Complicated sea urchin-induced wound infection caused by *Vibrio alginolyticus* and *Staphylococcus lugdunensis* in a 14-year-old boy

Christoph André Bultmann, Jens-Oliver Steiß, Cornelia Langner, Birgit Benkert, Magdalena Havener, Uta Küsters, Stephan Georg Hühn-Lindenbein and Dietrich Mack

Bioscientia Institut für Medizinische Diagnostik GmbH, Mikrobiologie/Infektiologie, Ingelheim, Germany

University Children’s Hospital, Giessen, Germany

Practice of Pediatrics, Fulda, Germany

Institute of Food Hygiene, Free University of Berlin, Berlin, Germany

Introduction: Wound infections with *Vibrio alginolyticus*, a Gram-negative bacterium found in all temperate oceans, are rarely reported. However, a rising incidence of wound infections caused by *V. alginolyticus* requires better knowledge about this infectious agent.

Case presentation: We report the case of a 14-year-old boy suffering from a wound infection caused by *V. alginolyticus* and *Staphylococcus lugdunensis* after stepping on a sea urchin. Despite wound debridement and antibiotic therapy with cefaclor, the lesion did not heal over several weeks. After identification of the pathogens and antibiotic-susceptibility testing, antibiotic therapy was switched to ciprofloxacin, followed by trimethoprim/sulfamethoxazole. Two months after the accident the wound was re-epithelialized. Follow up after 6 months revealed a painful scar.

Conclusion: Non-cholera vibrios like *V. alginolyticus* should be considered as possible causative agents in seawater-contaminated wounds. *S. lugdunensis* is a relevant pathogen in mixed wound infections. Early microbiological diagnosis and antibiotic-susceptibility testing is crucial to prevent therapeutic failure.

Keywords: Vibrio; *Vibrio alginolyticus*; coagulase-negative staphylococci; *Staphylococcus lugdunensis*; wound; sea urchin.

Abbreviations: CLSI, Clinical and Laboratory Standards Institute; DDBJ, DNA Database of Japan.

© 2016 The Authors Published by Microbiology Society

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).
(Fig. 1). The wound was treated immediately by the beach warden using hot oil and lemon juice. This treatment led to a minor burn with blistering.

Immediately afterwards, the patient was taken to the local hospital. There a burn blister on top of the wound was opened and disinfected with an iodine-containing ointment. The wound was covered with sterile dressing, which was changed daily. During the next 2 weeks, until the boy’s departure from Egypt, the lesion became livid and kept oozing.

Back in Germany, the patient presented with the non-healing wound and an additional tonsillitis at a paediatric outpatient clinic. The wound was cleaned and empiric antibiotic therapy was started with cefaclor (500 mg three times daily). Seven days later, the patient returned to the clinic with continuing impaired wound healing, while the tonsillitis had resolved. A wound swab was submitted for microbiological analysis. The patient was then referred to the local hospital’s surgical outpatient clinic, where an extensive wound debridement was performed. Four days afterwards, the patient returned for a control examination and antibiotic therapy was changed to ciprofloxacin (200 mg twice daily).

Two bacterial isolates were obtained from the wound swab and identified as *V. alginolyticus* and *S. lugdunensis*. Numerous colonies were present up to the second (*V. alginolyticus*) and third (*S. lugdunensis*) streak area of the initial streak plates. After receiving antibiotic-susceptibility test results, therapy was switched to trimethoprim/sulfamethoxazole (160/800 mg twice daily) to which both isolates were susceptible. Antibiotic therapy with trimethoprim/sulfamethoxazole was continued for 20 days.

Investigations

Aerobic and anaerobic cultures were performed using Columbia blood agar, chocolate agar, Columbia CNA agar, MacConkey agar and Schaedler agar with/without kanamycin, using standard microbiological procedures. A Gram-negative rod and coagulase-negative staphylococci were grown and identified to the species level using appropriate VITEK 2 ID cards (VITEK 2 GN and GP-cartridge; bioMérieux) as *V. alginolyticus* and *S. lugdunensis*. Antibiotic-susceptibility testing was performed using appropriate VITEK 2 cards, AST N263 and AST P619, respectively, and interpreted according to current Clinical and Laboratory Standards Institute (CLSI) guidelines (Table 1).

For confirmation of the *V. alginolyticus* identification, the strain was sub-cultured on *Vibrio* selective agar (thiosulfate-citrate-bile-sucrose agar; Becton-Dickinson) at 37°C. After 24 h, colonies grew on the plates turning the colour of the agar to yellow as expected for *V. alginolyticus*. Additionally, matrix-associated laser desorption ionization-time of flight MS identification using a MALDI Biotyper (Bruker Daltonics) using software version 3.1 was performed, revealing *V. alginolyticus* with a score of 1.94. The next most closely related species was *Vibrio mytili* with a score of 1.84.

