Effect of Bacteriophage C5 on Ultraviolet Light Survival in Pseudomonas aeruginosa

By C. D. DIRCKZE, P. R. LEHRBACH AND B. T. O. LEE
Department of Genetics, University of Melbourne, Parkville, Victoria 3052, Australia

(Received 7 November 1978)

Bacteriophage C5 of Pseudomonas aeruginosa is able to reactivate ultraviolet (u.v.)-irradiated phage E79 in coinfection experiments and decrease the u.v.-sensitivity of a host-cell reactivation deficient mutant. These properties suggest that phage C5 has a gene(s) which is involved in the repair of u.v.-damaged DNA. The isolation of two u.v.-sensitive mutants of C5 supports this hypothesis.

INTRODUCTION

The survival of a bacteriophage following ultraviolet (u.v.) irradiation is mainly dependent on the capacity of the host cell systems that repair the u.v.-damaged DNA. Some bacteriophages, however, are able to repair u.v.-induced damage by a phage-coded enzymic dark repair system. In the case of the Escherichia coli bacteriophage T4, at least three bacteriophage-coded genes – v (Harm, 1963), x (Harm, 1963) and y (Boyle & Symonds, 1969) – have been implicated in the repair of u.v.-damaged DNA. The v-gene codes for an endonuclease which carries out the incision step of excision repair (Yasuda & Sekiguchi, 1970; Friedberg & King, 1971). Furthermore, Harm (1968) has shown that the v-gene product does not discriminate between bacterial and phage DNA so that the u.v.-survival of E. coli strain B9–1 can be significantly increased following infection with heavily irradiated T4.

In this report we describe some properties of the Pseudomonas aeruginosa bacteriophage C5 (Bradley & Pitt, 1974) which affect the repair of u.v. damage in bacteriophage and bacterial DNA.

METHODS

Media and general culture procedures. These techniques have been described previously (Kung & Lee, 1973). Layer agar for bacteriophage assays was Bresch layer agar containing 1% (w/v) Bacto-tryptone, 0.5% (w/v) yeast extract, 0.05% (w/v) NaCl and solidified with 1.0% (w/v) agar.

Bacterial and bacteriophage strains. The standard wild-type strain is Pseudomonas aeruginosa PAO1 (ATCC 15692) (Holloway, 1955). Strain GMA918 was derived from PAO1 (Kung & Lee, 1973) by N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis and shows increased sensitivity to U.V. light and reduced ability to reactivate u.v.-treated phage E79; it is a selected member of phenotypic class 9 (Kung & Lee, 1973) and is considered to be a host-cell reactivation (hcr) mutant. Strain GMC161 was isolated by the method of Kropinski et al. (1977) as a spontaneous C5-resistant, E79-sensitive mutant of GMA918 and was used in coinfection experiments.

Bacteriophage C5 has been described by Bradley & Pitt (1974) and was obtained from G. A. Jacoby. Bacteriophage E79 has been described by Holloway et al. (1960).

Host-cell reactivation (hcr) experiments. In hcr experiments, a Tris/sodium/magnesium buffer (TNM) (Kung & Lee, 1973) suspension of the phage was exposed to various doses of u.v.-irradiation as previously described (Kung & Lee, 1973). The irradiated phage was then diluted and assayed on the appropriate test strains.

Recovery of u.v.-irradiated E79 by coinfection with heavily irradiated C5. An overnight (16 h at 37 °C)
Fig. 1. Host-cell reactivation of u.v.-irradiated phage E79 (■, ○) and phage C5 (□, △) on strains: ■, □, GMA918; ○, △, PAO1.

Fig. 2. Host-cell reactivation of u.v.-irradiated phage E79 on strains: □, PAO1; ■, GMA918; △, GMA918 plus heavily u.v.-irradiated phage C5 (200 J m⁻², survival 1 in 10⁸, m.o.i. 5 to 10); ▲, GMA918 plus heavily u.v.-irradiated mutant phage C5(101) (180 J m⁻², survival 1 in 10⁸, m.o.i. 5 to 10); ▼, GMA918 plus heavily u.v.-irradiated mutant phage C5(102) (180 J m⁻², survival 1 in 10⁸, m.o.i. 5 to 10).

A shaken broth culture of strain GMA918 was infected with phage E79, exposed to various doses of u.v. light, at a multiplicity of infection (m.o.i.) of 1 and coinfectected with heavily u.v.-irradiated (200 J m⁻²) bacteriophage C5 (survival 1 in 10⁸; m.o.i. 5 to 10). After 10 min incubation at 37 °C, to allow for phage adsorption, the cells were diluted and the survival of E79 was assayed on GMC161. Control experiments were performed in a similar manner, using the same suspension of phage E79 (m.o.i. 1) but no bacteriophage C5 was added.

