Third, it is possible to clone both homologous and heterologous genes in bacteriophage ϕ3T or the closely related bacteriophage ρ11. The procedures for cloning heterologous non-selective genes are shown in Table 7. The use of congression to select clones that may have
The Eighth Griffith Memorial Lecture

Table 7. Cloning of B. amylo liquefaciens α-amylase in B. subtilis

1. With BglII, limit digest φ3T DNA and B. amylo liquefaciens strain H DNA
2. Heat inactivate BglII, mix the DNAs, ligate with T4 DNA ligase
3. Transform a MO7A Thr⁻ (Amy⁻ Aro⁻ Thr⁻) φ3T lysogen with MO7A (Thr⁺ Amy⁻) DNA and DNA from step 2
4. Select Thr⁺ using Spizizen's minimal + aro + starch
5. Use I₂-halo to detect the Amy⁺ transformants among the Thr⁺ transformants
6. Check the Amy⁺ transformants: (a) level of amylase production
 (b) type of amylase

... incorporation of the foreign non-selected gene is particularly relevant to industrial microbiology. The analysis of as few as 200 clones should reveal the identity of at least five colonies that also contain the non-selected trait. We have successfully used this methodology to introduce the gene encoding α-amylase from B. amylo liquefaciens into B. subtilis 168 (Yoneda et al., 1979a). The α-amylase from B. subtilis can be readily distinguished from the α-amylase of B. amylo liquefaciens on gel electrophoresis, as shown in Fig. 10. Analysis of the enzyme activity of various strains of B. subtilis carrying different combinations of genes encoding α-amylase indicates that yields of amylase approaching the original donor fermentation strain can be developed merely by the addition of a single gene. By the introduction of appropriate mutations into the recipient strain yields can be improved (Table 8). It is anticipated that the introduction of multiple gene copies encoding different α-amylases coupled with genes regulating excretion of these exoenzymes should further increase fermentation yields. These general procedures should enable cells to be infected by the appropriate viruses carrying recombinant DNA for a variety of fermentation processes. Thus, one mother strain can be eventually used for multiple fermentations.

Recently we have developed a certified HV1 strain (RUB331) of B. subtilis (S. L. Mottice, G. A. Wilson & F. E. Young, unpublished observations). This asporogenic mutant will
Various strains of *B. subtilis* were lysogenized with bacteriophage ϕ3T carrying the gene encoding α-amylase from *B. amyloliquefaciens* ϕ3T(Amy$^+$). The activity of α-amylase was measured in each lysogenic and control strain.

Table 8. Production of α-amylase by various strains of bacilli carrying cloned genes

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant genotype*</th>
<th>Additional traits*</th>
<th>α-Amylase (units ml$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. subtilis 168</td>
<td>amyE $^+$ amyR1</td>
<td>None</td>
<td>9.6</td>
</tr>
<tr>
<td>B. subtilis 168</td>
<td>amyE $^+$ amyR2</td>
<td>None</td>
<td>46.0</td>
</tr>
<tr>
<td>B. subtilis 168</td>
<td>amyEO7 amyR2</td>
<td>None</td>
<td>0.71</td>
</tr>
<tr>
<td>B. subtilis 168</td>
<td>amyEO7 amyR2</td>
<td>ϕ3T(Amy$^+$)</td>
<td>82.1</td>
</tr>
<tr>
<td>B. subtilis 168</td>
<td>amyEO7 amyR2</td>
<td>papM</td>
<td>9.01</td>
</tr>
<tr>
<td>B. subtilis 168</td>
<td>amyEO7 amyR2</td>
<td>ϕ3T(Amy$^+$) papM</td>
<td>352.0</td>
</tr>
<tr>
<td>B. subtilis 168</td>
<td>amyE $^+$ *amyR3$^+$</td>
<td>None</td>
<td>82.1</td>
</tr>
<tr>
<td>B. subtilis 168</td>
<td>amyE $^+$ *amyR3$^+$</td>
<td>papM</td>
<td>352.0</td>
</tr>
<tr>
<td>B. subtilis 168</td>
<td>amyE $^+$ *amyR3$^+$</td>
<td>amyS papS ϕ3T(Amy$^+$)</td>
<td>939.2</td>
</tr>
<tr>
<td>B. amyloliquefaciens</td>
<td>Amy$^+$</td>
<td>None</td>
<td>625.0</td>
</tr>
</tbody>
</table>

