1887

Abstract

The arbuscular mycorrhizal fungi (AMFs) are obligate root symbionts in the subphylum Glomeromycotina that can benefit land plants by increasing their soil nutrient uptake in exchange for photosynthetically fixed carbon sources. To date, annotated genome data from representatives of the AMF orders Glomerales, Diversisporales and Archaeosporales have shown that these organisms have large and highly repeated genomes, and no genes to produce sugars and fatty acids. This led to the hypothesis that the most recent common ancestor (MRCA) of Glomeromycotina was fully dependent on plants for nutrition. Here, we aimed to further test this hypothesis by obtaining annotated genome data from a member of the early diverging order Paraglomerales (). Genome analyses showed this species carries a 39.6 Mb genome and considerably fewer genes and repeats compared to most AMF relatives with annotated genomes. Consistent with phylogenies based on ribosomal genes, our phylogenetic analyses suggest as the earliest diverged branch within Glomeromycotina. Overall, our analyses support the view that the MRCA of Glomeromycotina carried hallmarks of obligate plant biotrophy. The small genome size and content of could either reflect adaptive reductive processes affecting some early AMF lineages, or indicate that the high gene and repeat family diversity thought to drive AMF adaptability to host and environmental change was not an ancestral feature of these prominent plant symbionts.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000810
2022-04-22
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/4/mgen000810.html?itemId=/content/journal/mgen/10.1099/mgen.0.000810&mimeType=html&fmt=ahah

References

  1. Schüßler A, Schwarzott D, Walker C. A new fungal phylum, the glomeromycota: phylogeny and evolution. Mycol Res 2001; 105:1413–1421
    [Google Scholar]
  2. Schüßler A, Walker C. Evolution of the ‘plant-symbiotic’ fungal phylum, Glomeromycota. In The Mycotota – Evolution of Fungi and Fungal-Like Organisms Heidelberg: Springer; 2011 pp 163–185 [View Article]
    [Google Scholar]
  3. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 2016; 108:1028–1046 [View Article] [PubMed]
    [Google Scholar]
  4. Smith SE, Read DJ. Mycorrhizal Symbiosis, 3rd edn. San Diego and London: Academic Press; 2008
    [Google Scholar]
  5. Beaudet D, Chen ECH, Mathieu S, Yildirir G, Ndikumana S et al. Ultra-low input transcriptomics reveal the spore functional content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal fungi. DNA Res 2018; 25:217–227 [View Article] [PubMed]
    [Google Scholar]
  6. Remy W, Taylor TN, Hass H, Kerp H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 1994; 91:11841–11843 [View Article] [PubMed]
    [Google Scholar]
  7. Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 2008; 6:763–775 [View Article] [PubMed]
    [Google Scholar]
  8. Newsham KK, Fitter AH, Watkinson AR. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 1995; 83:991–1000 [View Article]
    [Google Scholar]
  9. Boomsma CR, Vyn TJ. Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis?. Field Crops Res 2008; 108:14–31 [View Article]
    [Google Scholar]
  10. Ropars J, Toro KS, Noel J, Pelin A, Charron P et al. Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nat Microbiol 2016; 1:16033 [View Article] [PubMed]
    [Google Scholar]
  11. Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G et al. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol 2018; 220:1161–1171 [View Article] [PubMed]
    [Google Scholar]
  12. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA 2013; 110:20117–20122 [View Article] [PubMed]
    [Google Scholar]
  13. Sun X, Chen W, Ivanov S, MacLean AM, Wight H et al. Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts. New Phytol 2019; 221:1556–1573 [View Article] [PubMed]
    [Google Scholar]
  14. Morin E, Miyauchi S, San Clemente H, Chen ECH, Pelin A et al. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytol 2019; 222:1584–1598 [View Article]
    [Google Scholar]
