Cat-bite-induced *Francisella tularensis* infection with a false-positive serological reaction for *Bartonella quintana*

Evelina Petersson¹ and Simon Athlin²,³*

Abstract

Introduction. Tularaemia is caused by infection with *Francisella tularensis* transmitted via direct contact with an infected hare carcass or indirectly through the bites of vectors, but may be cat-bite-associated as well. Medical history and reliable diagnostic analysis are important in order to differentiate it from other cat-associated infections, e.g. *Bartonella* spp.

Case presentation. A healthy 56-year-old man was examined because of a cat-bite-associated ulceroglandular wound on his right thumb. Nineteen days after the cat bite occurred, a serology test was positive for anti-*Bartonella quintana*, but negative for anti-*F. tularensis*. Since *Bartonella* infections are rare in Sweden, another serology test was analysed 2 weeks later with a positive result for anti- *F. tularensis*. The patient was treated with doxycycline for 14 days and recovered. The patient was re-sampled after 18 months to obtain a convalescent sample. The acute and the convalescent samples were both analysed at a reference centre, with negative results for anti-*Bartonella* spp. this time.

Conclusion. This case is enlightening about the importance of extending the medical history and re-sampling the patient for antibody detection when the clinical suspicion of cat-bite-associated tularaemia is high. The false-positive result for anti-*B. quintana* antibodies may have been due to technical issues with the assay, cross-reactivity or both.

INTRODUCTION

Tularaemia, a zoonosis caused by the small Gram-negative bacterium *Francisella tularensis*, is caused mainly via transmission from direct contact with an infected hare carcass or through the bites of vectors, such mosquitoes or ticks [1]. Infected cats are known to transmit the disease to humans [2, 3], and bites by infected squirrels and hamsters have also been reported to cause tularaemia [4]. The disease may also be contracted by inhalation or by ingestion of infected water or food. In Sweden, the majority of tularaemia cases occur during late summer and early autumn in the ulceroglandular form [5, 6]. A typical case would be a patient who developed a primary lesion after a mosquito bite on the leg, with high fever and engagement of the proximally located inguinal lymph nodes [2].

Here, we present a case of ulceroglandular tularaemia infection after a cat bite, with a false-positive reaction in the serological test for *Bartonella quintana* (the causative agent of trench fever). The case is enlightening about the importance of extending the medical history and re-sampling the patient for antibody detection when the clinical suspicion of tularaemia is high. The possibility of cross-reactivity with *B. quintana* is evaluated.

CASE REPORT

On January 14th 2015, a previously healthy 56-year-old man was examined by a general practitioner in Örebro, Sweden, due to the patient having a fever after a cat bite on his right thumb 19 days earlier. A small pustule had appeared on the thumb and had developed into a painless ulcerated lesion. During the preceding 10 days, he had experienced pain in his right axilla and a fever of 39.5 °C. The general practitioner suspected cat-scratch fever, caused by *Bartonella henselae*, and referred the patient to the Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden, for further examination.

At the hospital, the initial investigation revealed a rectal temperature of 38.2 °C and a heart rate of 100 beats min⁻¹. The patient had an erythema of 12 \(\times 15 \) mm with peeling skin on his right thumb, and an ulcer of 5 \(\times 5 \) mm in the centre. He had a tender 20 mm lymph node in his right axilla. On his right upper arm, extending from the medial side of his elbow to his axilla, a mild lymphangitis was observed. No other abnormal findings were noted after examination of his lungs, skin and other regional lymph nodes. He had an elevated white blood cell count of 11.9 \(\times 10^9 \) cells l⁻¹ (reference value 3.5–8.8 \(\times 10^9 \) cells l⁻¹), a C-reactive protein level of 23 mg l⁻¹.
(reference value <4 mg l\(^{-1}\)), and elevated liver transaminase-
levels – an alanine transaminase level of 2.2 µkat l\(^{-1}\) (reference
value <1.1 µkat l\(^{-1}\)) and an aspartate transaminase level of
1.01 µkat l\(^{-1}\) (reference value 0.20–0.80 µkat l\(^{-1}\)). A vol-
ume of 8–10 ml of venous blood was inoculated in each of
two BACTEC Plus Aerobic/F bottles and two BACTEC Plus
Anaerobic/F bottles, with no growth of bacteria after 8 days.
A wound culture from the right thumb showed only coagu-
lase-negative staphylococci, which was considered as non-
significant.

