SHORT COMMUNICATION

Properties of a Transmissible Plasmid Conferring Citrate-utilizing Ability in Escherichia coli of Human Origin

By NAOTAKA ISHIGURO* AND GIHEI SATO

Department of Veterinary Public Health, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080, Japan

(Received 10 September 1979)

Transfer of citrate utilization (Cit+) was achieved with a plasmid (pCIT354) which is Fi+, has F-like pili and fails to inhibit phage propagation. Transduction of Cit+ was achieved with P1 phage. Results of incompatibility tests with R plasmids indicated that pCIT354 is a self-repressed F-like plasmid.

INTRODUCTION

In 27 citrate-positive strains of Escherichia coli, isolated from domestic pigeons, pigs, cattle and horses, the citrate-utilizing (Cit) ability was controlled by plasmids showing thermosensitive transfer with or without co-transfer of resistance markers including chloramphenicol (Ishiguro et al., 1978; Sato et al., 1978). Recently, Smith et al. (1978) reported that 15 thermosensitive H1 plasmids derived from 12 strains of Salmonella typhi and three enterobacterial strains mediated citrate utilization in E. coli K12. These H1 plasmids from S. typhi also conferred resistance to chloramphenicol and showed thermosensitive transfer.

We have detected 21 citrate-positive E. coli strains not carrying conjugative R plasmids from six human stool samples (Ishiguro & Sato, 1979). This paper describes some properties of the citrate-utilizing character derived from one of these human strains of E. coli.

METHODS

Bacterial strains. Escherichia coli Hu354 was isolated from a stool sample from a volunteer on non-selective media in 1977 in Obihiro, Japan. This strain was identified as typical E. coli by 34 biochemical reactions, with the exception of citrate utilization; it was sensitive to antibiotics and none of characters determined by other conjugative plasmids was demonstrated. The initial recipient of the Cit character of this strain was E. coli ML1410, a nalidixic acid-resistant K12 strain requiring methionine. Subsequent recipients of the Cit character were E. coli K12 strains ML1410Rif (F-, met, nal, rif), 1100 (F-, nal, r-), W1895 (Hfr, met, rif) and W4573 (F-, str, ara, mal, xyl, mtl, gal, lac-85).

Plasmids and phages. The standard R plasmids of different incompatibility groups (F'-lac-tet, R386, R100, R124, RA1, R40a, R391, R387, R144, RP4, Rs-a, R27, R446-b, R14, RN3, Rts1, R6k, R471a and R478) were used for incompatibility tests. In this study, the male-specific phages used were f1 and f2, and phages λ, φ80, T1, T3, T6, W31 and P1 were also used.

Media. Penassay broth (Difco) was used for conjugative experiments. The selective media used for citrate utilization were Simmons citrate agar (Eiken) plates supplemented with methionine (50 μg ml⁻¹) and either nalidixic acid (50 μg ml⁻¹) or rifampin (50 μg ml⁻¹). BTB/lactose agar and deoxycholate/hydrogen sulphide/lactose agar (DHL; Eiken) were used as the selective media for tetracycline (Tc, 25 μg ml⁻¹) and chloramphenicol (Cm, 25 μg ml⁻¹), respectively (Ishiguro et al., 1978). LB broth (LB) (Lennox, 1955), LB agar and soft agar were used for growth and titration of phages. In this study, CaCl₂ was added to LB and LB agar at a final concentration of 2.5 mM.

Transfer experiment on citrate-utilizing ability. The methods were as described by Sato et al. (1978) and used

0022-1287/80/0000-8633 $02.00 © 1980 SGM
Simmons citrate agar plates incubated for 4 d at 37 °C. To determine transconjugant recipients and their Cit character, 20 colonies of transconjugants on each selective medium were purified on DHL agar plates and examined for citrate-utilizing ability on the same selective medium.

The effect of passaging Cit+ strain in broth at different temperatures. The effects of passaging the Cit+ strain in broth at 37 and 43 °C were investigated as described by Sato et al. (1978).

Sensitivity to sex phages and phage inhibition tests. The Cit character was introduced into E. coli W1895 Hfr, and its ability to repress production of F pili was studied by the spot test with phages f1 and f2. The Cit+ transconjugants of E. coli 1100 were also tested for the production of F-like pili by assaying their ability to support the multiplication of phages f1 and f2 according to the method described by Grindley & Anderson (1971). Phage inhibition experiments were as described by Taylor & Grant (1976). The Cit character was tested for its ability to reduce both the number of plaques and the plaque size of λ, φ80, T1, T3, W31 and P1 phages, using E. coli 1100 as indicator strain.

Transduction experiments. Transduction (Lennox, 1955) was carried out following the propagation of phage P1 on ML1410 Rif harbouring the Cit character (Mise, 1976). Escherichia coli W4573 was used as the recipient strain.

Incompatibility tests. The compatibility property of the Cit character was examined by the method of Datta (1977). Escherichia coli ML1410 was used as the donor strain and the rifampin-resistant mutant of this strain was used as the recipient.

RESULTS AND DISCUSSION

The citrate-utilizing character was transferred from E. coli Hu354 to E. coli ML1410 at a frequency of about 2 × 10−4 only at 37 °C, and the resulting Cit+ clones were also able to transfer the character at a similar frequency. Transconjugants were found on Simmons citrate agar plates used as selective media within 2 d of incubation at 37 °C. No Cit− bacteria were found after 10 daily passages of E. coli Hu354 and transconjugant ML1410 in broth at 37 °C. However, after passage at 43 °C, 0.3% of ML1410 (Cit+) bacteria lost the Cit character, indicating that the element conferring the Cit character is fairly stable in the E. coli strain, in contrast to the unstable Cit character associated with H plasmids in the cells (Sato et al., 1978). Citrate-utilizing ability has always been found in association with the thermosensitive H plasmids (Sato et al., 1978; Smith et al., 1978). There has been no report on the isolation of conjugative plasmids conferring citrate utilization alone from naturally occurring E. coli strains.

A culture of strain W1895 Hfr (Cit+) was not lysed by phage f1 or f2, indicating that the Fi character of the Cit plasmid was Fi+, as has been described for the plasmids determining hydrogen sulphide production (Örskov & Örskov, 1973; Magalhães & Véras, 1977) and metabolic characters such as lactose or sucrose fermentation (Le Minor et al., 1976). Moreover, phage f1 multiplied about 100-fold in E. coli 1100 strains carrying the Cit character. These results suggest that the strains carrying the Cit plasmid produce F-like pili. No differences in the efficiency of plating of the phages employed between Cit+ and Cit− bacteria was demonstrated. The Cit determinant did not confer the property of phage inhibition on its host bacteria.

