Formation, Isolation and Characterization of Trehalose Dimycolates from *Rhodococcus erythropolis* Grown on *n*-Alkanes

By PETER RAPP, HANS BOCK, VICTOR WRAY AND FRITZ WAGNER

Gesellschaft für Biotechnologische Forschung mbH, 3300 Braunschweig-Stockheim, Lehrstuhl für Biochemie und Biotechnologie der Universität Braunschweig, Federal Republic of Germany

(Received 18 June 1979)

Rhodococcus erythropolis DSM 43215 produced a surface-active trehalose lipid whose formation was induced by *n*-alkanes to a maximum of 2.1 g l\(^{-1}\) in a 50 l batch culture on 2\% (w/v) *n*-alkanes of chain length C\(_{12}\) to C\(_{18}\). The glycolipid was extracted from the biomass with *n*-hexane and was purified by repeated chromatography on silica gel. It contained \(\alpha,\alpha\)-trehalose as the sole non-reducing sugar. The lipid moiety was characterized by \(^{13}\)C nuclear magnetic resonance spectroscopy and mass spectrometry and consisted predominantly of saturated long-chain \(\alpha\)-branched \(\beta\)-hydroxy fatty acids (mycolic acids) ranging from C\(_{32}\)H\(_{64}\)O\(_{3}\) to C\(_{38}\)H\(_{76}\)O\(_{3}\), of which C\(_{34}\)H\(_{68}\)O\(_{3}\) and C\(_{35}\)H\(_{70}\)O\(_{3}\) predominated. The molar ratio of trehalose to mycolic acids was 1:2. \(^{13}\)C nuclear magnetic resonance analysis of the \(O\)-hexamethyltrehalose obtained by saponification of the permethylated trehalose dimycolates revealed, with the aid of deuterium exchange, that the ester linkages of mycolic acids are to both primary alcohol groups at the C-6 and C-6' positions of the trehalose.

INTRODUCTION

Mycolic acids are long-chain \(\alpha\)-branched \(\beta\)-hydroxy fatty acids that are found as cell wall constituents of mycobacteria, nocardiae and corynebacteria (Kanetsuna & Bartoli, 1972; Goodfellow et al., 1976; Minnikin et al., 1975; Minnikin & Goodfellow, 1976). They are also part of the so-called ‘cord factors’, trehalose 6,6'-dimycolates, which are formed by certain actinomycetes and coryneform bacteria. The size and structure of the mycolic acids in the cord factors vary according to the source of the trehalose lipid (Lederer, 1976; Asselineau & Asselineau, 1978). The number of carbon atoms in the mycolic acid residues ranges from C\(_{70}\) to C\(_{90}\) in the cord factors of mycobacteria (Lederer, 1967) to C\(_{28}\) to C\(_{32}\) in those of *Corynebacterium diphtheriae* (Senn et al., 1967). From the emulsion layer of *Arthrobacter paraffineus* grown on *n*-alkane, trehalose dimycolates were isolated with mycolic acid residues of unknown substitution pattern with a composition ranging from C\(_{28}\) to C\(_{38}\) (Suzuki et al., 1969). The present interest in trehalose lipids has centred almost exclusively on mycobacterial cord factors, because of their toxic properties (Lederer, 1976; Barksdale & Kim, 1977). During recent work on oil recovery from subterranean formations employing flooding water with a non-ionic surfactant (Wagner et al., 1978; Rapp et al., 1977) and on the uptake of hydrocarbons by bacteria (Rapp & Wagner, 1976), a surface-active trehalose lipid was found in the culture broth of a *Rhodococcus erythropolis* strain grown on *n*-alkanes. The formation, isolation and characterization of the glycolipid, 6,6'-trehalose dimycolate, are described in this paper.
METHODS

Organism and growth. Rhodococcus erythropolis DSM 43215 was isolated from an oil-containing soil sample and identified by R. M. Kroppenstedt. Previously the bacterium had been tentatively called Nocardia rhodochrous (Rapp & Wagner, 1976; Rapp et al., 1977; Wagner et al., 1978). It was grown at 30 °C in the following media. Medium A (pH 7.0), used for agar slants, was similar to medium C, except that agar (20 g l⁻¹) and (NH₄)₂HPO₄ (1·5 g l⁻¹) were added and (NH₄)₂SO₄, CaCl₂ and FeCl₃ were omitted. Medium B (pH 7.0), used for shake-flask cultures, had the same composition as medium A except that agar was omitted. Medium C (pH 6·8), used for 10 and 50l batch cultivations, contained (g l⁻¹ in deionized water): ZnSO₄·7H₂O, 11·0; MnSO₄·H₂O, 6·0; FeSO₄·7H₂O, 1·0; CoSO₄·7H₂O, 1·0; CaCl₂·2H₂O, 0·05; FeCl₃·6H₂O, 0·02; and trace metal stock solution, 1 ml l⁻¹. Trace metal stock solution (pH 7·0), used for shake-flask cultures, had the same composition as medium A except that agar was omitted.

