1887

Abstract

The bacterial genotoxin colibactin interferes with the eukaryotic cell cycle by causing dsDNA breaks. It has been linked to bacterially induced colorectal cancer in humans. Colibactin is encoded by a 54 kb genomic region in . The colibactin genes commonly co-occur with the yersiniabactin biosynthetic determinant. Investigating the prevalence and sequence diversity of the colibactin determinant and its linkage to the yersiniabactin operon in prokaryotic genomes, we discovered mainly species-specific lineages of the colibactin determinant and classified three main structural settings of the colibactin–yersiniabactin genomic region in . The colibactin gene cluster has a similar but not identical evolutionary track to that of the yersiniabactin operon. Both determinants could have been acquired on several occasions and/or exchanged independently between enterobacteria by horizontal gene transfer. Integrative and conjugative elements play(ed) a central role in the evolution and structural diversity of the colibactin–yersiniabactin genomic region. Addition of an activating and regulating module () to the biosynthesis and transport module () represents the most recent step in the evolution of the colibactin determinant. In a first attempt to correlate colibactin expression with individual lineages of colibactin determinants and different bacterial genetic backgrounds, we compared colibactin expression of selected enterobacterial isolates . Colibactin production in the tested species and strains was more homogeneous and generally higher than that in most of the isolates studied. Our results improve the understanding of the diversity of colibactin determinants and its expression level, and may contribute to risk assessment of colibactin-producing enterobacteria.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award 281125614/GRK2220, A3)
    • Principle Award Recipient: UlrichDobrindt
  • Deutsche Forschungsgemeinschaft (Award DO789/11-1)
    • Principle Award Recipient: UlrichDobrindt
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000577
2021-06-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/6/mgen000577.html?itemId=/content/journal/mgen/10.1099/mgen.0.000577&mimeType=html&fmt=ahah

References

  1. Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006; 313:848–851 [View Article] [PubMed]
    [Google Scholar]
  2. Putze J, Hennequin C, Nougayrède J-P, Zhang W, Homburg S et al. Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae . Infect Immun 2009; 77:4696–4703 [View Article] [PubMed]
    [Google Scholar]
  3. Xue M, Kim CS, Healy AR, Wernke KM, Wang Z et al. Structure elucidation of Colibactin and its DNA cross-links. Science 2019; 365:6457
    [Google Scholar]
  4. Homburg S, Oswald E, Hacker J, Dobrindt U. Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli . FEMS Microbiol Lett 2007; 275:255–262 [View Article] [PubMed]
    [Google Scholar]
  5. Martin P, Marcq I, Magistro G, Penary M, Garcie C et al. Interplay between siderophores and colibactin genotoxin biosynthetic pathways in Escherichia coli . PLoS Pathog 2013; 9:e1003437 [View Article] [PubMed]
    [Google Scholar]
  6. Wallenstein A, Rehm N, Brinkmann M, Selle M, Bossuet-Greif N et al. ClbR is the key transcriptional activator of colibactin gene expression in Escherichia coli . mSphere 2020; 5:e00591–00520 [View Article] [PubMed]
    [Google Scholar]
  7. Healy AR, Wernke KM, Kim CS, Lees NR, Crawford JM et al. Synthesis and reactivity of Precolibactin 886. Nat Chem 2019; 11:890–898 [View Article] [PubMed]
    [Google Scholar]
  8. Li Z-R, Li J, Cai W, Lai JYH, McKinnie SMK et al. Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage. Nat Chem 2019; 11:880–889 [View Article]
    [Google Scholar]
  9. Li Z-R, Li J, Gu J-P, Lai JYH, Duggan BM et al. Divergent biosynthesis yields a cytotoxic aminomalonate-containing precolibactin. Nat Chem Biol 2016; 12:773–775 [View Article]
    [Google Scholar]
  10. Bossuet-Greif N, Vignard J, Taieb F, Mirey G, Dubois D et al. The colibactin genotoxin generates DNA interstrand cross-links in infected cells. mBio 2018; 9:e02317–e02393 [View Article]
    [Google Scholar]