The patient and his wife, as well as the cat, had no history
of louse-contact previously and lived in a modern apar-
tment with good conditions. He denied any contact with
other animals or exposure to animal droppings. On suspi-
cion of cat-scratch fever or tularemia, serum samples were
taken 19 days after the cat bite occurred and analysed for
anti-\textit{Bartonella} spp. antibodies and anti-\textit{F. tularensis} anti-
bodies. Treatment was then initiated with doxycycline, 200
mg once a day for 2 weeks. At the follow-up contact, by
telephone after 7 days, the patient was completely recov-
ered. The laboratory’s request form for anti-\textit{Bartonella} spp.
immunoglobulins included testing for both anti-\textit{B. henselae}
antibodies and anti-\textit{B. quintana} antibodies. The assays
were performed by indirect immunofluorescence test (Euroimmun kit) for IgG and showed a negative result for
anti-\textit{B. henselae} (IgG titre <1:64), but a positive result for
anti-\textit{B. quintana} (IgG titre 1:128). Briefly, the assays were
performed manually by incubation of human serum on a
glass slide together with fluorescent secondary antibodies
and the results were evaluated by fluorescence microscopy.
The serological analysis for anti-\textit{F. tularensis} antibodies,
performed with a tube agglutination test (Widal reaction),
was negative (IgM/IgG titre <1:64).

Since \textit{B. quintana} infections are rare in Sweden, the diagno-
sis was considered unlikely and the patient was contacted
again by telephone. He explained that the cat was brought
to his recreational (holiday) cottage 2 weeks before the cat
bite occurred, and a dead hare had been found in the cottage
garden where the cat had its territory. Since the time of
exposure, the cat had not shown any signs of disease; it
was later examined by a veterinarian, but had no signs of tular-
emia nor louse infection. On suspicion of ulceroglandular
tularemia indirectly transmitted by the cat’s saliva, a sec-
ond serum sample for anti-\textit{F. tularensis} antibodies was
taken 32 days after the cat bite occurred. This time the assay
was positive (IgG titre 1:320) and a final diagnosis of tular-
emia was made. The positive serological test for anti-
\textit{B. quintana} antibodies was considered as a false-positive
result.

Since \textit{B. quintana} may be a chronic infection and antibodies
may persist over many years [7], we resampled the patient
18 months after the cat bite occurred, and analysed the fro-
zen acute (2015) sample along with the convalescent (2016)
sample. This time, the paired samples were negative for
anti-\textit{B. henselae} (IgG titres <1:64 and <1:64, respectively)
and anti-\textit{B. quintana} (IgG titres 1:64 and <1:64,
respectively) antibodies. We also sent the acute and conva-
lescent samples to a reference laboratory at the Centre
National de Référence sur les Rickettsioses et la Tularémie,
Aix Marseille Université, France, for evaluation. The paired
samples were again negative for anti-\textit{B. henselae} (IgG titres
<1:100 and <1:100, respectively) and anti-\textit{B. quintana}
(IgG titres <1:100 and <1:100, respectively) antibodies by
using a microimmunofluorescence assay, as described else-
where [8, 9].

DISCUSSION

Tularaemia is associated with a variety of clinical manifesta-
tions similar to those seen in other vector-borne infections
[10]. Cat-associated tularemia is uncommon, but has been
reported before in Sweden [6] and other countries [11]. To
distinguish tularaemia from other infections may be difficult
and requires a detailed medical history from the patient, and
sensitive and specific laboratory methods, as well as a re-sam-
pling of the the patient when the diagnosis is unclear. \textit{F. tulare-
ensis} cultivation should be avoided due to the risk of
laboratory transmission [12] and as the bacterium does not
grow in routinely plated cultures [13]. PCR applied on sam-
ple from primary lesions is a fast and sensitive method [12].
The most common method used for diagnosing tularemia is
by detection of antibodies in serum by agglutination or
enzyme-linked immunosorbent assays [13, 14].