The culture was aerated at 1·0 vol. air (vol. liquid)⁻¹ min⁻¹ and stirred at 300 rev. min⁻¹. The pH was automatically controlled at 6·8 by addition of 3·8 M-NH₃OH.

For large-scale production of trehalose lipid, a 91 l batch culture, grown as described above for 16 h on medium C with 2% (w/v) n-alkanes (chain length C₁₂ to C₁₈), was inoculated into 41 l medium C supplemented with 2% (w/v) n-alkanes (C₁₂ to C₁₈) contained in an 80l fermenter (type b50, Giovanola Frères, Monthey, Switzerland) equipped with a turbine system of two 6-flat-bladed impellers. The culture was aerated at 1·66 vol. air (vol. liquid)⁻¹ min⁻¹ and stirred at 300 rev. min⁻¹. The pH was automatically controlled at 6·8 by addition of 3·8 M-NH₃OH.

Determination of O₂ and CO₂ in the outlet air. O₂ and CO₂ in the exit stream of the fermenter were monitored by a paramagnetic oxygen analyser (Oxygor; Maihak, Hamburg, F.R.G.) and a non-dispersive infrared photometer (Unor; Maihak). The range of O₂ concentration for analysis was chosen between 19 and 21% and the measuring range of CO₂ concentration was set from 0 to 5%.

Determination of cell growth. Culture broth (10 ml) was thoroughly mixed with 10 ml ethanol/butan-1-ol/chloroform (10:10:1, by vol.) and centrifuged at 9600 g for 20 min; the pellet was washed with 10 ml water and dried at 50 °C under reduced pressure to a constant weight.

Determination of the trehalose lipid content. The formation of the trehalose lipid was followed by extracting the culture broth or biomass three times with chloroform/methanol (2:1, v/v) or n-hexane. The extract was washed twice with water and the sugar content was determined by the anthrone method (Hodge & Hofreiter, 1962) using trehalose as standard.

Saponification. Trehalose lipid and its derivatives (about 400 mg) were dissolved in diethyl ether (10 ml) and treated with 0·5 mol NaOH in 90% ethanol (15 ml) for 12 h at 60 °C. After the addition of water (10 ml), the organic solvent layer was separated and then evaporated. The residue was acidified with HCl and extracted with diethyl ether. This procedure separated the fatty acids from the sugars. The fatty acids were purified by thin-layer chromatography with solvent system B (see below). The aqueous solution containing sugar was desalted by ion-exchange chromatography using a mixed bed of Amberlite IRA-400 (OH⁻ form) and IR-120 (H⁺ form).

Acid hydrolysis. Trehalose was hydrolysed in 0·5 M-H₂SO₄ at 90 °C under N₂ for 6 h. BaCO₃ was then added to neutralize the acid and the resulting solution (of glucose) was desalted by ion-exchange chromatography, as described for saponification.

Trimethylsilylation, methylation and acetylation. Trimethylsilyl derivatives of the sugars were prepared as described by Brobst (1972) and the trehalose lipid by the method of Kamerling et al. (1970).

Methyl esters of mycolic acid were prepared with diazomethane. Permethylation of the trehalose lipid was carried out by a modified method of Ionescu et al. (1970). The dimethylformamide used for this procedure was dried by refluxing with calcium hydride for 2 h followed by distillation under dry N₂. Trehalose lipid (1·65 g) was dissolved in the dry dimethylformamide (30 ml) and sodium hydride (0·5 g) in iodomethane (10 ml) was added; the reaction mixture was agitated at 50 °C under dry N₂ for 3·5 h. The methylated products were extracted with chloroform, washed with water and precipitated with methanol. The methylated
Trehalose dimycolates from Rhodococcus

Trehalose lipid was dissolved in n-hexane/diethyl ether (3:2, v/v) and further purified by column chromatography on silica gel 60 (30 cm x 2 cm diam., 230 to 400 mesh, ASTM, Merck). Elution with n-hexane/diethyl ether (3:2, v/v) was followed by thin-layer chromatography with solvent system C (see below). In this way 50% of the trehalose lipid was permethylated and the remaining partially methylated products were again subjected to the methylation procedure.