Phage P1 propagated on E. coli ML1410 Rif (Cit+) could transduce the Cit+ genes to E. coli W4573 at a frequency of 3 × 10−6 per plaque-forming unit, and the resulting transductants could transfer the Cit character to ML1410 (Cit−) at similar frequency when incubated in mixed culture. Henceforth, the element conferring the citrate-utilizing ability was designated as pCIT354.

Incompatibility of pCIT354 with representative F-like R plasmids is shown in Table 1. pCIT354 was transferred to a recipient carrying each of the R plasmids without reduction of its transfer frequencies, but when the strain carrying pCIT354 was used as a recipient, the transfer frequencies of some F-like R plasmids were reduced by about 10- to 10000-fold. In particular, a strong exclusion between pCIT354 and R100 was demonstrated. However, many purified transconjugant clones contained both characters, whether selection was made for the Cit character or for drug resistance (Table 1). Both sets of characters were stably inherited during subsequent growth in non-selective media. To examine the separate
Table 1. Incompatibility of pCIT354 and standard R plasmids F'-lac-tet, R386, R100 and R124

<table>
<thead>
<tr>
<th>Incoming plasmid* (group)</th>
<th>Resident plasmid† (group)</th>
<th>Selection‡</th>
<th>Transfer frequency§</th>
<th>No. of colonies tested</th>
<th>Cit+ R+ only</th>
<th>Cit+ only</th>
<th>R+ only</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCIT354</td>
<td>--</td>
<td>Sim(met + Rif)</td>
<td>3×10^{-4}</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>pCIT354</td>
<td>R386 (FI)</td>
<td>Sim(met + Rif)</td>
<td>6×10^{-3}</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pCIT354</td>
<td>R100 (FII)</td>
<td>Sim(met + Rif)</td>
<td>2×10^{-5}</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pCIT354</td>
<td>R124 (FIV)</td>
<td>Sim(met + Rif)</td>
<td>8×10^{-6}</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F'-lac-tet (FI)</td>
<td>—</td>
<td>Te+ Rif</td>
<td>6×10^{-1}</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>—</td>
<td>pCIT354</td>
<td>Te+ Rif</td>
<td>3×10^{-1}</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R386 (FI)</td>
<td>—</td>
<td>Te+ Rif</td>
<td>2×10^{-2}</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>—</td>
<td>pCIT354</td>
<td>Te+ Rif</td>
<td>4×10^{-4}</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R100 (FII)</td>
<td>—</td>
<td>Cm+ Rif</td>
<td>3×10^{-2}</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>—</td>
<td>pCIT354</td>
<td>Cm+ Rif</td>
<td>3×10^{-4}</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R124 (FIV)</td>
<td>—</td>
<td>Te+ Rif</td>
<td>6×10^{-3}</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>—</td>
<td>pCIT354</td>
<td>Te+ Rif</td>
<td>6×10^{-4}</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Host was E. coli ML1410.
† Host was E. coli ML1410Rif.
‡ Sim(met + Rif), Simmons citrate agar containing methionine (50 µg ml⁻¹) and rifampin (50 µg ml⁻¹); Cm, chloramphenicol; Tc, tetracycline; Rif, rifampin.
§ Determined from 2 h mating at 37 °C, measured as transconjugants per donor.

existence of the two plasmids (pCIT354 and an R plasmid), a transconjugant was used as a donor, separate selection plates being used to test transfer of each plasmid. Each plasmid was transferred separately to E. coli W4573 at a similar frequency. Furthermore, the incompatibility tests with pCIT354 and the other 15 standard R plasmids showed that both the Cit character of pCIT354 and the drug resistance of the R plasmids always co-existed stably. It could therefore be concluded that the pCIT354 was a self-repressed F-like plasmid not belonging to the incompatibility groups employed in this study, because it was compatible with the standard R plasmids tested. Smith et al. (1978) reported that 12 H1 plasmids from S. typhi strains mediated citrate utilization in E. coli K12 and the Cit character might be principally confined to H1 plasmids. However, since the transfer of the Cit character of pCIT354 was not thermosensitive and was compatible with R27 (H1 plasmid), this Cit plasmid is distinct from the H1 plasmid.

There is potential for spread of citrate utilization plasmids in the Enterobacteriaceae. It is not yet clear from experiments in progress whether the Cit character in all of the citrate-positive variants of E. coli isolated from various sources is located on a conjugative plasmid such as pCIT354. One citrate-positive E. coli strain isolated from a horse (Ishiguro et al., 1978) could not transfer its Cit character to E. coli K12, although the character was lost following exposure to acridine orange (unpublished results).

We are grateful to Dr K. Mise (Department of Microbiology Institute of Public Health, Tokyo) for bacteriophage P1 and many helpful suggestions. We also thank Dr N. Terakado (National Institute of Animal Health, Ibaraki) for bacterial strains and for his kind advice throughout this work. This work was supported in part by grant no. 348071 from the Scientific Research Fund of the Ministry of Education, Science and Culture of Japan.
REFERENCES

Index of Authors

ALLEMAND, P., see DELAVIER-KLUTCHKO, C. Assimilation of ammonia during sporogenesis of Saccharomyces cerevisiae: effect of ammonia and glutamine 143

ANDERSEN, E. V. M., FROHOLM, L. O. & LAANE, M. M. Isolation of a relatively pure outer membrane fraction of Moraxella nonliquefaciens and a comparison of its characteristics with the cytoplasmic membrane-containing material 149

ARONSON, A. L., see STELMA, G. N., JR. A Bacillus cereus mutant defective in spore coat deposition 173

BARASH, I., see BREMAN, A. Methylamine and ammonia transport in Stenphyllum botryosum 201

BAYLISS, C. E., see WAITES, W. M. The effect of sporulation medium on spores of Closstidi um bifermants 271

BEN-BASSAT, A., GOLDBERG, I. & MATELES, R. J. Distribution of methanol carbon between assimilation and oxidation pathways in methanol-grown Pseudomonas C 213

BENNETT, R. A. Evidence for two virulence determinants in the fireblight pathogen Erwinia amylovora 341

BENNETT, R. A. & BILLING, E. Origin of the polysaccharide component of ooze from plants infected with Erwinia amylovora 341

BERINGER, J. E. The development of Rhizobium genetics. (The Fourth Fleming Lecture) 1

BERINGER, J. E., see BREWIN, N. J. Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum 261