  11. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E et al. Escherichia coli induces dna damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A 2010; 107:11537–11542 [View Article] [PubMed]
    [Google Scholar]
  12. Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One 2013; 8:e56964 [View Article] [PubMed]
    [Google Scholar]
  13. Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 2014; 63:1932–1942 [View Article] [PubMed]
    [Google Scholar]
  14. Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 2014; 5:675–680 [View Article] [PubMed]
    [Google Scholar]
  15. Dziubańska-Kusibab PJ, Berger H, Battistini F, Bouwman BAM, Iftekhar A et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med 2020; 26:1063–1069 [View Article]
    [Google Scholar]
  16. Marcq I, Martin P, Payros D, Cuevas-Ramos G, Boury M et al. The genotoxin colibactin exacerbates lymphopenia and decreases survival rate in mice infected with septicemic Escherichia coli . J Infect Dis 2014; 210:285–294 [View Article] [PubMed]
    [Google Scholar]
  17. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. Coli . Nature 2020; 580:269–273 [View Article] [PubMed]
    [Google Scholar]
  18. Faïs T, Delmas J, Barnich N, Bonnet R, Dalmasso G. Colibactin: more than a new bacterial toxin. Toxins (Basel) 2018; 10: [View Article] [PubMed]
    [Google Scholar]
  19. Wassenaar TM. E. coli and colorectal cancer: A complex relationship that deserves a critical mindset. Crit Rev Microbiol, Review 2018; 44:619–632
    [Google Scholar]
  20. Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019; 363:eaar7785 [View Article]
    [Google Scholar]
  21. Brzuszkiewicz E, Brüggemann H, Liesegang H, Emmerth M, Olschläger T et al. How to become a uropathogen: Comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci U S A 2006; 103:12879–12884 [View Article]
    [Google Scholar]
  22. Bellanger X, Payot S, Leblond-Bourget N, Guedon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720–760 [View Article]
    [Google Scholar]
  23. Schubert S, Rakin A, Karch H, Carniel E, Heesemann J. Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun 1998; 66:480–485 [View Article] [PubMed]
    [Google Scholar]
  24. Engel P, Vizcaino MI, Crawford JM. Gut symbionts from distinct hosts exhibit genotoxic activity via divergent colibactin biosynthesis pathways. Appl Environ Microbiol 2015; 81:1502–1512 [View Article] [PubMed]
    [Google Scholar]
  25. Moretti C, Hosni T, Vandemeulebroecke K, Brady C, De Vos P et al. Erwinia oleae sp. nov., isolated from olive knots caused by Pseudomonas savastanoi pv. savastanoi . Int J Syst Evol Microbiol 2011; 61:2745–2752 [View Article] [PubMed]
    [Google Scholar]
  26. Hacker J, Kaper JB. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 2000; 54:641–679 [View Article] [PubMed]
    [Google Scholar]
  27. Messerer M, Fischer W, Schubert S. Investigation of horizontal gene transfer of pathogenicity islands in Escherichia coli using next-generation sequencing. PLoS One 2017; 12:e0179880 [View Article] [PubMed]
    [Google Scholar]
  28. Schneider G, Dobrindt U, Middendorf B, Hochhut B, Szijártó V et al. Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands. BMC Microbiol 2011; 11:210 [View Article]
    [Google Scholar]
  29. Chen Y-T, Lai Y-C, Tan M-C, Hsieh L-Y, Wang J-T et al. Prevalence and characteristics of pks genotoxin gene cluster-positive clinical Klebsiella pneumoniae isolates in Taiwan. Sci Rep 2017; 7:43120 [View Article] [PubMed]
    [Google Scholar]
  30. Dubois D, Delmas J, Cady A, Robin F, Sivignon A et al. Cyclomodulins in Urosepsis strains of Escherichia coli . J Clin Microbiol 2010; 48:2122–2129 [View Article] [PubMed]
    [Google Scholar]
  31. Johnson JR, Johnston B, Kuskowski MA, Nougayrede JP, Oswald E. Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J Clin Microbiol 2008; 46:3906–3911 [View Article] [PubMed]
    [Google Scholar]
  32. Lai Y-C, Lin A-C, Chiang M-K, Dai Y-H, Hsu C-C et al. Genotoxic Klebsiella pneumoniae in Taiwan. PLoS One 2014; 9:e96292 [View Article] [PubMed]
    [Google Scholar]
  33. Micenkova L, Benova A, Frankovicova L, Bosak J, Vrba M. Human Escherichia coli isolates from hemocultures: Septicemia linked to urogenital tract infections is caused by isolates harboring more virulence genes than bacteraemia linked to other conditions. Int J Med Microbiol 2017; 307:182–189 [View Article]