The mycolic acids were permethylated by the method of Hakomori (1964) using methylsulphinylcarbanion (Corey & Chaykovsky, 1962). The methylated products were precipitated with cold acetone and purified by thin-layer chromatography with solvent system C. In this way 50% of the mycolic acids were permethylated; the non- and partially methylated acids were subjected once more to the methylation procedure.

Thin-layer chromatography. Thin-layer chromatography (t.l.c.) was performed on Merck silica gel 60 and 60 F254 plates. For analytical purposes the silica gel was 0.25 mm thick, and for preparative plates it was 2 mm thick. The trehalose lipid, its derivatives and related compounds were chromatographed with the following solvent systems: the trehalose lipid with solvent system A, chloroform/methanol/water (65:15:2, by vol.); mycolic acids with solvent system B, chloroform/propan-2-ol/glacial acetic acid (70:5:1, by vol.); permethylated trehalose lipid and O-methyl fatty acid methyl esters with solvent system C, petroleum ether (b.p. 60 to 80 °C)/diethyl ether/acetone (80:30:10, by vol.); mono- and disaccharides with solvent system D, propan-2-ol/water (85:15, v/v). Sugars, trehalose lipid and the corresponding derivatives were detected by spraying with anisaldehyde/H2SO4 reagent (Krebs et al., 1967). Mycolic acids and their derivatives were detected by spraying with 2,7-dichlorofluorescein/molybdic phosphoric acid reagent or 50% (w/v) H2SO4 (Krebs et al., 1967).

Gas-liquid chromatography. Gas-liquid chromatography (g.l.c.) of trimethylsilylated (TMS) sugars was carried out with a Perkin Elmer gas chromatograph M900 equipped with a flame ionization detector. A stainless-steel column (200 cm x 0.27 cm diam.) packed with 1% SE 52 on Chromosorb G was used. The column was operated for the chromatography of TMS-glucose at 120 °C and for analysis of TMS-trehalose at 190 °C with a N2 flow rate of 50 ml min⁻¹. G.l.c. analysis of the O-methyl mycolic acid methyl esters was performed with a Hewlett Packard 5700A gas chromatograph fitted with a flame ionization detector and a stainless-steel column (180 cm x 0.27 cm diam.) packed with 10% SE 30 on Chromosorb W. The column was operated at 300 °C with a N2 flow rate of 29 ml min⁻¹. Peak area measurements were made with an Autoslab system IV computing integrator (Spectra Physics).

Mass spectrometry. Mass spectra were recorded using an A.E.I. MS-9 instrument operated at 8 kV accelerating voltage and 70 eV ionizing voltage. Samples were inserted directly into the ion source at the minimum temperature.

13C nuclear magnetic resonance (n.m.r.) spectroscopy. Proton noise and single frequency off-resonance proton decoupled (SFORD) 13C n.m.r. spectra were obtained in the Fourier transform mode with a Varian XL-100-12 spectrometer at 25.16 MHz and locked to the deuterium resonance (15-40 MHz) of the solvent, CDCl3. The instrument was interfaced to a Varian 620-L computer equipped with a moving head disc together with complementary software. Peak positions were considered to be accurate to better than 0.04 p.p.m. Tetramethylsilane was used as internal standard. For the 13C n.m.r. spectra of O-hexamethyltrehalose, hexadeuterodimethyl sulphoxide was used as solvent.

RESULTS

Formation of trehalose lipid by Rhodococcus erythropolis

In a 50 l batch culture of Rhodococcus erythropolis on 2% (w/v) n-alkanes (chain length C12 to C18) growth started almost immediately whereas the trehalose lipid formation showed a lag phase of about 4 h (Fig. 1). Large clumps of bacteria were observed after about 10 h which retarded and finally stopped growth and trehalose lipid formation. This cessation of growth was shown by a sharp drop in QO2 and QCO2 values (Fig. 1). When the largest clumps had disintegrated to much smaller cell aggregates after about 20 h, growth and trehalose lipid formation recommenced and after 40 h reached maximal amounts of 19 g dry wt cells l⁻¹ and 2.1 g trehalose lipid l⁻¹. When the organism was grown in 10 l batch cultures for 4 d with 2% (w/v) glucose or glycerol as carbon source, the trehalose lipid concentration never exceeded 0.4 to 0.8 mg l⁻¹. This indicates that the formation of trehalose lipid by Rhodococcus erythropolis is probably induced by n-alkanes.
Isolation and purification of trehalose lipid