BERTOLI, E., see PARTIS, M. D. Effects of catabolite repression and inhibitors of protein synthesis on the mitochondrial carbodiimide binding site in Saccharomyces cerevisiae 233

BERTOLONI, G., see MELONI, G. A. Colony morphology, ultrastructure and morphogenesis in Mycoplasma hominis, Acholeplasma laidlawii and Ureaplasma urealyticum 435

BILLING, E., see BENNETT, R. A. Origin of the polysaccharide component of ooze from plants infected with Erwinia amylovora 341

BOE, B. & GIERDE, J. Fatty acid patterns in the classification of some representatives of the families Enterobacteriaceae and Vibrionaceae 41

BOUT, D., see CARLIER, Y. Physicochemical characteristics of Listeria specific antigen 2 549

BREMAN, A. & BARASH, I. Methylamine and ammonia transport in Stenphyllum botryosum 201

BREWIN, N. J., BERINGER, J. E., BUCHANAN-WOLLASTON, A. V., JOHNSTON, A. W. B. & HIRSCH, P. R. Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum 261

BROWN, G. T. H. & JONES, P. W. Crossed immunoelectrophoresis and crossed-line immunoelectrophoresis of Salmonella dublin antigens 315

BUCHANAN-WOLLASTON, A. V., see BREWIN, N. J. Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum 261

BUNCH, A. W. & KNOWLES, C. J. Cyanide production and degradation during growth of the snow mould fungus 9

BURROWS, M. R., see LEMCKE, R. M. Sterol requirement for the growth of Treponema hiodysenteriae 539

BUSOLO, F., see MELONI, G. A. Colony morphology, ultrastructure and morphogenesis in Mycoplasma hominis, Acholeplasma laidlawii and Ureaplasma urealyticum 435

CAMARDELLA, L., see SCALA, A. Multiple forms of polygalacturonase in two strains of Rhizoctonia solani 207

CARPINTERO, M., see SCALA, A. Multiple forms of polygalacturonase in two strains of Rhizoctonia solani 207

CARTRIDGE, T. G., see WALES, D. S. Effects of glucose repression and anaerobiosis on the activities and subcellular distribution of tricarboxylic acid cycle and associated enzymes in Saccharomyces carlsbergensis 93

CERNIGLIA, C. E., GIBSON, D. T. & VAN BAalen, C. Oxidation of naphthalene by cyanobacteria and microalgae 495

CERNIGLIA, C. E., VAN BAalen, C. & GIBSON, D. T. Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM 485

CERVONE, F., see SCALA, A. Multiple forms of polygalacturonase in two strains of Rhizoctonia solani 207

CHATER, K. F. & WfLDE, L. C. Streptomycosis albus G mutants defective in the SalGI restriction-modification system 323

CLARKE, P. H., see RAHMAN, M. Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa 357

CLARKE, P. H., see RAHMAN, M. The catabolism of arginine by Pseudomonas aeruginosa 371

CLOSE, T. J. & SHANMUGAM, K. T. Genetic analysis of a pleiotropic mutant of Klebsiella pneumoniae affected in nitrogen metabolism 501

COLEMAN, R. N. & MILLIGAN, L. P. N-Carbamoyl-β-D(+)glucopranosylamine metabolism by rumen microbes 445

CONVENTI, L., see MELONI, G. A. Colony morphology, ultrastructure and morphogenesis in...
Index of Authors

POOLE, R. K., see Gibson, J. F. Effects of trialkyllead compounds on growth, respiration and ion transport in Escherichia coli K12 99

POOLMAN, J. T., HOPMAN, C. T. P. & ZANEN, H. C. Immunochemical characterization of Neisseria meningitidis serotype antigens by immunodiffusion and SDS-polyacrylamide gel electrophoresis immunoperoxidase techniques and the distribution of serotypes among cases and carriers 465

PRESTON, T. M. & O’DELL, D. S. The cell surface in amoeboid locomotion: behaviour of Naegleria gruberi on an adhesive lectin substrate 515

RAHMAN, M. & CLARKE, P. H. Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa 357

RAHMAN, M., LAVERACK, P. D. & CLARKE, P. H. The catabolism of arginine by Pseudomonas aeruginosa 371

RATLEDGE, C., see STEPHENSON, M. C. Specificity of exochelins for iron transport in three species of mycobacteria 521

ROKEM, J. S., GOLDBERG, I. & MATELES, R. I. Growth of a pleiotropic mutant of P. aeruginosa in mixed cultures of bacteria on methanol 207

ROKEM, J. S., GOLDBERG, I. & MATELES, R. I. Growth of mixed cultures of bacteria on methanol 225

SARGENT, M. G. A procedure for isolating high quality DNA from spores of Bacillus subtilis 168 511

SATO, G., see ISHIUGO, N. Properties of a transmissible plasmid conferring citrate-utilizing ability in Escherichia coli of human origin 553

SCALA, F., CAMAREDDU, L., SCALA, F. & CERVONE, F. Multiple forms of polygalacturonase in two strains of Rhizoctonia solani 207

SCALA, F., see SCALA, A. Multiple forms of polygalacturonase in two strains of Rhizoctonia solani 207

SEHGAL, S. & DAS, H. K. Mis-transcription during uridine starvation in Escherichia coli K12 243

SEESARID, D., see CORINA, D. L. Profile analysis of total mycolic acids from skin corynebacteria and from named Corynebacterium strains by gas-liquid chromatography and gas-liquid chromatography/mass spectrometry 61

SHANMUGAM, K. T., see CLOSE, T. J. Genetic analysis of a pleiotropic mutant of Klebsiella pneumoniae affected in nitrogen metabolism 501

SIMON, J.-P., see MERCENIER, A. Catabolism of L-arginine by Pseudomonas aeruginosa 381

SIPICZKI, M., see THURIAUX, P. Genetical analysis of a sterile mutant by protoplast fusion in the fission yeast Schizosaccharomyces pombe 525

STALON, V., see MERCENIER, A. Catabolism of L-arginine by Pseudomonas aeruginosa 381

STELMA, G. N., Jr, ARONSON, A. I. & FITZ-JAMES, P. C. A Bacillus cereus mutant defective in spore coat deposition 173

STENSTRÖM, T. A., see KIELLEBERG, S. Lipid surface films: interaction of bacteria with free fatty acids and phospholipids at the air/water interface 417

STEPHENSON, M. C. & RATLEDGE, C. Specificity of exochelins for iron transport in three species of mycobacteria 521

STIRLING, D. I. & DALTON, H. Oxidation of dimethyl ether, methyl formate and bromomethane by Methylococcus capsulatus (Bath) 277