  15. Kobayashi Y, Maeda T, Yamaguchi K, Kameoka H, Tanaka S et al. The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics 2018; 19:465 [View Article] [PubMed]
    [Google Scholar]
  16. Malar C M, Krüger M, Krüger C, Wang Y, Stajich JE et al. The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. Curr Biol 2021; 31:1570–1577 [View Article]
    [Google Scholar]
  17. Redecker D, Schüssler A, Stockinger H, Stürmer SL, Morton JB et al. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 2013; 23:515–531 [View Article] [PubMed]
    [Google Scholar]
  18. Montoliu-Nerin M, Sánchez-García M, Bergin C, Kutschera VE, Johannesson H et al. In-depth phylogenomic analysis of arbuscular mycorrhizal fungi based on a comprehensive set of de novo genome assemblies. Front Fungal Biol 2021; 2:53 [View Article]
    [Google Scholar]
  19. Yang W, Zhang M, Song F, Liu S, Li X et al. Comparative analysis of arbuscular mycorrhizal fungal communities between farmland and woodland in the black soil region of Northeast China. Agric 2021; 11:866
    [Google Scholar]
  20. Casazza G, Lumini E, Ercole E, Dovana F, Guerrina M et al. The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis. PLoS One 2017; 12:e0171866 [View Article] [PubMed]
    [Google Scholar]
  21. Barceló M, van Bodegom PM, Tedersoo L, den Haan N, Veen GFC et al. The abundance of arbuscular mycorrhiza in soils is linked to the total length of roots colonized at ecosystem level. PLoS One 2020; 15:e0237256 [View Article] [PubMed]
    [Google Scholar]
  22. Zhu X, Yang W, Song F, Li X. Diversity and composition of arbuscular mycorrhizal fungal communities in the cropland black soils of China. Glob Ecol Conserv 2020; 22:e00964 [View Article]
    [Google Scholar]
  23. Gosling P, Proctor M, Jones J, Bending GD. Distribution and diversity of Paraglomus spp. in tilled agricultural soils. Mycorrhiza 2014; 24:1–11 2013 May 30 [View Article]
    [Google Scholar]
  24. Stefani F, Bencherif K, Sabourin S, Hadj-Sahraoui AL, Banchini C et al. Taxonomic assignment of arbuscular mycorrhizal fungi in an 18S metagenomic dataset: a case study with saltcedar (Tamarix aphylla). Mycorrhiza 2020; 30:243–255 [View Article] [PubMed]
    [Google Scholar]
  25. Säle V, Palenzuela J, Azcón-Aguilar C, Sánchez-Castro I, Alves da Silva G et al. Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. Mycorrhiza 2021; 31:559–576 [View Article]
    [Google Scholar]
  26. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J et al. Binning metagenomic contigs by coverage and composition. Nat Methods 2014; 11:1144–1146 [View Article] [PubMed]
    [Google Scholar]
  27. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017; 27:824–834 [View Article] [PubMed]
    [Google Scholar]
  28. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J et al. Binning metagenomic contigs by coverage and composition. Nat Methods 2014; 11:1144–1146 [View Article] [PubMed]
    [Google Scholar]
  29. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  30. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  31. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article] [PubMed]
    [Google Scholar]
  32. Bankevich A, Nurk S, Antipov D, Gurevich AA, Divorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  33. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 2011; 27:764–770 [View Article] [PubMed]
    [Google Scholar]
  34. Frith MC. A new repeat-masking method enables specific detection of homologous sequences. Nucleic Acids Res 2011; 39:e23 [View Article] [PubMed]
    [Google Scholar]
  35. Li W, Cowley A, Uludag M, Gur T, McWilliam H et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 2015; 43:W580–W584 [View Article] [PubMed]
    [Google Scholar]
  36. Hancock JM, Zvelebil MJ, Hancock JM, Bishop MJ. HMMer. In Dictionary of Bioinformatics and Computational Biology Hoboken, NJ: Wiley; 2004 [View Article]
    [Google Scholar]
  37. Pellegrin C, Morin E, Martin FM, Veneault-Fourrey C. Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins. Front Microbiol 2015; 6:1278 [View Article] [PubMed]
    [Google Scholar]
  38. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490–D495 [View Article] [PubMed]