The biomass was extracted with *n*-hexane until no further trehalose lipid could be removed; this was checked by t.l.c. with solvent system A. The viscous residue obtained by evaporation of the *n*-hexane at 30 °C under reduced pressure was dissolved in a small amount of chloroform and applied to a silica gel 60 column (25 cm × 15 cm diam., 70 to 230 mesh, ASTM, Merck). Residual *n*-alkanes and possible other non-polar compounds, as well as a yellow pigment, were eluted with 2 bed vol. chloroform, followed by 2 bed vol. chloroform/acetone (2:1, v/v). Trehalose lipid was finally eluted with acetone, the elution being followed by the anthrone reaction (Hodge & Hofreiter, 1962) and t.l.c. with solvent system A. After removing the acetone by evaporation at 30 °C under reduced pressure, trehalose lipid was dissolved in a small amount of chloroform/acetone (2:1, v/v) and chromatographed on a silica gel 60 column (33 cm × 2 cm diam., 230 to 400 mesh, ASTM, Merck) with chloroform/acetone (2:1, v/v). The elution was followed as described above. Purified trehalose lipid was also obtained by dissolving the lipid-containing residue, obtained after the first chromatography on silica gel, in chloroform and precipitating the trehalose lipid by adding acetone dropwise. The purified trehalose lipid, examined by t.l.c. with solvent system A, showed a single spot with an *R*_F value of 0.46. It melted at 89 to 91 °C and had a specific rotation [α]₅₈₉ of +78.6°.

Nature of the sugar moiety

The positive reaction of the purified compound with the anthrone reagent (Hodge & Hofreiter, 1962) suggested that one of its components was a carbohydrate. The lipid was therefore saponified and the water-soluble fraction was analysed for sugars. No reducing sugars were detected by the 3,5-dinitrosalicylic acid method (Brunner, 1964) and t.l.c. revealed trehalose to be the sugar moiety of the glycolipid. Further evidence that α,α-trehalose is a constituent of the glycolipid was provided by g.l.c. of the trimethylsilylated sugar moiety. This finding was confirmed by acidic hydrolysis of the carbohydrate moiety;
Table 1. 13C nuclear magnetic resonance signals of mycolic acid methyl esters

<table>
<thead>
<tr>
<th>13C chemical shift (p.p.m.)</th>
<th>Multiplicity in SFORD spectrum*</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.26</td>
<td>s</td>
<td>-CH-CH-COOCH$_3$ H OH</td>
</tr>
<tr>
<td>72.36</td>
<td>d</td>
<td>-CH-CH-COOCH$_3$ H OH</td>
</tr>
<tr>
<td>51.46</td>
<td>q</td>
<td>-CH-CH-COOCH$_3$ H OH</td>
</tr>
<tr>
<td>51.12</td>
<td>d</td>
<td>-CH-CH-COOCH$_3$ H OH</td>
</tr>
<tr>
<td>35.71</td>
<td>t</td>
<td>-CH$_3$-CH-CH-</td>
</tr>
<tr>
<td>31.99</td>
<td>t</td>
<td>-CH$_3$-CH$_2$-CH$_3$</td>
</tr>
<tr>
<td>30.38-29.77</td>
<td>t</td>
<td>-CH$_2$-CH$_2$-CH$_2$-</td>
</tr>
<tr>
<td>27.50</td>
<td>t</td>
<td>-CH-CH-COOCH$_3$ H OH</td>
</tr>
<tr>
<td>25.78</td>
<td>t</td>
<td>-CH$_3$-CH$_2$-CH-</td>
</tr>
<tr>
<td>22.74</td>
<td>t</td>
<td>-CH$_3$-CH$_2$-CH$_3$</td>
</tr>
<tr>
<td>14.12</td>
<td>q</td>
<td>-CH$_3$-CH$_2$-CH$_3$</td>
</tr>
</tbody>
</table>

* s, Singlet; d, doublet; t, triplet; q, quartet.

The sugar obtained exhibited reducing properties and was identified as D-glucose by t.l.c. and g.l.c.

