SHORT COMMUNICATION

Properties of a Transmissible Plasmid Conferring Citrate-utilizing Ability in Escherichia coli of Human Origin

By NAOTAKA ISHIGURO* AND GIHEI SATO

Department of Veterinary Public Health, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080, Japan

(Received 10 September 1979)

Transfer of citrate utilization (Cit+) was achieved with a plasmid (pCIT354) which is Fi+, has F-like pili and fails to inhibit phage propagation. Transduction of Cit+ was achieved with P1 phage. Results of incompatibility tests with R plasmids indicated that pCIT354 is a self-repressed F-like plasmid.

INTRODUCTION

In 27 citrate-positive strains of Escherichia coli, isolated from domestic pigeons, pigs, cattle and horses, the citrate-utilizing (Cit) ability was controlled by plasmids showing thermosensitive transfer with or without co-transfer of resistance markers including chloramphenicol (Ishiguro et al., 1978; Sato et al., 1978). Recently, Smith et al. (1978) reported that 15 thermosensitive H1 plasmids derived from 12 strains of Salmonella typhi and three enterobacterial strains mediated citrate utilization in E. coli K12. These H1 plasmids from S. typhi also conferred resistance to chloramphenicol and showed thermosensitive transfer.

We have detected 21 citrate-positive E. coli strains not carrying conjugative R plasmids from six human stool samples (Ishiguro & Sato, 1979). This paper describes some properties of the citrate-utilizing character derived from one of these human strains of E. coli.

METHODS

Bacterial strains. Escherichia coli Hu354 was isolated from a stool sample from a volunteer on non-selective media in 1977 in Obihiro, Japan. This strain was identified as typical E. coli by 34 biochemical reactions, with the exception of citrate utilization; it was sensitive to antibiotics and none of characters determined by other conjugative plasmids was demonstrated. The initial recipient of the Cit character of this strain was E. coli ML1410, a nalidixic acid-resistant K12 strain requiring methionine. Subsequent recipients of the Cit character were E. coli K12 strains ML1410 Rif (F-, met, nal, rif), 1100 (F-, nal, r-), W1895 (Hfr, met, rif) and W4573 (F-, str, ara, mal, xyl, mtl, gal, lac-85).

Plasmids and phages. The standard R plasmids of different incompatibility groups (F'-lac-tet, R386, R100, R124, RA1, R40a, R391, R387, R144, RP4, Rsa-a, R27, R446-b, R14, RN3, Rts1, R6K, R471a and R478) were used for incompatibility tests. In this study, the male-specific phages used were P1, T6, T3, T1, T0, D1 and P1 were also used.

Media. Penassay broth (Difco) was used for conjugative experiments. The selective media used for citrate utilization were Simmons citrate agar (Eiken) plates supplemented with methionine (50 μg ml⁻¹) and either nalidixic acid (50 μg ml⁻¹) or rifampin (50 μg ml⁻¹). BTB/lactose agar and deoxycholate/hydrogen sulphide/lactose agar (DHL; Eiken) were used as the selective media for tetracycline (Tc, 25 μg ml⁻¹) and chloramphenicol (Cm, 25 μg ml⁻¹), respectively (Ishiguro et al., 1978). LB broth (LB) (Lennox, 1955). LB agar and soft agar were used for growth and titration of phages. In this study, CaCl₂ was added to LB and LB agar at a final concentration of 2.5 mM.

Transfer experiment on citrate-utilizing ability. The methods were as described by Sato et al. (1978) and used...
Simmons citrate agar plates incubated for 4 d at 37 °C. To determine transconjugant recipients and their Cit character, 20 colonies of transconjugants on each selective medium were purified on DHL agar plates and examined for citrate-utilizing ability on the same selective medium.

The effect of passaging Cit+ strain in broth at different temperatures. The effects of passaging the Cit+ strain in broth at 37 and 43 °C were investigated as described by Sato et al. (1978).

Sensitivity to sex phages and phage inhibition tests. The Cit character was introduced into E. coli W1895 Hfr, and its ability to repress production of F pilus was studied by the spot test with phages f1 and f2. The Cit+ transconjugants of E. coli 1100 were also tested for the production of F-like pilus by assaying their ability to support the multiplication of phages f1 and f2 according to the method described by Grindley & Anderson (1971). Phage inhibition experiments were as described by Taylor & Grant (1976). The Cit character was tested for its ability to reduce both the number of plaques and the plaque size of λ, φ80, T1, T3, W31 and P1 phages, using E. coli 1100 as indicator strain.

Transduction experiments. Transduction (Lennox, 1955) was carried out following the propagation of phage P1 on ML1410 Rif harbouring the Cit character (Mise, 1976). Escherichia coli W4573 was used as the recipient strain.

RESULTS AND DISCUSSION

The citrate-utilizing character was transferred from E. coli Hu354 to E. coli ML1410 at a frequency of about 2 x 10^-4 only at 37 °C, and the resulting Cit+ clones were also able to transfer the character at a similar frequency. Transconjugants were found on Simmons citrate agar plates used as selective media within 2 d of incubation at 37 °C. No Cit- bacteria were found after 10 daily passages of E. coli Hu354 and transconjugant ML1410 in broth at 37 °C. However, after passage at 43 °C, 0.3% of ML1410 (Cit+) bacteria lost the Cit character, indicating that the element conferring the Cit character is fairly stable in the E. coli strain, in contrast to the unstable Cit character associated with H plasmids in the cells (Sato et al., 1978). Citrate-utilizing ability has always been found in association with the thermosensitive H plasmids (Sato et al., 1978; Smith et al., 1978). There has been no report on the isolation of conjugative plasmids conferring citrate utilization alone from naturally occurring E. coli strains.