STOCKER, B. A. D., MALES, B. M. & TAKANO, W. Salmonella typhimurium mutants of RfaH- phenotype: genetics and antibiotic sensitivities 17

STRECKER, G., see CARLIER, Y. Physicochemical characteristics of Listeria specific antigen 2 549

SUBRAHMANYAM, D., see TRANA, A. K. Metabolism of phospholipids in Nocardia polychromogenes 89

TAKANO, W., see STOCKER, B. A. D. Salmonella typhimurium mutants of RfaH- phenotype: genetics and antibiotic sensitivities 17

TAVLITZKI, J., see DELAVIER-KLUTCHKO, C. Assimilation of ammonia during sporogenesis of Saccharomyces cerevisiae: effect of ammonia and glutamine 143

TAYLOR, D. E. & LEVINE, J. G. Studies of temperature-sensitive transfer and maintenance of H incompatibility group plasmids 475

TAYLOR, S. C. & DOW, C. S. Ribulose-1,5-bisphosphate carboxylase from Rhodomicrobium vanniieli 81

TEMPEST, D. W., see O’BRIEN, R. W. Glucose phosphoenolpyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenes growing in chemostat culture 305

THURIAUX, P., SIPICZKI, M. & FANTES, P. A. Genetical analysis of a sterile mutant by protoplast fusion in the fission yeast Schizosaccharomyces pombe 525

TINDALL, B. J., MILLS, A. A. & GRANT, W. D. An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake 257

TORII, M., see HAMADA, S. Interaction of glucosyltransferase from Streptococcus mutans with various glucans 51

TRANA, A. K., KUHLLER, G. K. & SUBRAHMANYAM, D. Metabolism of phospholipids in Nocardia polychromogenes 89

TURNER, W. H. & PICKARD, D. J. A new haemolysin from Staphylococcus aureus which lyses horse erythrocytes 237

UDOU, T. & ICHIKAWA, Y. Effect of sodium chloride on the activity and production of staphylococcal exonuclease 69

VAJDA, B. P. A cellophane membrane method for screening auxotrophic mutants of photochromogenic mycobacteria 253

VAN BAALEN, C., see CERNIGLIA, C. E. Metabolism of naphthale by the cyanobacterium Oscillatoria sp., strain JCM 485

VAN BAALEN, C., see CERNIGLIA, C. E. Oxidation of naphthalene by cyanobacteria and microalgae 495

VANDECASTEELE, J.-P., see MARCHAL, R. Intracellular concentrations of citric and isocitric acids in cultures of the citric acid-excreting yeast Saccharomyces lipolytica grown on alkanes 535

VINTHER, O. Ultrastructural study of the interaction between Acholeplasma laidlawii and antibody 451

VIVIAN, A., see HINCHLIFE, E. Naturally occurring plasmids in Actinobacter calcoaceticus: a P class R factor of restricted host range 75
WAITES, W. M., BAYLISS, C. E. & KING, N. R. The effect of sporulation medium on spores of *Clostridium bifermentans* 271

WALES, D. S., CARTLEDGE, T. G. & LLOYD, D. Effects of glucose repression and anaerobiosis on the activities and subcellular distribution of tricarboxylic acid cycle and associated enzymes in *Saccharomyces carlsbergensis* 93

WATERS, H. & HUNT, P. The in vivo three-dimensional form of a plant mycoplasma-like organism by the analysis of serial ultrathin sections 111

WEBSTER, J. R., see JONES, D. T. The formation of simple fruiting body-like structures associated with sporulation under aerobic conditions in *Clostridium acetobutylicum* 195

WELKER, D. L. & WILLIAMS, K. L. Mitotic arrest and chromosome doubling using thiabendazole, cambendazole, nocodazole and ben late in the slime mould *Dictyostelium discoideum* 397

WIMPENNY, J. W. T., see WILLIAMS, A. G. Extracellular polysaccharide biosynthesis by *Pseudomonas* NCIB 11264. Studies on precursor-forming enzymes and factors affecting exopolysaccharide production by washed suspensions 133

WOODS, D. R., see JONES, D. T. The formation of simple fruiting body-like structures associated with sporulation under aerobic conditions in *Clostridium acetobutylicum* 195

ZANEN, H. C., see POOLMAN, J. T. Immunochemical characterization of *Neisseria meningitidis* serotype antigens by immunodiffusion and SDS-polyacrylamide gel electrophoresis immunoperoxidase techniques and the distribution of serotypes among cases and carriers 465
Index of Subjects

N-Acetylornithine 5-aminotransferase in catabolism of arginine by *Pseudomonas aeruginosa* (Rahman, Laverack & Clarke) 371

Acholeplasma laidlawii, colony morphogenesis (Meloni, Bertoloni, Busolo & Conventi) 435

Acholeplasma laidlawii, interaction with antibody, ultrastructural study of (Vinther) 451

Actinobacter calcoaceticus, P class R factor in (Hinchliffe & Vianan) 75

Adenine nucleotides during starvation of *Beneckea natriegens* (Nayzal, Carter & Knowles) 295

Adhesion of bacteria at the air/water interface (Kjelleberg & Stenström) 417

Aerotolerance of *Clostridium acetobutylicum* (Jones, Webster & Woods) 195

Algae, naphthalene oxidation by (Cerniglia, Gibson & Van Baalen) 495

Alkalophile, *Halobacterium* sp. from Kenyan soda lake (Timothy, Mills & Grant) 257

Alkanes, intracellular concentrations of citric and isocitric acids in *Saccharomyces cerevisiae* lipolytica grown on (Marchal, Metche & Vandecasteele) 535

Ammonia, effect on sporogenesis of *Saccharomyces cerevisiae* (Delavier-Klutchko, Durieu-Trautmann, Allemand & Tavlitzki) 143

Ammonia transport in *Aerotolerance of Clostridium acetobutylicum* (Jones, Webster & Woods) 195

Amoebae of *Naegleria gruberi*, locomotion on an adhesive lectin substrate (Preston & O’Dell) 515

Anaerobiosis, effect on tricarboxylic acid cycle enzymes in *Saccharomyces carlsbergensis* (Wales, Cartledge & Lloyd) 93

Antibiotic sensitivities of *Salmonella typhimurium* rfaH mutants (Stockler, Males & Takano) 17

Antibody binding to *Acholeplasma laidlawii*, ultrastructural study of (Vinther) 451

Antigen of *Listeria monocytogenes*, genus specific, purification and physicochemical characterization (Carlier, Bout, Capron, Delvallez, Martin, Strecke & Duriez) 549