* $amyE$ is the structural gene for α-amylase; *amyR* is the specific regulator of α-amylase; *amyS* is the gene regulating the production of α-amylase; *papM* and *papS* are the genes regulating the production of α-amylase and protease.

![Fig. 11](image1.png)

Fig. 11. Viability of *B. subtilis* strains RUB331 and RUB830. Cells were grown in M broth [0.1 mM-$Fe(NO_3)_2$] with and without the addition of 0.5% (w/v) glucose. The viability was determined by plating samples at various times. For each culture, viabilities were normalized to the values at 6 h (= 100%). The 6 h values were: for strain RUB331 (○), 5.1 \times 107; for RUB331 in glucose (■), 2.6 \times 107; for strain RUB830 (□), 1.3 \times 108; for RUB830 in glucose (●), 3.0 \times 108.

![Fig. 12](image2.png)

Fig. 12. Fraction of colony-forming units (c.f.u.) of *B. subtilis* strains RUB830 (---) and RUB331 (----) surviving in soil culture. Strains RUB830 and RUB331 were grown in soil and population sizes were monitored by the methods of Graham & Istock (1978): the starting inoculum sizes were 4.56 \times 106 c.f.u. g$^{-1}$ for RUB830 and 4.28 \times 105 c.f.u. g$^{-1}$ for RUB331. Each point is the mean population size of at least three replicate cultures divided by the starting inoculum size. The fraction of the RUB331 starting inoculum recovered as spores (i.e. resistant to heating at 80°C for 15 to 20 min) was 1 \times 10$^{-3}$ on day 2, 8 \times 10$^{-4}$ on day 4, 2 \times 10$^{-4}$ on day 6, 5 \times 10$^{-4}$ on day 10, and 1 \times 10$^{-3}$ on day 15. These values are not statistically distinguishable from one another. Further testing of colonies arising from heat-shocked samples indicated that these spores most likely arose from leakiness rather than from reversion of the mutation.

undergo transformation at a frequency of 1 to 2% with both plasmid and chromosomal DNA. Furthermore, it does not withstand desiccation or survive appreciably in broth (Fig. 11). The decreased survival in broth in the presence of glucose is probably related to the activation of autolysins (Brown & Young, 1970). Finally, studies in soil have revealed that this organism is unlikely to survive if it escapes from the laboratory. In these experi-
ments we have examined the ability of the organism to survive in flower pots, as shown in Fig. 12. Therefore we have developed a suitable HV1 system that will permit cloning of eukaryotic genes in *B. subtilis*. Our initial study demonstrating the cloning of the yeast gene encoding cytochrome *c* will be described later in this meeting.

The *B. subtilis* model system is now at the threshold of major utilization in industrial microbiology. Whereas the basic well-characterized *E. coli* model system could be readily adapted to the development of recombinant molecule technology, the rudimentary knowledge of molecular genetics in *B. subtilis* hindered its utilization. Therefore, vehicles and vectors had to be developed to permit the orchestration of novel genes within the harmonic development of cellular functions. Three unique aspects of the *B. subtilis* system should make it particularly useful in cloning. First, the organism is non-pathogenic and proteins produced in *B. subtilis* can be readily purified without fear of contamination by endotoxin. Second, the organism excretes large amounts of extracellular products. Studies are in progress to perfect the extracellular excretion of novel proteins. The combination of appropriate genes that influence excretion of products should yield high-producing mother strains. Third, a single mother strain could be used for many different fermentations. The development of viral cloning systems allows the use of mutations in the host cell that stimulate high productivity of extracellular proteins such as protease and amylase but are accompanied by a concomitant reduction in transformability and autolysis (Yoneda et al., 1973; Yoneda, 1980). Therefore, viral systems will continue to be developed to augment the scaffolding approach to genetic engineering.