A culture of strain W1895 Hfr (Cit+) was not lysed by phage f1 or f2, indicating that the F character of the Cit plasmid was F+, as has been described for the plasmids determining hydrogen sulphide production (Örskov & Örskov, 1973; Magalhães & Véras, 1977) and metabolic characters such as lactose or sucrose fermentation (Le Minor et al., 1976). Moreover, phage f1 multiplied about 100-fold in E. coli 1100 strains carrying the Cit character. These results suggest that the strains carrying the Cit plasmid produce F-like pili. No differences in the efficiency of plating of the phages employed between Cit+ and Cit- bacteria was demonstrated. The Cit determinant did not confer the property of phage inhibition on its host bacteria.

Phage P1 propagated on E. coli ML1410 Rif (Cit+) could transduce the Cit+ genes to E. coli W4573 at a frequency of 3 x 10^-6 per plaque-forming unit, and the resulting transductants could transfer the Cit character to ML1410 (Cit-) at similar frequency when incubated in mixed culture. Henceforth, the element conferring the citrate-utilizing ability was designated as pCIT354.

Incompatibility of pCIT354 with representative F-like R plasmids is shown in Table 1. pCIT354 was transferred to a recipient carrying each of the R plasmids without reduction of its transfer frequencies, but when the strain carrying pCIT354 was used as a recipient, the transfer frequencies of some F-like R plasmids were reduced by about 10- to 10000-fold. In particular, a strong exclusion between pCIT354 and R100 was demonstrated. However, many purified transconjugant clones contained both characters, whether selection was made for the Cit character or for drug resistance (Table 1). Both sets of characters were stably inherited during subsequent growth in non-selective media. To examine the separate
Table 1. Incompatibility of pCIT354 and standard R plasmids F'-lac-tet, R386, R100 and R124

<table>
<thead>
<tr>
<th>Incoming plasmid* (group)</th>
<th>Resident plasmid† (group)</th>
<th>Selection‡</th>
<th>Transfer frequency§</th>
<th>No. of colonies tested</th>
<th>Cit+ R+ only</th>
<th>Cit+ only</th>
<th>R+ only</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCIT354</td>
<td>—</td>
<td>Sim(met + Rif)</td>
<td>3 x 10^-4</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>pCIT354</td>
<td>R386 (FI)</td>
<td>Sim(met + Rif)</td>
<td>6 x 10^-3</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pCIT354</td>
<td>R100 (FI)</td>
<td>Sim(met + Rif)</td>
<td>2 x 10^-5</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pCIT354</td>
<td>R124 (FIV)</td>
<td>Sim(met + Rif)</td>
<td>8 x 10^-6</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F'-lac-tet (FI)</td>
<td>—</td>
<td>Tc + Rif</td>
<td>6 x 10^-1</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>pCIT354</td>
<td>Tc + Rif</td>
<td>3 x 10^-1</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R386 (FI)</td>
<td>—</td>
<td>Tc + Rif</td>
<td>2 x 10^-2</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>pCIT354</td>
<td>Tc + Rif</td>
<td>4 x 10^-4</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R100 (FII)</td>
<td>—</td>
<td>Cm + Rif</td>
<td>3 x 10^-2</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>pCIT354</td>
<td>Cm + Rif</td>
<td>3 x 10^-6</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R124 (FIV)</td>
<td>—</td>
<td>Tc + Rif</td>
<td>6 x 10^-3</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>pCIT354</td>
<td>Tc + Rif</td>
<td>6 x 10^-4</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Host was E. coli ML1410.
† Host was E. coli ML1410Rif.
‡ Sim(met + Rif), Simmons citrate agar containing methionine (50 µg ml^-1) and rifampin (50 µg ml^-1); Cm, chloramphenicol; Tc, tetracycline; Rif, rifampin.
§ Determined from 2 h mating at 37 °C, measured as transconjugants per donor.

existence of the two plasmids (pCIT354 and an R plasmid), a transconjugant was used as a donor, separate selection plates being used to test transfer of each plasmid. Each plasmid was transferred separately to E. coli W4573 at a similar frequency. Furthermore, the incompatibility tests with pCIT354 and the other 15 standard R plasmids showed that both the Cit character of pCIT354 and the drug resistance of the R plasmids always co-existed stably. It could therefore be concluded that the pCIT354 was a self-repressed F-like plasmid not belonging to the incompatibility groups employed in this study, because it was compatible with the standard R plasmids tested. Smith et al. (1978) reported that 12 H1 plasmids from S. typhi strains mediated citrate utilization in E. coli K12 and the Cit character might be principally confined to H1 plasmids. However, since the transfer of the Cit character of pCIT354 was not thermosensitive and was compatible with R27 (H1 plasmid), this Cit plasmid is distinct from the H1 plasmid.

There is potential for spread of citrate utilization plasmids in the Enterobacteriaceae. It is not yet clear from experiments in progress whether the Cit character in all of the citrate-positive variants of E. coli isolated from various sources is located on a conjugative plasmid such as pCIT354. One citrate-positive E. coli strain isolated from a horse (Ishiguro et al., 1978) could not transfer its Cit character to E. coli K12, although the character was lost following exposure to acridine orange (unpublished results).