The 13C n.m.r. shifts of the hexamethyltrehalose derivative (Table 4) were compatible with these findings. Thus, the observation of only six signals (Table 4, also see later) confirmed that the disaccharide is made up of two identical monosaccharide units with either an α,α or β,β inter-ring linkage. Comparison can be made with previous 13C n.m.r. data for the α,α- and β,β-trehalose octa-acetates (Schilling et al., 1975). As the γ and longer range effects of methylation and acetylation on 13C shifts are similar (Bremser et al., 1978) (to ± 1 p.p.m., compare butan-1-ol, butyl methyl ether and butylacetate), the shift of C-1 of 92.4 p.p.m. corresponds to an α,α inter-ring linkage (β,β linkage would give a shift of 97 ± 1 p.p.m.).

Nature of the lipid moiety

The lipophilic components of the trehalose lipid were isolated, after saponification, as free acids and purified by t.l.c. with solvent system B (R_F 0.42). The specific optical rotation $[\alpha]_{D}^{25}$ (CHCl$_3$) was +8.4°. The fatty acids were esterified with diazomethane, purified by t.l.c. with solvent system C (R_F 0.24) and analysed by 13C n.m.r. spectroscopy and mass spectrometry.

The signals in the 13C n.m.r. spectra were assigned from their multiplicity in the SFORD 13C spectra which immediately allowed the identification of the carbons as either methyl (quartet), methylene (triplet), methine (doublet) or quaternary (singlet) carbons. Comparison of the shifts with literature data (Bremser et al., 1978; Stothers, 1972) allowed the assignments given in Table 1 to be made and indicated the presence of a carboxylic acid methyl ester group, branching at the α-carbon and a hydroxyl group in the β-position. The spectra also showed many methylene signals and two different methyl signals. In several preparations of various derivatives a minor peak at 130.0 p.p.m. was observed and was
attributable to a double-bond in the side-chain. From these results we concluded that the major component of the lipid moiety consisted of saturated mycolic acids. These acids are long-chain saturated fatty acids with an alkyl branch in the 2-position and a hydroxyl group in the 3-position.

The mass spectral data were consistent with these conclusions. Thus mass spectral fragmentation of O-methyl mycolic acid methyl ester ($R_F 0.54$, solvent system C) caused cleavages as summarized in the following scheme:

The mass spectrum of the permethylated mycolic acids is shown in Fig. 2 and the peaks obtained are summarized in Table 2. Molecular ions were absent and the highest peaks corresponded to $M - 31 \left[R_2-\text{CH(OCH}_3\text{)}-\text{CH(R}_4\text{)}-\Phi\right]$ and $M - 32$ [anhydromycolic acid methyl ester]. The overall composition of the mycolic acids was derived from the peaks $M - 31$ and $M - 32$ and is represented by a homologous series ranging from $C_{32}H_{64}O_3$ to $C_{38}H_{70}O_3$. The two series of peaks attributable to fragments $a + H$ and b give the composition of the side-chain R_1, represented by the homologous series $C_{8}H_{17}$ to $C_{14}H_{29}$. The composition of the main-chain R_2 was derived from a series of peaks from m/e 311 to 409, which corresponded to the homologous series $C_{19}H_{39}$ to $C_{26}H_{53}$ for R_2.

Fig. 2. Mass spectrum of permethylated mycolic acids.
Table 2. Peaks in the mass spectra of permethylated mycolic acids

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Fragment of the side-chain</th>
<th>Composition of the main-chain</th>
<th>M - 31</th>
<th>M - 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a + H^*) (m/e)</td>
<td>(b^\dagger) (m/e)</td>
<td>(a^\prime) (m/e)</td>
<td>(R_1)</td>
<td>(R_2)</td>
</tr>
<tr>
<td>186</td>
<td>229</td>
<td>C_{16}H_{17}</td>
<td>311</td>
<td>C_{19}H_{39}</td>
</tr>
<tr>
<td>200</td>
<td>243</td>
<td>C_{16}H_{19}</td>
<td>325</td>
<td>C_{20}H_{41}</td>
</tr>
<tr>
<td>214</td>
<td>257</td>
<td>C_{16}H_{21}</td>
<td>339</td>
<td>C_{20}H_{43}</td>
</tr>
<tr>
<td>228</td>
<td>271</td>
<td>C_{16}H_{23}</td>
<td>353</td>
<td>C_{22}H_{45}</td>
</tr>
<tr>
<td>242</td>
<td>285</td>
<td>C_{16}H_{25}</td>
<td>367</td>
<td>C_{24}H_{47}</td>
</tr>
<tr>
<td>256</td>
<td>299</td>
<td>C_{17}H_{27}</td>
<td>381</td>
<td>C_{25}H_{49}</td>
</tr>
<tr>
<td>270</td>
<td>313</td>
<td>C_{18}H_{29}</td>
<td>395</td>
<td>C_{25}H_{51}</td>
</tr>
</tbody>
</table>