Antigens of *Mycoplasma hominis* membranes (Lin) 187

Antigens of *Neisseria meningitidis*, immunochrometry of serotypes (Poolman, Hopman & Zanen) 465

Antigens of *Salmonella dublin*, immunoelectrophoresis of (Brown & Jones) 315

Arginine biosynthesis in *Aspergillus nidulans*, cross-pathway regulation of ornithine carbamoyltransferase in (Piotrowska) 335

Arginine catabolic pathways in *Pseudomonas aeruginosa* (Mencenier, Simon, Haas & Slamon) 381

Arginine catabolism in *Pseudomonas aeruginosa*, enzyme analysis of mutants unable to use arginine or ornithine (Rahman, Laverack & Clarke) 371

Aspergillus nidulans, cross-pathway regulation of ornithine carbamoyltransferase synthesis (Piotrowska) 335

Aspergillus nidulans, nickel-requiring urease-deficient mutant (Mackay & Pateman) 249

Aspergillus nidulans, regulation of proline transport in (Arst, MacDonald & Jones) 285

Auxotrophs of *Mycobacterium smegmatis*, screening for (Vajda) 253

Bacillus cereus, mutants defective in spore coat deposition (Stelma, Aronson & Fitz-James) 173

Bacillus subtilis, isolation of DNA from spores (Sargent) 511

Bacillus subtilis, statistical analysis of factors influencing cell polarity during sporulation (Dunn) 33

Bacillus subtilis, transformation by crude lysates of *Staphylococcus aureus* (Feitelson & Lederberg) 545

Bacteriocinogenic plasmids in *Rhizobium leguminosarum*, cotransfer of symbiotic genes (Brewin, Ringer, Buchanan-Wollaston, Johnston & Hirsch) 261

Beneckea natriegens, adenine nucleotide pools during starvation (Nayzal, Carter & Knowles) 295

Benzimidazole derivatives, induction of metaphase arrest in *Dictyostelium discoideum* by (Welker & Williams) 397

Benzimidazole derivatives, induction of metaphase arrest in *Polysphondylium pallidum* by (Williams) 409

Butyrate-producing rumen bacterium which ferments cellulose and starch (van Gyswyk) 157

N-Carbamoyl-β-D(+)glucopyranosylamine breakdown by rumen microbes (Coleman & Milligan) 445

Carbodiimide binding to *Saccharomyces cerevisiae* mitochondria, effect of catabolite repression on (Partis, Bertoli & Griffiths) 233

Catabolite repression, effect on the mitochondrial carbodiimide binding site in *Saccharomyces cerevisiae* (Partis, Bertoli & Griffiths) 233

Cell polarity, analysis in sporulating cultures of *Bacillus subtilis* (Dunn) 33

Cellulose and starch fermentation by a new bacterium (van Gyswyk) 157

Chromosome doubling in *Dictyostelium discoideum* using benzimidazole derivatives (Welker & Williams) 397

Chromosomes of *Polysphondylium pallidum* (Williams) 409

Citric and isocitric acid concentrations in *Saccharomyces cerevisiae* lipolytica during growth on alkanes (Marchal, Metche & Vandecasteele) 535

Classification of *Corynebacterium* strains by g.l.c., analysis of mycolic acids (Corina & Sesardic) 61

Clostridium acetobutylicum, sporulation under aerobic conditions (Jones, Webster & Woods) 195

Clostridium bifermantans, effect of sporulation medium on spore properties (Waite, Bayliss & King) 271

Colony morphogenesis in mycoplasmas (Meloni, Bertoloni, Busolo & Conventi) 435
Index of Subjects

Corynebacterium strains from skin, g.l.e. analysis of mycolic acids from (Corina & Sesardic) 61
Cyanide, production and degradation by the snow mould fungus (Bunch & Knowles) 9
Cyanobacteria, oxidation of naphthalene by (Cerniglia, Gibson & Van Baalen) 495
Cyanobacterium, naphthalene oxidation by Oscillatoria sp. (Cerniglia, Van Baalen & Gibson) 485
Dictyostelium discoideum, mitotic arrest and chromosome doubling in (Welker & Williams) 397
Differentiation in Clostridium acetobutylicum under aerobic conditions (Jones, Webster & Woods) 195
Differentiation in Nectria haematococca, genetic analysis in heterokaryons (Daboussi-Bareyre) 425
Dimethyl ether, oxidation by Methylococcus capsulatus (Bath) (Stirling & Dalton) 277
DNA, isolation from spores of Bacillus subtilis (Sargent) 511

Enterobacteriaceae, fatty acid patterns in classification (Bae & Gjerde) 41
Escherichia coli, extracellular polysaccharide production and virulence (Bennett & Billing) 341
Erwinia amylovora, virulence determinants in (Bennett) 351
Erysiphe pisi, autoradiography of haustoria (Manners & Gay) 529
Escherichia coli, a transmissible plasmid conferring citrate-utilizing ability in (Ishiguro & Sato) 553
Escherichia coli, effects of triaryllethal compounds on (Gibson, Hadfield, Hughes & Poole) 99
Escherichia coli, efficiency of ribosome function in (Koch) 165
Escherichia coli, mis-transcription during uridine starvation in (Sehgal & Das) 243
Exochelin specificity in Mycobacterium species (Stephenson & Ratledge) 521
Exonuclease of Staphylococcus aureus, effect of sodium chloride on (Udou & Ichikawa) 69
Exopolysaccharide, formation by washed suspensions of Pseudomonas NCIB 11264 (Williams & Wimpenny) 133

Fatty acid patterns, in taxonomy of Enterobacteriaceae and Vibrionaceae (Bae & Gjerde) 41
Fruiting Lecture, fourth. The development of Rhizobium genetics (Beringer) 1
Fruiting body-like structures in Clostridium acetobutylicum (Jones, Webster & Woods) 195
Fungus, snow mould, cyanide production and degradation by (Bunch & Knowles) 9
Fusobacterium polysaccharolyticum sp. nov., a cellulytic rumen bacterium (van Gylswyk) 157
Gas-liquid chromatography in analysis of mycolic acids from corynebacteria (Corina & Sesardic) 61
Genes for symbiosis in Rhizobium leguminosarum, co-transfer with bacteriocinogenic plasmids (Brewin, Beringer, Buchanan-Wollaston, Johnston & Hirsch) 261
Genetic analysis of a sterile mutant of Schizosaccharomyces pombe by protoplast fusion (Thuriaux, Sipiczki & Fantes) 525
Genetic analysis of differentiated states in Nectria haematococca (Daboussi-Bareyre) 425