We are grateful to Dr K. Mise (Department of Microbiology Institute of Public Health, Tokyo) for bacteriophage P1 and many helpful suggestions. We also thank Dr N. Terakado (National Institute of Animal Health, Ibaraki) for bacterial strains and for his kind advice throughout this work. This work was supported in part by grant no. 348071 from the Scientific Research Fund of the Ministry of Education, Science and Culture of Japan.
REFERENCES

Index of Authors

ALLEMAND, P., see DELAVIER-KLUTCHKO, C. Assimilation of ammonia during sporogenesis of Saccharomyces cerevisiae: effect of ammonia and glutamine 143

ANDERSEN, E. V. M., FROHLING, L. O. & LAANE, M. M. Isolation of a relatively pure outer membrane fraction of Moraxella nonliquefaciens and a comparison of its characteristics with the cytoplasmic membrane-containing material 149

ARONSON, A. L., see STELMA, G. N., JR. A Bacillus cereus mutant defective in spore coat deposition 173

BARASH, I., see BREiman, A. Methylamine and ammonia transport in Stemphyllum botryosum 201

BAYLIS, C. E., see WATTS, W. M. The effect of sporulation medium on spores of Closstridium bifermens 271

BERNASSAT, A., GOLDBERG, I. & MATELES, R. I. Distribution of methanol carbon between assimilation and oxidation pathways in methanol-grown Pseudomonas C 213

BENNETT, R. A. Evidence for two virulence determinants in the fireblight pathogen Erwinia amylovora 341

BENNETT, R. A. & BILLING, E. Origin of the polysaccharide component of ooze from plants infected with Erwinia amylovora 341

BERINGER, J. E. The development of Rhizobium genetics. (The Fourth Fleming Lecture) 1

BERINGER, J. E., see BREWIN, N. J. Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum 261

BERTOLI, E., see PARTIS, M. D. Effects of catabolite repression and inhibitors of protein synthesis on the mitochondrial carbodiimide binding site in Saccharomyces cerevisiae 233

BERTOLONI, G., see MELONI, G. A. Colony morphology, ultrastructure and morphogenesis in Mycoplasma hominis, Acholeplasma laidlawii and Ureaplasma urealyticum 435

BILLING, E., see BENNETT, R. A. Origin of the polysaccharide component of ooze from plants infected with Erwinia amylovora 341

BOE, B. & GJERDE, J. Fatty acid patterns in the classification of some representatives of the families Enterobacteriaceae and Vibrioaceae 41

BOUT, D., see CARLIER, Y. Physicochemical characteristics of Listeria specific antigen 2 549

BREIMAN, A. & BARASH, I. Methylamine and ammonia transport in Stemphyllum botryosum 201

BREWIN, N. J., BERINGER, J. E., BUCHANAN-WOLLASTON, A. V., JOHNSTON, A. W. B. & HIRSCH, P. R. Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum 261

BROWN, G. T. H. & JONES, P. W. Crossed immuno-electrophoresis and crossed-line immunoelectrophoresis of Salmonella dublin antigens 315

BUCHANAN-WOLLASTON, A. V., see BREWIN, N. J. Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum 261

BUNCH, A. W. & KNOWLES, C. J. Cyanide production and degradation during growth of the snow mould fungus 9

BURROWS, M. R., see LEMCKE, R. M. Sterol requirement for the growth of Treponema hyodysenteriae 539

BUSOLO, F., see MELONI, G. A. Colony morphology, ultrastructure and morphogenesis in Mycoplasma hominis, Acholeplasma laidlawii and Ureaplasma urealyticum 435

CAMARDELLA, L., see SCALI, A. Multiple forms of polygalacturonase in two strains of Rhizoctonia solani 207

CARLIER, A., see CARLIER, Y. Physicochemical characteristics of Listeria specific antigen 2 549

CARLIER, Y., BOUT, D., CAPRON, A., DELVALLEZ, M., MARTIN, G., STRECKER, G. & DURiez, T. Physicochemical characteristics of Listeria specific antigen 2 549

CARTER, I. S., see NAZLY, N. Adenine nucleotide pools during starvation of Benekea natriegens 295

CARTLEDGE, T. G., see WALES, D. S. Effects of glucose repression and anaerobiosis on the activities and subcellular distribution of tricarboxylic acid cycle and associated enzymes in Saccharomyces cerevisiae 93

CERNIGLIA, C. E., GIBSON, D. T. & VAN BAALLEN, C. Oxidation of naphthalene by cyanobacteria and microalgae 495

CERNIGLIA, C. E., VAN BAALLEN, C. & GIBSON, D. T. Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM 485

CERVONE, F., see SCALI, A. Multiple forms of polygalacturonase in two strains of Rhizoctonia solani 207

CHATNER, K. F. & WILDE, L. C. Streptomycyes albus G mutants defective in the SaeGI restriction modification system 323

CLARKE, P. H., see RAHMAN, M. Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa 357

CLARKE, P. H., see RAHMAN, M. The catabolism of arginine by Pseudomonas aeruginosa 371

CLOSE, T. J. & SHANMUGAM, K. T. Genetic analysis of a pleiotropic mutant of Klebsiella pneumoniae affected in nitrogen metabolism 501

COLEMAN, R. N. & MILLIGAN, L. P. N-Carbamoyl-β-D(+)-glucopyranosylamine metabolism by rumen microbes 445

CONVENTI, L., see MELONI, G. A. Colony morphology, ultrastructure and morphogenesis in
Index of Authors

Mycoplasma hominis, *Acholeplasma laidlawii* and *Ureaplasma urealyticum* 435

DAS, H. K., DELAVIER-KLUTCHKO, C., DURIEU-TRAUTMANN, O., ALLEMAND, P., DURIEZ, T., FANTES, P.