\(a = R_1 + C_2H_2O_4, \quad b = a + C_2H_2O, \quad a^\prime = R_1 + C_2H_4O. \quad \dagger \quad M = a + a'.\)

Since the relative proportions of the mycolic acids could not be determined exactly by mass spectrometry, the permethylated mycolic acids were analysed by g.l.c. As shown in Table 3, the predominant mycolic acids were C_{34}H_{68}O_3 and C_{35}H_{70}O_3 with smaller amounts of C_{36}H_{72}O_3. In the mass spectrum of O-methyl mycolic acid methyl esters (Fig. 2), the most intense peaks were at m/e 339 and 353 representing the most abundant main-chains (R_2) C_{35}H_{70} and C_{32}H_{45}. The peaks at m/e 257, 271 and 285 were the most intense peaks attributable to fragments which corresponded to the side-chain (R_1) and represented C_{10}H_{22}, C_{11}H_{24} and C_{12}H_{26}. Thus, the predominant mycolic acids, C_{34}H_{68}O_3 and C_{35}H_{70}O_3, have the following chain lengths:

\[
\text{CH}_2 - (\text{CH}_2)_m - \text{CH} - \text{OH} - \text{CH} - \text{COOH} \quad m = 20 \text{ to } 21
\]

\[
\text{CH}_2 - (\text{CH}_2)_n - \quad n = 9 \text{ to } 11
\]

Permethylated trehalose lipid

The mass spectrum of the permethylated trehalose lipid (R_F 0.47, solvent system C) is shown in Fig. 3. No molecular ions were visible. The fragmentation of the trehalose lipid derivative was initiated by the cleavage of the glycosidic bond leading to the rather stable oxonium ions:

\[
\begin{align*}
\text{CH}_3 - (\text{CH}_2)_m - \text{CH} - \text{CH} - \text{COOH} - \text{CH}_2 \\
\text{CH}_3 - (\text{CH}_2)_n - \quad n = 9 \text{ to } 11
\end{align*}
\]

The homologous series of fragments m/e 697, 711, 725, 739, 753, 767 and 781 represent oxonium ions with m + n = 27, 28, 29, 30, 31, 32 and 33, consisting of esters of methylated mycolic acids, listed in Table 2, and a permethylated glucose lacking the hydroxyl group at C-1. The fragments of the homologous series m/e 665, 679, 693, 707, 721, 735 and 749 resulted from the loss of methanol from the oxonium ion illustrated above. This methanol was either eliminated from the mycolic acid part giving rise to an \(\alpha,\beta\)-unsaturated ester or from the sugar moiety leading to a double-bond, probably between C-3 and C-4.
Table 3. Composition of the mycolic acids of the trehalose lipid

<table>
<thead>
<tr>
<th>Mycolic acid</th>
<th>Percentage of total mycolic acids*</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆H₁₄O₂</td>
<td>3.7</td>
</tr>
<tr>
<td>C₆H₁₆O₂</td>
<td>13.0</td>
</tr>
<tr>
<td>C₈H₁₆O₂</td>
<td>24.2</td>
</tr>
<tr>
<td>C₁₀H₁₆O₂</td>
<td>26.0</td>
</tr>
<tr>
<td>C₁₂H₁₈O₂</td>
<td>19.2</td>
</tr>
<tr>
<td>C₁₄H₂₀O₂</td>
<td>10.2</td>
</tr>
<tr>
<td>C₁₆H₂₂O₂</td>
<td>3.7</td>
</tr>
</tbody>
</table>

* Percentage of permethylated mycolic acids was determined by g.l.c.

Fig. 3. Mass spectrum of the permethylated trehalose lipid.

homologous series of peaks m/e 493, 507, 521, 535, 549, 563 and 577 were attributable to fragments

\[
\text{OCH}_3 \rightarrow \text{CH} \rightarrow (\text{CH}_2)_m \rightarrow \text{CH} \rightarrow \text{CH} \rightarrow \text{C} = \text{O} \quad m + n = 27 \text{ to } 33
\]
Trehalose dimycolates from Rhodococcus 499

and another series at m/e 461, 475, 489, 503, 517, 531 and 545 corresponding to fragments

\[
\text{CH}_3 \rightarrow (\text{CH}_2)_m \rightarrow \text{CH} = \text{C} \rightarrow \text{C} \rightarrow \text{O} \quad m + n = 27 \text{ to } 33
\]

confirmed the composition of the mycolic acids as represented in Table 2. The composition of the side-chain of the mycolic acids was further confirmed by a homologous series of peaks at m/e 326, 340, 354, 368, 382, 396 and 410 corresponding to fragments