Diagnosing tularaemia by antibody detection has several limi-
tations. Firstly, IgM and IgG appear together, but are often
detectable until 2 to 3 weeks after infection [15, 16]. If the
first serology is analysed too early, a negative result may be
fallacious and the patient should be resampled after a few
weeks. Secondly, cross-reactions have been described between
\textit{F. tularensis} and species of \textit{Brucella}, \textit{Proteus} and \textit{Yersinia} [12,
16]. Moreover, false-positive and false-negative serological test
results may occur due to technical problems with the assays
or inadequate performance of an assay by the technician.

In this report, the positive titre for anti-\textit{B. quintana} antibod-
ies (1:128) was unexpected, since clinical infections with the
bacteria are uncommon [17, 18] and it has not been associ-
ated with cat bites previously in Sweden [19, 20]. Infections
caued by \textit{B. quintana} are exclusively seen in
patients with actual or recent contact with body lice [21]. In
this case, neither the patient nor the cat had been exposed to
lice. Also, in Sweden the seroprevalence of anti-\textit{B. quin-
tana} antibodies is very low among humans [22, 23] and
cats [24].

\textit{B. quintana} has been reported to cross-react within the
genus \textit{Bartonella} [25, 26], and with species of \textit{Chlamydo-
dephila} [27, 28] and \textit{Coxiella} [9]. In clinical samples, cross-
reactivity between \textit{F. tularensis} and \textit{B. quintana} has not
been described to our knowledge. However, it is known that
\textit{F. tularensis} and \textit{Bartonella} spp. express common proteins
that may elicit an antibody response in infected individuals
[29]. In a previous study by Gilmore et al. [30], rabbit anti-
\textit{F. tularensis} antibodies reacted with a recombinant immu-
nogenic protein (SucB) derived from \textit{B. quintana}. In
another study, Litwin et al. [31] showed that a recombinant SucB protein from *B. henselae* cross-reacted with human serum containing anti-*F. tularensis* antibodies. The *B. henselae* sucB gene used in the study was determined to have 85.3% identity to the SucB protein of *B. quintana*. These findings indicate that cross-reactions between *F. tularensis* and *B. quintana* are possible in immunological assays on clinical samples.

In this report, a significant titre of anti-*B. quintana* antibodies was detected by the Euroimmun assay in the initial serum sample, but not when the sample was re-analysed, and it was negative by the microimmunofluorescence assay. This may be explained by technical challenges in the performance of the Euroimmun assay and/or by differences in the specificities of the two assays. A limitation of this study was that we did not evaluate the two assays with multiple samples from *F. tularensis*-positive patients and we did not re-evaluate the serum samples after neutralization of anti-*F. tularensis* antibodies to evaluate positive results for anti-*B. quintana* antibodies. Therefore, we suggest that future evaluations of immunoassays for anti-*F. tularensis* antibodies should include specificity analysis of cross-reactivity with anti-*B. quintana* antibodies and that clinicians should be aware of potentially false-positive results in tularemia patients.

Funding information
The authors received no specific grant from any funding agency.

Acknowledgements
We would like to acknowledge Carl Pålsson, Assistant Professor at the Department of Medical Sciences, Uppsala University Hospital, Sweden, for interpretation of the initial serology results, and Emmanuel Ange-lakis, M.D., Ph.D., at the Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Faculté de Médecine et de Pharmacie, Aix Marseille Université, France, for re-analysing the serum samples.

Conflicts of interest
The authors declare that there are no conflicts of interest.

Ethical statement
This case report was written with permission from the patient, and in accordance with the Declaration of Helsinki and the ethical standards of the research committees in Sweden.

References

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as 'excellent' or 'very good'.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.