Genetics of lysine catabolism in Pseudomonas aeruginosa (Rahman & Clarke) 357
Genetics of rfaH mutants of Salmonella typhimurium (Stockier, Males & Takano) 17
Genetics of Rhizobium (Beringer) 1
Glucans, interaction with Streptococcus mutans glucosyltransferase (Hamada & Torii) 51
Glucose phosphoenolpyruvate phosphotransferase, correlation with glucose uptake rate in chemostat cultures of Klebsiella aerogenes (O'Brien, Neijssel & Tempest) 305
Glucose repression, effect on tricarboxylic acid cycle enzymes in Saccharomyces carlsbergensis (Wales, Cartledge & Lloyd) 93
Glucose transport in Klebsiella aerogenes, relationship to glucose phosphoenolpyruvate phosphotransferase activity (O'Brien, Neijssel & Tempest) 305
Glucosyltransferase of Streptococcus mutans, interaction with glucans (Hamada & Torii) 51
Glutamine, effect on sporogenesis of Saccharomyces cerevisiae (Delavier-Klutchko, Durieu-Trautmann, Allemend & Tavlitzki) 143
Glycine, conversion to cyanide by the snow mould fungus (Bunch & Knowles) 9
Growth of mixed cultures of bacteria on methanol (Rokem, Goldberg & Mateles) 225

H plasmids, transfer and maintenance (Taylor & Levine) 475
Haemolysin from Staphylococcus aureus which lyses horse erythrocytes, distinct from ð-haemolysin (Turner & Pickard) 237
Halobacterium sp., low magnesium requirement of (Tindall, Mills & Grant) 257
Haustoria of Erysiphe pisi, autoradiography of (Manners & Gay) 529
Heterokaryons, use in study of two differentiated states in Nectria haematococca (Daboussi-Bareyre) 425
Hormone regulation of sexuality in Phytophthora species (Ko) 459

Immunoelectrophoresis of Salmonella dublin antigens (Brown & Jones) 315
Iron transport processes in mycobacteria (Stephenson & Ratledge) 521
Klebsiella aerogenes phosphotransferase activities of glucose-limited cultures (O'Brien, Neijssel & Tempest) 305
Klebsiella pneumoniae, a pleiotropic mutant with defects in nitrogen metabolism (Close & Shannugam) 501