11

POOLE, R. K. Effects of trialkyllead compounds on growth, respiration and ion transport in *Escherichia coli* K12 243

DELAVIER-KLUTCHKO, C., DURIEU-TRAUTMANN, O., ALLEMAND, P. & TAVLITZKI, J. Assimilation of ammonia during sporogenesis of *Saccharomyces cerevisiae*; effect of ammonia and glutamine 143

DELVALLEZ, D., see CARLIER, Y. Physicochemical characteristics of *Listeria* specific antigen 2 549

DOW, C. S., see TAYLOR, S. C. Ribulose-1,5-bisphosphate carboxylase from *Rhodomicrobium vannielii* 81

DUNN, G. Cell polarity in *Bacillus subtilis*: statistical analysis of factors influencing the positions of spores in sister sporangia 33

DURIEU-TRAUTMANN, O., see DELAVIER-KLUTCHKO, C. Assimilation of ammonia during sporogenesis of *Saccharomyces cerevisiae*; effect of ammonia and glutamine 143

DURIEZ, T., see CARLIER, Y. Physicochemical characteristics of *Listeria* specific antigen 2 549

FANTES, P. A., see THURIAUX, P. Genetical analysis of a sterile mutant by protoplast fusion in the fission yeast *Schizosaccharomyces pombe* 525

FEITELSON, J. S. & LEDERBERG, J. Crude lysates of *Staphylococcus aureus* can transform *Bacillus subtilis* 545

FITZ-JAMES, P. C., see STELMA, G. N., JR. A *Bacillus cereus* mutant defective in spore coat deposition 173

FROHOLM, L. O., see ANDERSEN, E. V. M. Isolation of a relatively pure outer membrane fraction of *Moraxella nonliquefaciens* and a comparison of its characteristics with the cytoplasmic membrane-containing material 149

GAY, J. L., see MANNERS, J. M. Autoradiography of haustoria of *Erysiphe pisi* 529

GIBSON, D. T., see CERNIGLIA, C. E. Metabolism of naphthalene by the cyanobacterium *Oscillatoria* sp., strain JCM 485

GIBSON, D. T., see CERNIGLIA, C. E. Oxidation of naphthalene by cyanobacteria and microalgae 495

GIERDE, J., see BØE, B. Fatty acid patterns in the classification of some representatives of the families *Enterobacteriaceae* and *Vibrionaceae* 41

GOLDBERG, I., see BEN-BASSAT, A. Distribution of methanol carbon between assimilation and oxidation pathways in methanol-grown *Pseudomonas* C 213

GOLDBERG, I., see ROKEM, J. S. Growth of mixed cultures of bacteria on methanol 225

GRANT, W. D., see TINDALL, B. J. An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake 257

GRIFFITHS, D. E., see PARTIS, M. D. Effects of catalolite repression and inhibitors of protein synthesis on the mitochondrial carbodiimide binding site in *Saccharomyces cerevisiae* 233

VAN GYLSWYK, N. O. *Fusobacterium polysaccharolyticum* sp.nov., a Gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch 157

HAAS, D., see MERCENIER, A. Catabolism of L-arginine by *Pseudomonas aeruginosa* 381

HADFIELD, S. G., see GIBSON, J. F. Effects of trialkyllead compounds on growth, respiration and ion transport in *Escherichia coli* K12 99

HAMADA, S. & TORII, M. Interaction of glucosyltransferase from *Streptococcus mutans* with various glucans 51

HELLERQVIST, C.-G., see LINDBERG, A. A. Rough mutants of *Salmonella typhimurium*: immunological and structural analysis of lipopoly saccharides from rfaH mutants 25

HINCHLIFFE, E. & VIVIAN, A. Naturally occurring plasmids in *Acinetobacter calcoaceticus*: a P class R factor of restricted host range 75

HIRSCH, P. R., see BREWIN, N. J. Transfer of symbiotic genes with bacteriocinogenic plasmids in *Rhizobium leguminosarum* 261

HOPMAN, C. T. P., see POOLMAN, J. T. Immunchemical characterization of *Neisseria meningitidis* serotype antigens by immunodiffusion and SDS-polyacrylamide gel electrophoresis immunoperoxidase techniques and the distribution of serotypes among cases and carriers 465

HUGHES, M. N., see GIBSON, J. F. Effects of trialkyllead compounds on growth, respiration and ion transport in *Escherichia coli* K12 99

HUNT, P., see WATERS, H. The in vivo three-dimensional form of a plant mycoplasma-like organism by the analysis of serial ultrathin sections 111

ICHIKAWA, Y., see UDÔU, T. Effect of sodium chloride on the activity and production of staphyloccocal exonuclease 69

ISHIGURO, N. & SATÔ, G. Properties of a transmissible plasmid conferring citrate-utilizing ability in *Escherichia coli* of human origin 553

JOHNSON, A. W. B., see BREWIN, N. J. Transfer of symbiotic genes with bacteriocinogenic plasmids in *Rhizobium leguminosarum* 261