    [Google Scholar]
  34. Nowrouzian FL, Oswald E. Escherichia coli strains with the capacity for long-term persistence in the bowel microbiota carry the potentially genotoxic pks island. Microb Pathog 2012; 53:180–182 [View Article] [PubMed]
    [Google Scholar]
  35. Krieger JN, Dobrindt U, Riley DE, Oswald E. Acute Escherichia coli prostatitis in previously health young men: bacterial virulence factors, antimicrobial resistance, and clinical outcomes. Urology 2011; 77:1420–1425 [View Article] [PubMed]
    [Google Scholar]
  36. McCarthy AJ, Martin P, Cloup E, Stabler RA, Oswald E. The genotoxin colibactin is a determinant of virulence in Escherichia coli K1 experimental neonatal systemic infection. Infect Immun 2015; 83:3704–3711 [View Article] [PubMed]
    [Google Scholar]
  37. Yoshikawa Y, Tsunematsu Y, Matsuzaki N, Hirayama Y, Higashiguchi F et al. Characterization of colibactin-producing Escherichia coli isolated from Japanese patients with colorectal cancer. Jpn J Infect Dis 2020; 73:437–442 [View Article] [PubMed]
    [Google Scholar]
  38. Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom 2018; 4:e000196
    [Google Scholar]
  39. Shen P, Berglund B, Chen Y, Zhou Y, Xiao T et al. Hypervirulence markers among non-ST11 strains of carbapenem- and multidrug-resistant Klebsiella pneumoniae isolated from patients with bloodstream infections. Front Microbiol 2020; 11:1199 [View Article] [PubMed]
    [Google Scholar]
  40. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. Spades: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  41. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  42. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. Blast+: Architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  43. Blin K, Andreu P, de Los Santos ELC, Del Carratore F, Lee SY et al. The antiSMASH database version 2: A comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 2019; 47:D630–D625
    [Google Scholar]
  44. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 2009; 25:1968–1969 [View Article] [PubMed]
    [Google Scholar]
  45. Lassmann T, Sonnhammer EL. Kalign - an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 2005; 6:298 [View Article] [PubMed]
    [Google Scholar]
  46. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  47. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  48. Adeolu M, Alnajar S, Naushad S, Gupta RS. Genome-based phylogeny and taxonomy of the “Enterobacteriales”: Proposal for Enterobacterales ord. Nov. Divided into the families Enterobacteriaceae, Erwiniaceae fam. Nov., Pectobacteriaceae fam. Nov., Yersiniaceae fam. Nov., Hafniaceae fam. Nov., Morganellaceae fam. Nov., and Budviciaceae fam. Nov. Int J Syst Evol Microbiol 2016; 66:5575–5599
    [Google Scholar]
  49. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999; 27:573–580 [View Article] [PubMed]
    [Google Scholar]
  50. Bian X, Fu J, Plaza A, Herrmann J, Pistorius D et al. In vivo evidence for a prodrug activation mechanism during colibactin maturation. Chembiochem 2013; 14:1194–1197 [View Article] [PubMed]
    [Google Scholar]
  51. Morgan RN, Saleh SE, Farrag HA, Aboulwafa MM. Prevalence and pathologic effects of colibactin and cytotoxic necrotizing factor-1 (Cnf 1) in Escherichia coli: experimental and bioinformatics analyses. Gut Pathog 2019; 11:22 [View Article] [PubMed]
    [Google Scholar]
  52. Naughton LM, Romano S, O’Gara F, Dobson ADW. Identification of secondary metabolite gene clusters in the Pseudovibrio genus reveals encouraging biosynthetic potential toward the production of novel bioactive compounds. Front Microbiol 2017; 8:1494 [View Article] [PubMed]
    [Google Scholar]
  53. Zha L, Jiang Y, Henke MT, Wilson MR, Wang JX et al. Colibactin assembly line enzymes use s-adenosylmethionine to build a cyclopropane ring. Nat Chem Biol 2017; 13:1063–1065 [View Article] [PubMed]
    [Google Scholar]
  54. Zhang H, Wang Y, Pfeifer BA. Bacterial hosts for natural product production. Mol Pharm 2008; 5:212–225 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000577
Loading
/content/journal/mgen/10.1099/mgen.0.000577
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error