As the MALDI Biotyper revealed only an identification at the probable genus level, further confirmation was sought using 16S rRNA gene sequencing applying the method of Harmsen et al. (2003). The resulting 0.5 kbp amplicons were sequenced with a 3500XL Genetic Analyzer (Thermo Fisher Scientific). Using the curated database of EZbiocloud (Kim et al., 2012) and criteria for microbial identification using DNA target sequences (CLSI, 2008), similarities larger than 99% were found for numerous species of the genus *Vibrio*, including *V. alginolyticus*, without sufficient discrimination for identification at the species level. Similarly, the 16S rRNA gene sequence was analysed using BLASTN 2.2.26 and the DNA Database of Japan (DDBJ) due to its large number of well-documented *Vibrio* spp. genome sequences (http://ddbj.nig.ac.jp/blast/; Altschul et al., 1997). More than 200 strains of *Vibrio* spp. shared the best-reached similarity of 98% to our isolate, including 10 different species (*Vibrio fischeri*, *Vibrio para- haemolyticus*, *Vibrio harveyi*, *V. alginolyticus*, *Vibrio campbellii*, *Vibrio communis*, *Vibrio orientalis*, *Vibrio rotiferianus*, *Vibrio owensii* and *Vibrio antequarius*).

In the next step, additional multiplex PCR for the conserved transcriptional regulator genes VptoxR, VctoxR and VvtoxR (Osorio & Klose, 2000), according to Bauer & Rørvik (2007), was performed. There was a negative result for all toxR genes, leading to an exclusion of the species *V. parahaemolyticus, Vibrio cholerae* and *Vibrio vulnificus* from the identification.

Finally, rpoB sequencing applying the method and primers of Tarr et al. (2007) delivered two sequences of the rpoB gene (456 bp upstream, 528 bp downstream), which were analysed using DDBJ and BLASTN as described above.

Fig. 1. Lesion on the medial margin of the sole of the left foot 28 days after the accident. Diameter approximately 2 cm.
Our isolate showed identity of 100% to more than 50 strains of *V. alginolyticus* (upstream) and 99% to more than 200 strains of *V. alginolyticus* (downstream). There was one 99% match with *V. harveyi* (upstream and downstream) and one with *V. parahaemolyticus* (upstream). The sequence data were analysed with Bionumerics (Applied Maths, version 7.1; Applied Maths) and compared to previously published sequences of the most common pathogenic *Vibrio* spp. in the National Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/nuccore). To visualize the phylogenetic relationship, the unweighted pair group method with arithmetic mean based on multiple alignments between the *rpoB* sequences was used (Fig. 2).

Table 1. MIC and antimicrobial-susceptibility test. Interpretive categories were according to the CLSI guidelines for *Vibrio* spp. (CLSI, 2015a) and *Staphylococcus* spp. with special regard to *S. lugdunensis* (CLSI, 2015b)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>V. alginolyticus</th>
<th>S. lugdunensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC (mg l⁻¹)</td>
<td>Interpretation</td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>NT*</td>
<td>NT</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>≥32</td>
<td>R</td>
</tr>
<tr>
<td>Ampicillin/sulbactam</td>
<td>≤2</td>
<td>S</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>NT*</td>
<td>NT</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>16</td>
<td>I</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>≤1</td>
<td>S</td>
</tr>
<tr>
<td>Cefazidime</td>
<td>≤1</td>
<td>S</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>≤0.25</td>
<td>S</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>≤0.12</td>
<td>S</td>
</tr>
<tr>
<td>Imipenem</td>
<td>≤0.25</td>
<td>S</td>
</tr>
<tr>
<td>Meropenem</td>
<td>≤0.25</td>
<td>S</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>≤20</td>
<td>S</td>
</tr>
</tbody>
</table>

1, Intermediate susceptibility; NT, not tested; R, resistant; S, susceptible.
*Testing not recommended for this species.

(http://ddbj.nig.ac.jp/blast/; Altschul et al., 1997). Our isolate showed identity of 100% to more than 50 strains of *V. alginolyticus* (upstream) and 99% to more than 200 strains of *V. alginolyticus* (downstream). There was one 99% match with *V. harveyi* (upstream and downstream) and one with *V. parahaemolyticus* (upstream). The sequence data were analysed with Bionumerics (Applied Maths, version 7.1; Applied Maths) and compared to previously published sequences of the most common pathogenic *Vibrio* spp. in the National Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/nuccore). To visualize the phylogenetic relationship, the unweighted pair group method with arithmetic mean based on multiple alignments between the *rpoB* sequences was used (Fig. 2).

Because of the former biochemical identification results and the large number of perfect homologies to strains identified in various taxonomic studies (Ki et al., 2009; Oberbeckmann et al., 2011), we accepted *V. alginolyticus* as the final identification. For coagulase-negative staphylococci, biochemical identification is widely used and commonly accepted (Becker et al., 2014). Therefore, we accepted the Vitek 2-based identification of *S. lugdunensis* described above.

Diagnosis

V. alginolyticus and *S. lugdunensis* co-infection of a sea urchin-induced wound.

Outcome and follow-up

In the following months, wound healing continued slowly until the wound was epithelialized about 2 months later. When examined for follow-up 6 months after the initial accident, it was noticed that there remained an induration of the former wound with tenderness on palpation.