JONES, D. T., WEBSTER, J. R. & WOODS, D. R. The formation of simple fruiting body-like structures associated with sporulation under aerobic conditions in *Clostridium acetobutylicum* 195
WAITES, W. M., BAYLISS, C. E. & KING, N. R. The effect of sporulation medium on spores of Clostridium bifermentans 271
WALES, D. S., CARTLEDGE, T. G. & LLOYD, D. Effects of glucose repression and anaerobiosis on the activities and subcellular distribution of tricarboxylic acid cycle and associated enzymes in Saccharomyces carlsbergensis 93
WATERS, H. & HUNT, P. The in vivo three-dimensional form of a plant mycoplasma-like organism by the analysis of serial ultrathin sections 111
WEBSTER, J. R., see JONES, D. T. The formation of simple fruiting body-like structures associated with sporulation under aerobic conditions in Clostridium acetobutylicum 195
WELKER, D. L. & WILLIAMS, K. L. Mitotic arrest and chromosome doubling using thiabendazole, cambendazole, nocodazole and ben late in the slime mould Dictyostelium discoideum 397
WILDE, L. C., see CHATER, K. F. Streptomyces albus G mutants defective in the SalGI restriction-modification system 323
WILLIAMS, A. G. & WIMPENNY, J. W. T. Extracellular polysaccharide biosynthesis by Pseudomonas NCIB 11264. Studies on precursor-forming enzymes and factors affecting exopolysaccharide production by washed suspensions 133
WILLIAMS, K. L. Examination of the chromosomes of Polysphondylium pallidum following metaphase arrest by benzimidazole derivatives and colchicine 409
WILLIAMS, K. L., see WELKER, D. L. Mitotic arrest and chromosome doubling using thiabendazole, cambendazole, nocodazole and ben late in the slime mould Dictyostelium discoideum 397
WIMPENNY, J. W. T., see WILLIAMS, A. G. Extracellular polysaccharide biosynthesis by Pseudomonas NCIB 11264. Studies on precursor-forming enzymes and factors affecting exopolysaccharide production by washed suspensions 133
WOODS, D. R., see JONES, D. T. The formation of simple fruiting body-like structures associated with sporulation under aerobic conditions in Clostridium acetobutylicum 195
ZANEN, H. C., see POOLMAN, J. T. Immunochemical characterization of Neisseria meningitidis serotype antigens by immunodiffusion and SDS-polyacrylamide gel electrophoresis immunoperoxidase techniques and the distribution of serotypes among cases and carriers 465
Index of Subjects

N2-Acetylnornithine 5-aminotransferase in catabolism of arginine by *Pseudomonas aeruginosa* (Rahman, Laverack & Clarke) 371

Acholeplasma laidlawii, colony morphogenesis (Meloni, Bertoloni, Busolo & Conventi) 435

Acholeplasma laidlawii, interaction with antibody, ultrastructural study of (Vinther) 451

Acinetobacter calcoaceticus, P class R factor in (Hinchliffe & Vivian) 75

Adenine nucleotides during starvation of *Beneckea natriegens* (Nazy, Carter & Knowles) 295

Adhesion of bacteria at the air/water interface (Kjelleberg & Stenström) 417

Aerotolerance of *Clostridium acetobutylicum* (Jones, Webster & Woods) 195

Algae, naphthalene oxidation by (Cerniglia, Gibson & Van Baalen) 495

Alkalophile, *Halobacterium* sp. from Kenyan soda lake (Tindall, Mills & Grant) 257

Alkanes, intracellular concentrations of citric and isocitric acids in *Saccharomyces lipolytica* grown on (Marchal, Metche & Vandecasteele) 535

Ammonia, effect on sporogenesis of *Saccharomyces cerevisiae* (Delavier-Klutchko, Durieu-Trautmann, Allemand & Tavlitzki) 143

Ammonia transport in *Aerotolerance of Clostridium acetobutylicum* (Jones, Webster & Woods) 195

Amoebae of *Naegleria gruberi*, locomotion on an adhesive lectin substrate (Preston & O'Dell) 515

Anaerobiosis, effect on tricarboxylic acid cycle enzymes in *Saccharomyces carlsbergensis* (Wales, Cartledge & Lloyd) 93

Antibiotic sensitivities of *Salmonella typhimurium* rfaH mutants (Stocker, Males & Takano) 17

Antibody binding to *Acholeplasma laidlawii*, ultrastructural study of (Vinther) 451

Antigens of *Listeria monocytogenes*, genus specific, purification and physicochemical characterization (Carliger, Butt, Capron, Delvallez, Martin, Strecker & Duriez) 549

Antigens of *Mycoplasma hominis* membranes (Lin) 187

Antigens of *Neisseria meningitidis*, immunochemistry of serotypes (Poolman, Hopman & Zanen) 465

Antigens of *Salmonella dublin*, immunoelectrophoresis of (Brown & Jones) 315

Arginine biosynthesis in *Aspergillus nidulans*, cross-pathway regulation of ornithine carbamoyltransferase in (Piotrowska) 335

Arginine catabolic pathways in *Pseudomonas aeruginosa* (Mercenier, Simon, Haas & Stalon) 381

Arginine carboxylase in *Pseudomonas aeruginosa*, enzyme analysis of mutants unable to use arginine or ornithine (Rahman, Laverack & Clarke) 371

Aspergillus nidulans, cross-pathway regulation of ornithine carbamoyltransferase synthesis (Piotrowska) 335

Aspergillus nidulans, nickel-requiring urease-deficent mutant (Mackay & Pateman) 249

Aspergillus nidulans, regulation of proline transport in (Arst, MacDonald & Jones) 285

Auxotrophs of *Mycobacterium smegmatis*, screening for (Vajda) 253

Bacillus cereus, mutants defective in spore coat deposition (Stelma, Aronson & Fitz-James) 173