Lectin substrate, amoeboid locomotion on (Preston & O'Dell) 515
Lipid surface films, interaction with bacteria (Kjelleberg & Stenström) 417
Lipopolysaccharides from Salmonella typhimurium, immunochemistry and structure of (Lindberg & Herrerqvist) 25
Listeria monocytogenes, purification and physicochemical characterization of a genus specific antigen (Carlier, Bout, Capron, Delvallez, Martin, Strecker & Duriez) 549
Index of Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locomotion, amoeboid, on an adhesive lectin substrate (Preston & O'Dell)</td>
<td>515</td>
</tr>
<tr>
<td>Lysine catabolism in Pseudomonas aeruginosa, genes and enzymes of (Rahman & Clarke)</td>
<td>357</td>
</tr>
<tr>
<td>Magnesium requirement of an alkalophilic Halobacterium sp. (Tindall, Mills & Grant)</td>
<td>257</td>
</tr>
<tr>
<td>Membrane antigens of Mycoplasma hominis, analysis by cross-absorption tests (Lin)</td>
<td>187</td>
</tr>
<tr>
<td>Membrane components of Moraxella nonliquefaciens, isolation and characterization (Andersen, Frøholm & Laane)</td>
<td>149</td>
</tr>
<tr>
<td>Meningococci, immunochemistry of serotype antigens (Poolman, Hopman & Zanen)</td>
<td>465</td>
</tr>
<tr>
<td>Methane monoxygenase of Methylococcus capsulatus (Stirling & Dalton)</td>
<td>277</td>
</tr>
<tr>
<td>Methanol carbon, distribution between assimilation and oxidation pathways in Pseudomonas C (Bennassat, Goldberg & Mateles)</td>
<td>213</td>
</tr>
<tr>
<td>Methanol, growth of mixed cultures on (Rokem, Goldberg & Mateles)</td>
<td>225</td>
</tr>
<tr>
<td>Methyl formate, oxidation by Methylococcus capsulatus (Bath) (Stirling & Dalton)</td>
<td>277</td>
</tr>
<tr>
<td>Methylamine transport in Stemphylium botryosum (Breiman & Barash)</td>
<td>201</td>
</tr>
<tr>
<td>Methylococcus capsulatus (Bath), methane monoxygenase from (Stirling & Dalton)</td>
<td>277</td>
</tr>
<tr>
<td>Mitosis in Polysphondylium pallidum (Williams)</td>
<td>409</td>
</tr>
<tr>
<td>Mitotic arrest in Dictyostelium discoideum (Welker & Williams)</td>
<td>397</td>
</tr>
<tr>
<td>Mixed cultures of Pseudomonas C and other bacteria, growth on methanol (Rokem, Goldberg & Mateles)</td>
<td>225</td>
</tr>
<tr>
<td>Moraxella nonliquefaciens, isolation and characterization of membrane components (Andersen, Frøholm & Laane)</td>
<td>149</td>
</tr>
<tr>
<td>Morphology of plant mycoplasma-like organisms, construction of three-dimensional form by serial sections (Waters & Hunt)</td>
<td>111</td>
</tr>
<tr>
<td>Mutant selection in Mycobacterium smegmatis, screening for auxotrophs (Vajda)</td>
<td>253</td>
</tr>
<tr>
<td>Mycobacteria, specificity of iron transport processes in (Stephenson & Ratledge)</td>
<td>521</td>
</tr>
<tr>
<td>Mycobacterium smegmatis, screening for auxotrophic mutants (Vajda)</td>
<td>253</td>
</tr>
<tr>
<td>Mycotic acids from Corynebacterium strains, analysis by gas–liquid chromatography (Corina & Sesardic)</td>
<td>61</td>
</tr>
<tr>
<td>Mycoplasma hominis, analysis of membrane antigens by cross-absorption tests (Lin)</td>
<td>187</td>
</tr>
<tr>
<td>Mycoplasma hominis, colony morphogenesis (Meloni, Bertolini, Busolo & Conventi)</td>
<td>435</td>
</tr>
<tr>
<td>Mycoplasma-like organisms, plant, construction of three-dimensional forms of (Waters & Hunt)</td>
<td>111</td>
</tr>
<tr>
<td>Naegleria gruberi, amoeboid locomotion of (Preston & O'Dell)</td>
<td>515</td>
</tr>
<tr>
<td>Naphthalene oxidation by cyanobacteria and microalgae (Cerniglia, Gibson & Van Baalen)</td>
<td>495</td>
</tr>
<tr>
<td>Naphthalene oxidation by Oscillatoria sp. (Cerniglia, Van Baalen & Gibson)</td>
<td>485</td>
</tr>
<tr>
<td>Neotetrahaematococca, genetic analysis of two differentiated states (Daboussi-Bareyre)</td>
<td>425</td>
</tr>
<tr>
<td>Netisseria meningitidis, immunochemistry of serotype antigens (Poolman, Hopman & Zanen)</td>
<td>465</td>
</tr>
<tr>
<td>Nickel requirement of a urease-deficient mutant of Aspergillus nidulans (Mackay & Pateman)</td>
<td>249</td>
</tr>
<tr>
<td>Nitrogen compounds from degradation of N-carbamoyl-β-D(+)–glucopyranosylamine by rumen microbes (Coleman & Milligan)</td>
<td>445</td>
</tr>
<tr>
<td>Nitrogen metabolism in Klebsiella pneumoniae, genetic study of a pleiotropic mutant defective in (Close & Shanmugam)</td>
<td>501</td>
</tr>
<tr>
<td>Nocardia polychromogenes, turnover of phospholipids in (Trana, Khuller & Subrahmanyan)</td>
<td>89</td>
</tr>
<tr>
<td>Oligomycin inhibition of glucose utilization in Trypanosoma brucei (Miller & Klein)</td>
<td>391</td>
</tr>
<tr>
<td>Organolead compounds, inhibition of growth and metabolism in Escherichia coli by (Gibson, Hadfield, Hughes & Poole)</td>
<td>99</td>
</tr>
<tr>
<td>Ornithine carbamoyltransferase synthesis in Aspergillus nidulans, cross-pathway regulation of (Piotrowska)</td>
<td>335</td>
</tr>
<tr>
<td>Oscillatoria sp., metabolism of naphthalene by (Cerniglia, Van Baalen & Gibson)</td>
<td>485</td>
</tr>
<tr>
<td>Outer membrane fraction, isolation from Moraxella nonliquefaciens (Andersen, Frøholm & Laane)</td>
<td>149</td>
</tr>
<tr>
<td>Phospholipids, turnover in Nocardia polychromogenes (Trana, Khuller & Subrahmanyan)</td>
<td>89</td>
</tr>
<tr>
<td>Phytophthora species, hormonal regulation of sexual reproduction in (Ko)</td>
<td>459</td>
</tr>
<tr>
<td>Plant mycoplasma-like organisms, three-dimensional form (Waters & Hunt)</td>
<td>111</td>
</tr>
<tr>
<td>Plasmid controlling citrate-utilizing ability in Escherichia coli, properties of (Ishiguro & Sato)</td>
<td>533</td>
</tr>
<tr>
<td>Plasmid, P class, in Actinetobacter calcoaceticus (Hinchliffe & Vivian)</td>
<td>75</td>
</tr>
<tr>
<td>Plasmids, bacteriocinogenic, in Rhizobium leguminosarum; transfer of symbiotic genes with (Brewin, Beringer, Buchanan-Wollaston, Johnston & Hirsch)</td>
<td>261</td>
</tr>
<tr>
<td>Plasmids, group H, transfer and maintenance (Taylor & Levine)</td>
<td>475</td>
</tr>
<tr>
<td>Plasmids, role in Rhizobium genetic studies and symbiosis (Beringer)</td>
<td>1</td>
</tr>
<tr>
<td>Polygalacturonase, multiple forms from Rhizopus solani (Scalé, Camarda, Scalia & Cervone)</td>
<td>207</td>
</tr>
<tr>
<td>Polysaccharide, extracellular, and virulence of Erwinia amylovora (Bennett & Billing)</td>
<td>341</td>
</tr>
<tr>
<td>Polysaccharide, extracellular, biosynthesis by Pseudomonas NCIB 11264 (Williams & Wimpenny)</td>
<td>133</td>
</tr>
<tr>
<td>Polysphondylium pallidum, chromosomes and metaphase arrest in (Williams)</td>
<td>409</td>
</tr>
<tr>
<td>Proline transport in Aspergillus nidulans, regulation of (Arst, MacDonald & Jones)</td>
<td>285</td>
</tr>
<tr>
<td>Protoplast fusion, use in genetic analysis of a sterile mutant of Schizosaccharomyces pombe (Thuriaux, Sipiezki & Fantas)</td>
<td>525</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa arginine catabolism, enzyme analysis of mutants unable to use arginine or ornithine (Rahman, Laverack & Clarke)</td>
<td>371</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa arginine catabolism, the arginine pathway (Mercenier, Simon, Haas & Stalon)</td>
<td>381</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa, genes and enzymes of lysine catabolism (Rahman & Clarke)</td>
<td>357</td>
</tr>
</tbody>
</table>
Pseudomonas C, distribution of methanol carbon between assimilation and oxidation pathways in (Ben-Bassat, Goldberg & Mateles) 213

Pseudomonas C, growth on methanol in mixed cultures (Rokem, Goldberg & Mateles) 225

Pseudomonas NCIB 11264, exopolysaccharide biosynthesis by (Williams & Wimpenny) 133

R factor of restricted host range in *Acinetobacter calcoaceticus* (Hinchliffe & Vivian) 75

Regulation of arginine catabolism in *Pseudomonas aeruginosa* (Rahman, Laverack & Clarke) 371

Regulation of arginine catabolism in *Pseudomonas aeruginosa* (Mercenier, Simon, Haas & Stalon) 381

Regulation of nitrogen metabolism in *Klebsiella pneumoniae* (Close & Shanmugam) 501

Regulation of ornithine carbamoyltransferase synthesis in *Aspergillus nidulans* (Piotrowska) 335

Regulation of proline transport in *Aspergillus nidulans* (Art, Mac-Donald & Jones) 285

Regulation of sexual reproduction in *Phytophthora* species (Ko) 459

Restriction- and modification-deficient mutants in the SafGI system of *Streptomyces albus* (Chater & Wilde) 323

rfh mutants of *Salmonella typhimurium*, genetics and antibiotic sensitivities (Stocker, Males & Takano) 17

rfh mutants of *Salmonella typhimurium*, immunochemistry and structure of lipopolysaccharides (Ko & Lindberg & Hellerqvist) 25

Rhizobium leguminosarum, transfer of symbiotic genes with bacteriocinogenic plasmids (Brewin, Beringer, Buchanan-Wollaston, Johnston & Hirsch) 261