Some peaks due to fragment \(a'\) could also be observed, but the complete homologous series of peaks ranging from m/e 311 to 409 was seen more clearly in the mass spectrum of the permethylated mycolic acids (Fig. 2, Table 2). In the lower mass part of the mass spectrum of the permethylated trehalose lipid a series of peaks could be seen at m/e 88, 101, 127, 141, 155, 173, 187 and 205, which were attributable to glucose fragments (Radford & De Jongh, 1972; Ioneda et al., 1970).

Molar ratio of trehalose to mycolates

The chemical composition of trehalose lipid, determined by elementary analysis, was 71.0% C, 11.49% H and 17.51% O, leading to the formula \(C_{81.12}H_{15.81}O_{15}\). Thus, the molar ratio of trehalose to mycolic acids was 1:2, taking into account that the most abundant mycolic acids were \(C_{34}H_{68}O_9\) and \(C_{30}H_{70}O_9\).

Ester linkages of the mycolic acids to trehalose

The absence of the peak at m/e 219 attributable to

and the presence of a peak at m/e 205 corresponding possibly to

in the mass spectrum of permethylated trehalose lipid (Fig. 3) was evidence for the esterification of one mycolic acid to each glucose moiety of the trehalose. The ion of m/e 101 was
shown by Kochetkov et al. (1963) and Radford & De Jongh (1972) to consist mainly of C-2, C-3 and C-4 of a permethylated glucose with the suggested structure CH$_2$O = CH-CH = CH-OCH$_3$, and the ion of m/e 88 was assumed to be composed predominantly of C-2 and C-3 of a permethylglucose with the possible structure CH$_2$O-CH-CH = OCH$_3$. The appearance of both peaks in the mass spectrum of the permethylated trehalose lipid might therefore be taken as an indication for the ester linkages of the mycolic acids at C-6 and C-6' of the trehalose.

A final proof for the position of the ester linkages was provided by 13C n.m.r. spectroscopy. The permethylated trehalose lipid was saponified and the trehalose moiety obtained had two free alcohol groups; these were investigated with the aid of ROH to ROD exchange in hexadeuterodimethyl sulphoxide as solvent. Comparison of the spectra obtained before and after shaking the solution with D$_2$O showed that one signal had moved upfield by 0.15 p.p.m. (Table 4). This is characteristic of the effect of exchanging protons for deuterium atoms, with two-bond deuterium isotope effects across hetero-atoms being larger than longer range effects (Ladner et al., 1975; Kurobane et al., 1978). This signal was a triplet in the SFORD spectrum and thus corresponds to carbons C-6 and C-6' of the trehalose. Thus, the acyl linkages in the trehalose lipid must be to both primary alcohol groups at the C-6 and C-6' positions of the trehalose moiety. The structure of the trehalose lipid is shown in Fig. 4.
DISCUSSION

Growth and trehalose lipid concentration in a 501 batch culture of *Rhodococcus erythropolis* DSM 43215 with *n*-alkanes as carbon source did not increase steadily as reported for *Arthrobacter paraffineus* grown on *n*-alkanes (Suzuki *et al*., 1969). Clumping of bacteria impeded the uptake of dissolved oxygen and other nutrients by the cells and thus retarded growth and trehalose lipid formation. When the clumps disintegrated to smaller aggregates, growth and trehalose lipid concentration again increased. The subsequent decrease in cell concentration might have been due to cell lysis. The decline in trehalose lipid was probably due to its metabolism; this decline correlated with the Q_{o_2} and Q_{co_2} values. The clumping of *R. erythropolis* cells grown on *n*-alkanes may be compared to a certain extent with the formation of flocs during the cultivation of *Candida tropicalis* on *n*-hexadecane (Einsele *et al*., 1973; Blanch & Einsele, 1973). However, the clumps formed by *R. erythropolis* DSM 43215 after 10 to 20 h cultivation were much larger than those from *C. tropicalis* formed under the same conditions of *n*-alkane concentration, aeration and agitation. Indeed, the smaller cell aggregates of *R. erythropolis*, formed by disintegration of the large clumps after about 20 h, were of comparable size to the flocs of *C. tropicalis* (Kretschmer, personal communication).