Bacillus subtilis, isolation of DNA from spores (Sargent) 511

Bacillus subtilis, statistical analysis of factors influencing cell polarity during sporulation (Dunn) 33

Bacillus subtilis, transformation by crude lysates of *Staphylococcus aureus* (Feitelson & Lederberg) 545

Bacteriocinogenic plasmids in *Rhizobium leguminosarum*, cotransfer of symbiotic genes (Brewin, Berenger, Buchanan-Wollaston, Johnston & Hirsch) 261

Beneckea natriegens, adenine nucleotide pools during starvation (Nazy, Carter & Knowles) 295

Benzimidazole derivatives, induction of metaphase arrest in *Dictyostelium discoideum* by (Welker & Williams) 397

Benzimidazole derivatives, induction of metaphase arrest in *Polysphondylium pallidum* by (Williams) 409

Butyrate-producing rumen bacterium which ferments cellulose and starch (van Gylswyk) 157

N-Carbamoyl-\(\beta\)-(\(+\))-glucopyranosyleamine breakdown by rumen microbes (Coleman & Milligan) 445

Carbodiimide binding to *Saccharomyces cerevisiae* mitochondria, effect of catabolite repression on (Partis, Bertoli & Griffiths) 233

Catabolite repression, effect on the mitochondrial carbodiimide binding site in *Saccharomyces cerevisiae* (Partis, Bertoli & Griffiths) 233

Cell polarity, analysis in sporulating cultures of *Bacillus subtilis* (Dunn) 33

Cellulose and starch fermentation by a new bacterium (van Gylswyk) 157

Chromosome doubling in *Dictyostelium discoideum* using benzimidazole derivatives (Welker & Williams) 397

Chromosomes of *Polysphondylium pallidum* (Williams) 409

Citric and isocitric acid concentrations in *Saccharomyces lipolytica* during growth on alkanes (Marchal, Metche & Vandecasteele) 535

Classification of *Corynebacterium* strains by g.l.c. analysis of mycolic acids (Corina & Sesardic) 61

Clostridium acetobutylicum, sporulation under aerobic conditions (Jones, Webster & Woods) 195

Clostridium bifermantans, effect of sporulation medium on spore properties (Waites, Bayliss & King) 271

Colony morphogenesis in mycoplasmas (Meloni, Bertoloni, Busolo & Conventi) 435
Index of Subjects

Locomotion, amoeboid, on an adhesive lectin substrate (Preston & O'Dell) 515
Lysine catabolism in *Pseudomonas aeruginosa*, genes and enzymes of (Rahman & Clarke) 357
Magnesium requirement of an alkalophilic *Halobacterium* sp. (Tindall, Mills & Grant) 257
Membrane antigens of *Mycoplasma hominis*, analysis by cross-absorption tests (Lin) 187
Membrane components of *Moraxella nonliquefaciens*, isolation and characterization (Andersen, Frøholm & Laane) 149
Methanococci, immunochemistry of serotype antigens (Poolman, Hopman & Zanen) 465
Methane mono-oxygenase of *Methyllococcus capsulatus* (Stirling & Dalton) 277
Methanol carbon, distribution between assimilation and oxidation pathways in *Pseudomonas C* (Ben-Bassat, Goldberg & Mateles) 213
Methanol, growth of mixed cultures on (Rokem, Goldberg & Mateles) 225
Methyl formate, oxidation by *Methyllococcus capsulatus* (Bath) (Stirling & Dalton) 277
Methylamine transport in *Stemphylium botryosum* (Breiman & Barash) 201
Methyllococcus capsulatus (Bath), methane mono-oxygenase from (Stirling & Dalton) 277
Mitosis in *Polysphondylium pallidum* (Williams) 409
Mitotic arrest in *Dictyostelium discoideum* (Welker & Williams) 397
Mixed cultures of *Pseudomonas C* and other bacteria, growth on methanol (Rokem, Goldberg & Mateles) 225
Moraxella nonliquefaciens, isolation and characterization of membrane components (Andersen, Frøholm & Laane) 149
Morphology of plant mycoplasma-like organisms, construction of three-dimensional form by serial sections (Waters & Hunt) 111
Mutant selection in *Mycobacterium smegmatis*, screening for auxotrophs (Vajda) 253
Mycobacteria, specificity of iron transport processes in (Stephenson & Ratledge) 521
Mycobacterium smegmatis, screening for auxotrophic mutants (Vajda) 253
Mycelic acids from * Corynebacterium* strains, analysis by gas-liquid chromatography (Corina & Sesardic) 61
Mycoplasma hominis, analysis of membrane antigens by cross-absorption tests (Lin) 187
Mycoplasma hominis, colony morphogenesis (Meloni, Bertolini, Busolo & Conventi) 435
Mycoplasma-like organisms, plant, construction of three-dimensional forms of (Waters & Hunt) 111
Nasgleria gruberi, amoeboid locomotion of (Preston & O'Dell) 515
Naphthalene oxidation by cyanobacteria and microalgae (Cerniglia, Gibson & Van Baalen) 495
Naphthalene oxidation by *Oscillatoria* sp. (Cerniglia, Van Baalen & Gibson) 485
Nectria haematococca, genetic analysis of two differentiated states (Daboussi-Bareyre) 425
Netisseria meningitidis, immunochemistry of serotype antigens (Poolman, Hopman & Zanen) 465
Nickel requirement of a urease-deficient mutant of *Aspergillus nidulans* (Mackay & Pateman) 249
Nitrogen compounds from degradation of N-carbamoyl-β-D(+)glucopyranosylamine by rumen microbes (Coleman & Milligan) 445
Nitrogen metabolism in *Klebsiella pneumoniae*, genetic study of a pleiotropic mutant defective in (Close & Shannanum) 501
Nocardia polychromogenes, turnover of phospholipids in (Trana, Khuller & Subrahmanayam) 89
Oligomycin inhibition of glucose utilization in *Trypanosoma brucei* (Miller & Klein) 391
Organolead compounds, inhibition of growth and metabolism in *Escherichia coli* by (Gibson, Hadfield, Hughes & Poole) 99
Omnitride carbamoyltransferase synthesis in *Aspergillus nidulans*, cross-pathway regulation of (Piotrowska) 335
Oscillatoria sp., metabolism of naphthalene by (Cerniglia, Van Baalen & Gibson) 485
Outer membrane fraction, isolation from *Moraxella nonliquefaciens* (Andersen, Frøholm & Laane) 149
Phospholipids, turnover in *Nocardia polychromogenes* (Trana, Khuller & Subrahmanayam) 89
Phytophthora species, hormonal regulation of sexual reproduction in (Ko) 459
Plant mycoplasma-like organisms, three-dimensional form (Waters & Hunt) 111
Plasmid controlling citrate-utilizing ability in *Escherichia coli*, properties of (Ishiguro & Sato) 533
Plasmid, P class, in *Actinetobacter calcoaceticus* (Hinchliffe & Vivian) 75
Plasmids, bacteriocinogenic, in *Rhizobium leguminosarum*; transfer of symbiotic genes with (Brewin, Beringer, Buchanan-Wollaston, Johnston & Hirsch) 261
Plasmids, group H, transfer and maintenance (Taylor & Levine) 475
Plasmids, role in *Rhizobium* genetic studies and symbiosis (Beringer) 1
Polygalacturonase, multiple forms from *Rhizoctonia solani* (Scal, Camadarla, Scala & Cervone) 207
Polysaccharide, extracellular, and virulence of *Erwina amylovora* (Bennett & Billing) 341
Polysaccharide, extracellular, biosynthesis by *Pseudomonas* NCIB 11264 (Williams & Wimpenny) 133
Polysphondylium pallidum, chromosomes and metaphase arrest in (Williams) 409
Proline transport in *Aspergillus nidulans*, regulation of (Arst, MacDonald & Jones) 285
Protoplast fusion, use in genetic analysis of a sterile mutant of *Schizosaccharomyces pombe* (Thuriaux, Stapek & Fantini) 525
Pseudomonas aeruginosa arginine catabolism, enzyme analysis of mutants unable to use arginine or ornithine (Rahman, Laverack & Clarke) 371
Pseudomonas aeruginosa arginine catabolism, the arginine pathway (Mercenier, Simon, Haas & Stal) 381
Pseudomonas aeruginosa, genes and enzymes of lysine catabolism (Rahman & Clarke) 357
Pseudomonas C, distribution of methanol carbon between assimilation and oxidation pathways in (Ben-Bassat, Goldberg & Mateus) 213