    [Google Scholar]
  39. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–W185 [View Article] [PubMed]
    [Google Scholar]
  40. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  41. Hass B. TransposonPSI: an Application of PSI-Blast to Mine (Retro-)Transposon ORF Homologies Cambridge, MA: Broad Institute; 2010
    [Google Scholar]
  42. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  43. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 2014; 42:D699–D704 [View Article] [PubMed]
    [Google Scholar]
  44. Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M et al. The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 2012; 40:D26–D32 [View Article] [PubMed]
    [Google Scholar]
  45. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  46. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  47. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  48. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989; 29:170–179 [View Article] [PubMed]
    [Google Scholar]
  49. Kishino H, Miyata T, Hasegawa M. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 1990; 31:151–160 [View Article]
    [Google Scholar]
  50. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999; 16:1114–1116 [View Article]
    [Google Scholar]
  51. Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol 2002; 51:492–508 [View Article] [PubMed]
    [Google Scholar]
  52. Strimmer K, Rambaut A. Inferring confidence sets of possibly misspecified gene trees. Proc Biol Sci 2002; 269:137–142 [View Article] [PubMed]
    [Google Scholar]
  53. Chen ECH, Mathieu S, Hoffrichter A, Ropars J, Dreissig S et al. More filtering on SNP calling does not remove evidence of inter-nucleus recombination in dikaryotic arbuscular mycorrhizal fungi. Front Plant Sci 2020; 11:912 [View Article] [PubMed]
    [Google Scholar]
  54. Chen E, Mathieu S, Hoffrichter A, Ropars J, Dreissig S et al. Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. Elife 2019; 7:912
    [Google Scholar]
  55. Yildirir G, Malar C M, Kokkoris V, Corradi N. Parasexual and sexual reproduction in arbuscular mycorrhizal fungi: room for both. Trends Microbiol 2020; 28:517–519 [View Article] [PubMed]
    [Google Scholar]
  56. Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE et al. The fungal tree of life: from molecular systematics to genome-scale phylogenies. Microbiol Sprectrum 2017; 5:5.5.03
    [Google Scholar]
  57. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 2012; 193:970–984 [View Article] [PubMed]
    [Google Scholar]
  58. Krüger M, Stockinger H, Krüger C, Schüßler A. DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 2009; 183:212–223 [View Article]
    [Google Scholar]
  59. Mathieu S, Cusant L, Roux C, Corradi N. Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. New Phytol 2018; 220:1129–1134 [View Article] [PubMed]
    [Google Scholar]
  60. Morton JB, Msiska Z. Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 2010; 20:483–496 [View Article]
    [Google Scholar]
  61. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 2012; 193:970–984 [View Article] [PubMed]
    [Google Scholar]
  62. Yildirir G, Sperschneider J, Malar C M, Chen ECH, Iwasaki W et al. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol 2022; 233:1097–1107 [View Article] [PubMed]
    [Google Scholar]
  63. Reinhardt D, Roux C, Corradi N, Di Pietro A. Lineage-specific genes and cryptic sex: parallels and differences between arbuscular mycorrhizal fungi and fungal pathogens. Trends Plant Sci 2021; 26:111–123 [View Article] [PubMed]
    [Google Scholar]
  64. Kokkoris V, Stefani F, Dalpé Y, Dettman J, Corradi N. Nuclear dynamics in the arbuscular mycorrhizal fungi. Trends Plant Sci 2020; 25:765–778 [View Article]
    [Google Scholar]
  65. Montoliu-Nerin M, Sánchez-García M, Bergin C, Grabherr M, Ellis B et al. Building de novo reference genome assemblies of complex eukaryotic microorganisms from single nuclei. Sci Rep 2020; 10:1303 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000810
Loading
/content/journal/mgen/10.1099/mgen.0.000810
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error