The trehalose lipid formed by *R. erythropolis* is probably located in the periphery of the cells since it was easily removed from the cells by extraction with *n*-hexane. This solvent extracted fewer unwanted compounds than the often-used chloroform/methanol mixture (Bock, 1979). The yellow pigment extracted together with the trehalose lipid appeared to be a carotenoid on the basis of its ultraviolet spectrum.

The trehalose lipid from *R. erythropolis* can drastically decrease the interfacial tension between *n*-alkane and water, even when it is at a very low concentration (Rapp *et al*., 1977). This, and the probable induction of trehalose lipid formation by *n*-alkanes, suggests that trehalose dimycolates may play a role in the uptake of *n*-alkanes by *R. erythropolis*. Suzuki *et al.* (1969) have previously suggested such an involvement of the trehalose lipid in the uptake of hydrocarbons by *Arthrobacter paraffineus* and some other *n*-alkane-utilizing bacteria. Using highly purified trehalose dimycolates we found that for the emulsification and stabilization of an *n*-alkane/water emulsion at least one additional compound was necessary. This might possibly be a protein-like substance similar to the protein activator formed together with a rhamnolipid by *Pseudomonas aeruginosa* when growing on *n*-alkanes (Hisatsuka *et al*., 1971, 1972, 1975, 1977). Also two rhamnolipids isolated by Yamaguchi *et al.* (1976) from culture filtrates of a *Pseudomonas* sp. exhibited a strong emulsifying activity in an oil-in-water system.

13C n.m.r. spectroscopy and mass spectrometry indicated that the trehalose lipid formed by *R. erythropolis* DSM 43215 is a diester of α,α'-trehalose linked in the C-6 and C-6' positions to mycolic acids ranging from $C_{32}H_{64}O_{3}$ to $C_{38}H_{78}O_{3}$. The arrangement of the different mycolic acids in the diesters could not be determined as no molecular peaks in the mass spectra of the permethylated trehalose dimycolates were detected. It was not possible, therefore, to ascertain whether the diesters were homogeneous (containing two identical acids per trehalose unit) or heterogeneous (containing two different acids per trehalose unit). Nor was it possible to determine the number of different trehalose dimycolates in the mixture.

Ioneda *et al.* (1970) have also isolated trehalose dimycolates with saturated and mono-unsaturated acids ranging from $C_{38}H_{76}O_{3}$ to $C_{46}H_{86}O_{3}$ from a strain labelled *Nocardia rhodochrous* grown on glycerol. This organism may possibly also belong to the genus *Rhodococcus* according to the new classification proposed for actinomycetes previously included in the 'rhodochrous' complex (Goodfellow & Alderson, 1977). In glucose-grown cells of *Nocardia erythropolis*, a strain which probably belongs to the taxon *Rhodococcus erythropolis* (Goodfellow & Alderson, 1977), Yano *et al.* (1971) found a compound whose R_F value after two-dimensional t.l.c. coincided with that of the cord factor of *Mycobacterium tuberculosis*.

Trehalose dimycolates from Rhodococcus 501
Trehalose dimycolates comparable in size with those isolated here were extracted from *Nocardia asteroides* (Ioneda *et al.*, 1970) and *Corynebacterium diphtheriae* (Ioneda *et al.*, 1963). The trehalose lipid extracted from *N. asteroides* contained saturated and mono-unsaturated mycolic acids ranging from \(C_{32}H_{66}O_3\) to \(C_{36}H_{72}O_3\) (Ioneda *et al.*, 1970) while the trehalase dimycolate from *C. diphtheriae* contained saturated and mono-unsaturated \(C_{32}\) mycolic acids (Ioneda *et al.*, 1963). Glycolipids with \(C_{32}\) mycolic acids, but esterified at the C-6 of a glucose instead of trehalose, were also detected in both *C. diphtheriae* and *Mycobacterium smegmatis* when grown on glucose (Brennan *et al.*, 1970). Okazaki *et al.* (1969) isolated a similar acylglucose, consisting of a di-unsaturated \(C_{36}\) mycolic acid esterified at the C-6 position of the glucose, from an oleic acid-requiring mutant of *Brevibacterium thio genitalis* cultivated on glucose.

We thank Mrs E. Laude and Mrs J. Günther for their skilful technical assistance. This paper is dedicated to Professor Dr H. Pommer (BASF, Ludwigshafen) on the occasion of his 60th birthday.

REFERENCES

Trehalose dimycolates from Rhodococcus