The advent of recombinant DNA technology has ushered in a plethora of regulations of basic and applied genetics. In large measure, these regulations have resulted from the fears of the scientific and lay public as we begin to grapple with the advantages and risks of a new technology. Cartoons in the American press have captured some of the fantasy about cloning human beings. Two representative cartoons lampooning this concern are shown in Figs 13 and 14. It is important to remember that society's deepest anxieties can often be captured through the pen of the cartoonist.

The government of the United States has agonized, as has that of Great Britain, over the balance of regulation of research and freedom of inquiry. As a member of the US Recombinant DNA Advisory Committee, I am convinced of the wisdom of public participation in decision-making, but am appalled at the insufficiency of our current knowledge. I submit that this emerging paradigm will embody government, law, medicine, science,
theology and society in a fashion unparalleled in other scientific revolutions. As we end
the twentieth century, mankind will possess the tools for gene therapy and grasp the
potential for manipulation of his own genome. Accordingly, it is imperative that we do
not rely on science alone, but synthesize our technology with ethics and theology. As
we enter the twenty-first century, we must come to grips with the questions of the meaning
of life, the purpose of life and the dignity of life. The production of human and mammalian
products in bacteria has been accomplished in the laboratory, and scale-up industrial
applications are underway. The synthesis of products normally found in one animal by
other animal cells is routine, as exemplified by the synthesis of ovalbumin by mouse cells
(Lai et al., 1980). Gene therapy will soon be a reality. In the preface of the first book on the
manipulation of the genome of mankind in 1965, entitled The Control of Human Heredity
and Evolution, Tracy Sonneborn commented:

‘The human problems raised by these new possibilities are not fundamentally
different from the problems Huxley put forcibly before the public. They are
problems of morals, ethics, religion, and politics. They are problems of how
knowledge, and the power that knowledge confers, will be used. They could be
used for good or for ill, for the enslavement or the liberation of man. How they will be
used obviously will not be decided by scientists alone. Nor should this be decided alone by professional politicians or by theologians or by philosophers or by moralists. It should be decided by an enlightened and broadly based public
opinion.’

Fifteen years have elapsed since this far-sighted comment. There is little time remaining
before these grave ethical issues impact on our society. I hope this summary of the develop-
ment of the B. subtilis model system will stimulate us to analyse these questions.

It is with great pleasure that I acknowledge the contributions of Gary A. Wilson, Scott
Graham, Edward Rubin, Craig Duncan, Marshall Williams and Yuko Yoneda. Their
efforts made this presentation possible and their friendship has heightened the quality of
science in our laboratory. The more recent research discussed in this paper was supported by a
grant from Miles Laboratories.

REFERENCES

BROWN, W. C. & YOUNG, F. E. (1970). Dynamic interactions between cell wall polymers, extra-
cellular proteases and autolytic enzymes. Biochemical and Biophysical Research Communica-
tions 38, 564-568.

kine properties and the effect of DNA conformation. Molecular and General Genetics 167,
251-258.

CREGG, J. M. & ITO, J. (1979). A physical map of the genome of temperate phage φ3T. Gene 6, 199-
219.

during transformation of Bacillus subtilis. Proceedings of the National Academy of Sciences of
the United States of America 75, 3664-3668.

subtilis. Proceedings of the National Academy of Sciences of the United States of America 74, 1680-
1682.
The Eighth Griffith Memorial Lecture

National Academy of Sciences of the United States of America 75, 1929-1933.