U.v.-survival of GMA918 following infection with heavily irradiated C5. TNM buffer suspensions of GMA918 were exposed to various doses of u.v. light and immediately infected with heavily u.v.-irradiated (200 J m⁻²) bacteriophage C5 (survival 1 in 10⁸; m.o.i. 5 to 10). After 10 min incubation at 37 °C, the cells were diluted and assayed for survival on nutrient agar. Plates were incubated overnight at 37 °C before colony counts were made.

Bacteriophage mutagenesis. This procedure was used to isolate u.v.-sensitive mutants of phage C5. An overnight (16 h at 37 °C) shaken broth culture was centrifuged and resuspended in 1 ml citrate buffer (pH 5.8) and an equal volume of phage C5 (m.o.i. 1) was added. Immediately, NTG (100 µg ml⁻¹) was added and the suspension was incubated at 37 °C without shaking for 60 min. A sample was then withdrawn, diluted and plated on PAO1 to obtain C5 plaques. Individual plaques were picked and phage particles were suspended in 0.5 ml TNM buffer. Control and u.v.-irradiated phage were replica-plated on to prepared lawns of PAO1 and GMA918. Phage isolates showing increased sensitivity when plated on GMA918 but normal plating on PAO1 were further tested and characterized. Two u.v.-sensitive mutants of C5 designated by the strain numbers C5(101) and C5(102) were isolated.

RESULTS AND DISCUSSION

The survival of u.v.-irradiated phage C5 and E79 plated on host cells PAO1 (wild-type for repair) and a hcr mutant GMA918 are shown in Fig. 1. As previously described (Kung & Lee, 1973), GMA918 showed a greatly reduced ability to host-cell reactivate (hcr) u.v.-irradiated phage E79 compared with PAO1. This difference in hcr capacity was not shown for phage C5 where there was only a slight difference in the u.v.-survival curves on PAO1 and GMA918. The different u.v.-survival of phages C5 and E79 on GMA918 could be due to the
P. aeruginosa phage affecting u.v.-survival

Fig. 3. U.v.-survival of strain GMA918 following infection with heavily u.v.-irradiated phage: ●, C5; ▲, C5(101); ▼, C5(102); △, E79; □, no phage added.

Fig. 4. Host-cell reactivation of u.v.-irradiated phage C5 (○, □), C5(101) (▼, △) and C5 (102) (●, ■) on strains: ○, ●, ▼, PAO1; □, △, ■, GMA918.

The presence of phage-determined gene(s) in phage C5 which partially compensate for the repair deficiency of GMA918. To test this hypothesis, the survival of u.v.-irradiated phage E79 on both PAO1 and GMA918 as well as the u.v.-survival of GMA918 following infection with heavily u.v.-irradiated phage C5 was determined.

The survival of u.v.-irradiated phage E79 infecting GMA918 simultaneously infected with heavily u.v.-irradiated phage C5 (m.o.i. 5 to 10), the survival of u.v.-irradiated phage C5 singly infecting GMA918 and the survival of u.v.-irradiated phage E79 singly infecting GMA918 were determined (Fig. 2). The u.v.-survival of phage E79 in these experiments was determined on strain GMC161. The results show that simultaneous infection with heavily u.v.-irradiated C5 is able to increase the survival of u.v.-irradiated phage E79. Further evidence for the hypothesis that phage C5 determines a gene product(s) which may participate in the repair of u.v.-damaged DNA was obtained by determining the u.v.-survival of GMA918 infected with heavily u.v.-irradiated phage C5 (Fig. 3). Phage C5 considerably affects the survival of GMA918 at the u.v. doses tested, whereas infection with heavily u.v.-irradiated (180 J m⁻²) phage E79 (survival 1 in 10⁸; m.o.i. 5 to 10) had no effect on the u.v.-survival of GMA918. Therefore it seems likely that a gene product(s) determined by the phage C5 genome is able to modify the u.v.-survival of phage E79 on a hcr mutant and the u.v.-survival of GMA918; furthermore, such a phage function does not appear to be present in the phage E79 genome. The isolation of two u.v.-sensitive mutants of phage C5 provides further evidence that phage C5 contributes a gene product or products that participate in the repair of u.v.-damaged DNA. These mutant strains C5(101) and C5(102) showed increased u.v.-sensitivity when plated on GMA918 and to a lesser degree on PAO1 (Fig. 4). Furthermore, these mutants do not modify the u.v.-survival of u.v.-irradiated phage E79 (Fig. 2). Therefore phage C5 appears to have similar properties to the u.v.-resistant E. coli phage T4 which is able, under appropriate conditions, to increase the u.v.-survival of u.v.-irradiated phage T2 (Harm, 1961) and to effect the recovery of the u.v.-sensitive E. coli strain B₄₋₁ (Harm, 1968) following u.v.-irradiation.
Further studies will be initiated to define the mode of action of C5 gene(s) in the repair of u.v.-damaged DNA, its expression and the phage gene product(s) involved.

This work was supported by a Research and Training grant from the Australian Institute of Nuclear Science and Engineering.

REFERENCES