Pseudomonas C, growth on methanol in mixed cultures (Rokem, Goldberg & Mateus) 225

Pseudomonas NCIB 11264, exopolysaccharide biosynthesis by (Williams & Wimpenny) 133

R factor of restricted host range in Acinetobacter calcoaceticus (Hinchliffe & Vivian) 75

Regulation of arginine catabolic pathways in Pseudomonas aeruginosa (Rahman, Laverack & Clarke) 371

Regulation of arginine catabolism in Pseudomonas aeruginosa (Mercenier, Simon, Haas & Stalon) 381

Regulation of nitrogen metabolism in Klebsiella pneumoniae (Close & Shanmugam) 501

Regulation of ornithine carbamoyltransferase synthesis in Aspergillus nidulans (Piotrowska) 335

Regulation of proline transport in Aspergillus nidulans (Arat, Mac-Donald & Jones) 285

Regulation of sexual reproduction in Phytophthora species (Ko) 459

Restriction- and modification-deficient mutants in the SafGI system of Streptomyces albus (Chater & Wilde) 323

rfaH mutants of Salmonella typhimurium, genetics and antibiotic sensitivities (Stocker, Males & Takano) 17

rfaH mutants of Salmonella typhimurium, immunochemistry and structure of lipopolysaccharides (from Lindberg & Hellerqvist) 25

Rhizobium leguminosarum, transfer of symbiotic genes with bacteriocinogenic plasmids (Brewin, Beringer, Buchanan-Wollaston, Johnston & Hirsch) 261

Rhizobium, the development of genetic studies (Beringer) 1

Rhizoctonia solani, multiple forms of polygalacturonase in (Scala, Camardella, Scala & Cervone) 207

Rhodomicrobium vannelli, ribulose bisphosphate carboxylase from (Taylor & Dow) 81

Ribosome function in Escherichia coli, efficiency of (Koch) 165

Ribulose bisphosphate carboxylase from Rhodomicrobium vannelli, subunit structure of (Taylor & Dow) 81

Rough mutants of Salmonella typhimurium, immunochemistry and structure of lipopolysaccharides (Lindberg & Hellerqvist) 25

Rumen, a new butyrate-producing, starch- and cellulose-fermenting bacterial isolate from (van Gyswyk) 157

Rumen, degradation of N-carbamoyl-β-D-()-glucopyranosylamine in (Coleman & Milligan) 445