Rhizobium, the development of genetic studies (Beringer) 1

Rhizoctonia solani, multiple forms of polygalacturonase in (Scala, Camardella, Scala & Cervone) 207

Rhodomicrobium vannellii, ribulose bisphosphate carboxylase from (Taylor & Dow) 81

Ribosome function in *Escherichia coli*, efficiency of (Koch) 165

Ribulose bisphosphate carboxylase from *Rhodomicrobium vannellii*, subunit structure of (Taylor & Dow) 81

Rough mutants of *Salmonella typhimurium*, immunochemistry and structure of lipopolysaccharides (Lindberg & Hellerqvist) 25

Rumen, a new butyrate-producing, starch- and cellulose-fermenting bacterial isolate from (van Gyswyk) 157

Rumen, degradation of *N*-carbamoyl-β-D-(+)-glucopyranosylamine in (Coleman & Milligan) 445

Saccharomyces carlsbergensis, enzymes of the tricarboxylic acid cycle in (Wales, Cartledge & Lloyd) 93

Saccharomyces cerevisiae, effect of ammonia and glutamine on sporogenesis (Delavier-Klutchko, Durieu-Trautmann, Allemand & Tavlitzki) 143

Saccharomyces cerevisiae, effect of catabolite repression and inhibitors of protein synthesis on the mitochondrial carbodiimide binding site in (Partis, Bertoli & Griffiths) 233

Sacccharomycopsis lipolytica, intracellular concentrations of citric and isocitric acids during growth on alkanes (Marchal, Metche & Van de Casteele) 535

SalGI restriction- and modification-deficient mutants in *Streptomyces albus* (Chater & Wilde) 323

Salmonella dublin antigens, immunoelectrophoresis of (Brown & Jones) 315

Salmonella typhimurium, genetics and antibiotic sensitivities of *rfh* mutants (Stocker, Males & Takano) 17

Salmonella typhimurium, immunochemistry and structure of rough mutant lipopolysaccharide (Lindberg & Hellerqvist) 25

Schizosaccharomyces pombe, genetic analysis of a sterile mutant by protoplast fusion (Thuriaux, Sipiczki & Fantke) 525

Sex hormones of *Phytophthora* species (Ko) 459

Snow mould fungus, cyanide production and degradation by (Bunch & Knowles) 9

Sodium chloride, effect on staphylococcal exonuclease (Udo & Ichikawa) 69

Spores of *Bacillus subtilis*, isolation of NAD from (Sargent) 511

Spores of *Clostridium bifermantans*, effect of sporulation medium on properties (Waites, Bayliss & King) 271

Sporogenesis of *Saccharomyces cerevisiae*, effect of ammonia and glutamine on (Delavier-Klutchko, Durieu-Trautmann, Allemand & Tavlitzki) 143

Sporulation in *Bacillus subtilis*, analysis of cell polarity (Dunn) 33

Sporulation, mutant of *Bacillus cereus* defective in spor coat deposition (Stelma, Aronson & Fitz-James) 173

Sporulation of *Clostridium acetobutylicum*, fruiting body-like structures associated with (Jones, Webster & Woods) 195

Staphylococcus aureus, a new haemolysin which lyses horse erythrocytes (Turner & Pickard) 237

Staphylococcus aureus, effect of sodium chloride on exonuclease of (Udeu & Ichikawa) 69

Staphylococcus aureus, transformation of *Bacillus subtilis* by crude lysates of (Feltelous & Lederberg) 545

Starch and cellulose fermentation by a new rumen bacterium (van Gyswyk) 157

Starvation of *Beneckea natriegens*, adenine nucleotide pools during (Nazly, Carter & Knowles) 295

Stemphylium botryosum, methylamine and ammonia transport in (Breiman & Barash) 201

Sterol requirement of *Treponema hyodysenteriae* (Lemcke & Burrows) 539

S treptococcus mutans glucosyltransferase, interaction with glucans (Hamada & Torii) 51

S treptomyces albus G mutants defective in the SalGI restriction-modification system (Chater & Wilde) 323

Surface microlayers at the air/water interface (Kjelleberg & Stenström) 417

Survival of *Beneckea natriegens* during starvation (Nazly, Carter & Knowles) 295

Symbiosis, *Rhizobium*-legume, genetic study of (Beringer) 1
Index of Subjects

Symbiotic genes in *Rhizobium leguminosarum*, cotransfer with bacteriocinogenic plasmids (Brewin, Beringer, Buchanan-Wollaston, Johnston & Hirsch) 261

Taxonomy of *Enterobacteriaceae* and *Vibrionaceae*, fatty acid patterns in (Bøe & Gjerde) 41

Temperature-sensitive transfer of H plasmids (Taylor & Levine) 475

Transcription errors during uridine starvation in *Escherichia coli* (Sehgal & Das) 243

Transformation of *Bacillus subtilis* by crude lysates of *Staphylococcus aureus* (Feitelson & Lederberg) 545

Transport in *Escherichia coli*, mediation of antiports by trialkyllead compounds (Gibson, Hadfield, Hughes & Poole) 99

Transport of glucose in *Klebsiella aerogenes* (O'Brien, Neijssel & Tempest) 305

Transport of proline in *Aspergillus nidulans*, regulation of (Arst, MacDonald & Jones) 285

Treponema hyodysenteriae, sterol requirement for growth (Lemcke & Burrows) 539

Trialkyllead compounds, inhibition of growth and metabolism in *Escherichia coli* by (Gibson, Hadfield, Hughes & Poole) 99

Tricarboxylic acid cycle enzymes in *Saccharomyces carlsbergensis*, effects of glucose repression and anaerobiosis on (Wales, Cartledge & Lloyd) 93

Trypanosoma brucei, sensitivity of normal and dyskinetoplastic strains to oligomycin (Miller & Klein) 391

Ultrastructure of the *Acholeplasma laidlawii*/antibody interaction (Vinthner) 451

Ureaplasma urealyticum, colony morphogenesis (Meloni, Bertoloni, Busolo & Conventi) 435

Urease-deficient mutant of *Aspergillus nidulans*, nickel requirement of (Mackay & Pateman) 249

Uridine starvation in *Escherichia coli*, transcription errors during (Sehgal & Das) 243

Vibrionaceae, fatty acid patterns in classification of (Bøe & Gjerde) 41

Virulence determinants in *Erwinia amylovora* (Bennett) 351

Virulence of *Erwina amylovora* and extracellular polysaccharide production (Bennett & Billing) 341