Saccharomyces carlsbergensis, enzymes of the tricarboxylic acid cycle in (Wales, Cartledge & Lloyd) 93

Saccharomyces cerevisiae, effect of ammonia and glutamine on sporogenesis (Delavier-Klutcho, Durieu-Trautmann, Allemand & Tavlitzki) 143

Saccharomyces cerevisiae, effect of catabolite repression and inhibitors of protein synthesis on the mitochondrial carbodiimide binding site in (Partis, Bertoli & Griffiths) 233

Saccharomyces lipolytica, intracellular concentrations of citric and isocitric acids during growth on alkanes (Marchal, Metche & Vandecasteele) 535

SalGI restriction- and modification-deficient mutants in Streptomyces albus (Chater & Wilde) 323

Salmonella dublin antigens, immunolectrophoresis of (Brown & Jones) 315

Salmonella typhimurium, genetics and antibiotic sensitivities of rfaH mutants (Stocker, Males & Takano) 17

Salmonella typhimurium, immunochrometry and structure of rough mutant lipopolysaccharide (Lindberg & Hellerqvist) 25

Schizosaccharomyces pombe, genetic analysis of a sterile mutant by protoplast fusion (Thuriaux, Sipiczki & Fantas) 525

Sex hormones of Phytophthora species (Ko) 459

Snow mould fungus, cyanide production and degradation by (Bunch & Knowles) 9

Sodium chloride, effect on staphylococcal exonuclease (Udou & Ichikawa) 69

Spores of Bacillus subtilis, isolation of NAD from (Sargent) 511

Spores of Clostridium bifermantans, effect of sporulation medium on properties (Waites, Bayliss & King) 271

Sporogenesis of Aspergillus cerevisiae, effect of ammonia and glutamine on (Delavier-Klutcho, Durieu-Trautmann, Allemand & Tavlitzki) 143

Sporulation in Bacillus subtilis, analysis of cell polarity (Dunn) 33

Sporulation, mutant of Bacillus cereus defective in spore coat deposition (Stelma, Aronson & Fitz-James) 173

Sporulation of Clostridium acetobutylicum, fruiting body-like structures associated with (Jones, Webster & Woods) 195

Staphylococcus aureus, a new haemolysin which lyases horse erythrocytes (Turner & Pickard) 237

Staphylococcus aureus, effect of sodium chloride on exonuclease of (Udou & Ichikawa) 69

Staphylococcus aureus, transformation of Bacillus subtilis by crude lysates of (Frielson & Lederberg) 545

Starch and cellulose fermentation by a new rumen bacterium (van Gyswyk) 157

Starvation of Beneckea natriegens, adenine nucleotide pools during (Nazly, Carter & Knowles) 295

Stemphylium botryosum, methylamine and ammonia transport in (Breiman & Barash) 201

Sterol requirement of Streptomyces coelicof (Lemcke & Burrows) 539

Streptococcus mutans glucosyltransferase, interaction with glucans (Hamada & Torii) 51

Streptomyces albus G mutants defective in the SalGI restriction-modification system (Chater & Wilde) 323

Surface microlayers at the air/water interface (Kjelleberg & Stenström) 417

Survival of Beneckea natriegens during starvation (Nazly, Carter & Knowles) 295

Symbiosis, Rhizobium-legume, genetic study of (Beringer) 1
Index of Subjects

Symbiotic genes in *Rhizobium leguminosarum*, co-transfer with bacteriocinogenic plasmids (Brewin, Beringer, Buchanan-Wollaston, Johnston & Hirsch) 261

Taxonomy of *Enterobacteriaceae* and *Vibrionaceae*, fatty acid patterns in (Bøe & Gjerde) 41

Temperature-sensitive transfer of H plasmids (Taylor & Levine) 475

Transcription errors during uridine starvation in *Escherichia coli* (Sehgal & Das) 243

Transformation of *Bacillus subtilis* by crude lysates of *Staphylococcus aureus* (Feitelson & Lederberg) 545

Transport in *Escherichia coli*, mediation of antiports by trialkyllead compounds (Gibson, Hadfield, Hughes & Poole) 99

Transport of glucose in *Klebsiella aerogenes* (O'Brien, Neijssel & Tempest) 305

Transport of proline in *Aspergillus nidulans*, regulation of (Arst, MacDonald & Jones) 285

Treponema hyodysenteriae, sterol requirement for growth (Lemcke & Burrows) 539

Trialkyllead compounds, inhibition of growth and metabolism in *Escherichia coli* by (Gibson, Hadfield, Hughes & Poole) 99

Tricarboxylic acid cycle enzymes in *Saccharomyces carlsbergensis*, effects of glucose repression and anaerobiosis on (Wales, Cartledge & Lloyd) 93

Trypanosoma brucei, sensitivity of normal and dyskinetoplastic strains to oligomycin (Miller & Klein) 391

Ultrastructure of the *Acholeplasma laidlawii*/antibody interaction (Vinther) 451

Ureaplasma urealyticum, colony morphogenesis (Meloni, Bertoloni, Busolo & Conventi) 435

Urease-deficient mutant of *Aspergillus nidulans*, nickel requirement of (Mackay & Pateman) 249

Uridine starvation in *Escherichia coli*, transcription errors during (Sehgal & Das) 243

Vibrionaceae, fatty acid patterns in classification of (Bøe & Gjerde) 41

Virulence determinants in *Erwinia amylovora* (Bennett) 351

Virulence of *Erwinia amylovora* and extracellular polysaccharide production (Bennett & Billing) 341