Discussion

In this case, we identified three major reasons for the prolonged, complicated wound infection. First of all, insufficient first aid and the resulting burn necrosis led to an environment where *V. alginolyticus* and *S. lugdunensis* could survive repeated debridement and disinfection. Lack of protection because of burned skin enables secondary bacterial infections.

Second, *V. alginolyticus* is well known for its numerous chromosomal and plasmid-mediated antibiotic-resistance
determinants (French et al., 1989; Li et al., 1999). Many of
the expressed β-lactamas lead to resistance to ampicillin
and second-generation cephalosporins, as seen in our iso-
late (Li et al., 1999). Resistance to trimethoprim/sulfameth-
oxazole is commonly reported (Li et al., 1999). Some isolates
also show resistance to third-generation cephalo-
sporins and fluoroquinolones, as reported by Ye et al.
(2016). According to this evolution of antibiotic resistance
and because of the typical mixed flora in chronic wound
infections (like S. lugdunensis in our case; Altoparlak et al.,
2004), early antibiotic-susceptibility testing is important to
prevent therapeutic failure.

Lastly, the presence of S. lugdunensis may have triggered
the progression of the disease. Compared to many other coagu-
lose-negative staphylococci, S. lugdunensis has higher patho-
genic potential. It can cause serious infections, i.e. soft
tissue and wound infections as well as infective endocardi-
itis, and has to be considered as a relevant pathogen (Becker
et al., 2014).

When treating the patient, the chosen therapy in
the hospital with ciprofloxacin was an appropriate choice
for the infection. However, fluoroquinolone use in children
is still off label for many indications (except, for example,
cystic fibrosis), especially if there is an alternative treatment
(Bradley et al., 2011). Therefore, therapy was changed suc-
cessfully to trimethoprim/sulfamethoxazole.

Altogether, this case and its course are an example of the
need to consider Vibrio-mediated infections in similar cir-
cumstances. Even if it is a rare disease at present, a rising
incidence has been observed, as indicated above. Warming
of the oceans will probably make this a global trend as the
first cases from northern shores suggest (Reilly et al., 2011;
Schets et al., 2006). Identification of V. alginolyticus is less
than straightforward and requires a combination of classical
biochemical identification methods, as well as appropriate
selective media and advanced molecular identification
methodology.

References
The time-related changes of antimicrobial resistance patterns and predomi-
nant bacterial profiles of burn wounds and body flora of burned patients.
Burns 30, 660–664.
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z.,
3402.
Bauer, A. & Rervik, L. M. (2007). A novel multiplex PCR for the identifica-
tion of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. Lett
Appl Microbiol 45, 371–375.
CLSI (2008). Interpretive Criteria for Identification of Bacteria and Fungi by
DNA Target Sequencing. Approved Guideline, MM18-A. Wayne, PA: Clinici-
cal and Laboratory Standards Institute.
CLSI (2015a). Methods for Antimicrobial Dilution and Disk Susceptibility
Testing of Infrequently Isolated or Fastidious Bacteria; 3rd edn, M45. Wayne,
PA: Clinical and Laboratory Standards Institute.
CLSI (2015b). Performance Standards for Antimicrobial Susceptibility
Testing: 25th edn, M100S. Wayne, PA: Clinical and Laboratory Standards
Institute.
Bradley, J. S., Jackson, M. A. & the Committee on Infectious
Pediatrics 128, e1034–e1045.
Conrad, A. (2013). Trends in vibriosis transmission among the top four
Vibrio species, United States, 1988-2012. MPH thesis, Georgia State Uni-
versity, Atlanta, GA, USA. Available at: http://scholarworks.gsu.edu/iph_theses/314.
fasciitis due to Vibrio alginolyticus in an immunocompetent patient. J Clin
Microbiol 41, 3427–3429.
Harmsen, D., Dostal, S., Roth, A., Niemann, S., Rothganger, J.,
Sammeth, M., Albert, J., Frosch, M. & Richter, E. (2003). RIDOM: com-
prehensive and public sequence database for identification of Mycobac-
trium species. BMC Infect Dis 3, 26.
of RNA polymerase beta subunit (rpoB) gene sequences for the discrimina-
Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C.,
Jeon, Y. S., Lee, J. H. & other authors (2012). Introducing EzTaxon-e: a
prokaryotic 16S rRNA gene sequence database with phylogenotypes that repre-
biotic resistance and plasmid profiles of Vibrio isolates from cultured sea
Oberbeckmann, S., Wiclichs, A., Maiier, T., Kostrzewa, M.,
Raffelberg, S. & Gerdts, G. (2011). A polyphasic approach for the differ-
etiation of environmental Vibrio isolates from temperate waters. FEMS
Microbiol Ecol 75, 145–162.
Osaka, K., Komatsuzaki, M., Takahashi, H., Sakano, S. & Okabe, N.
(2004). Vibrio vulnificus septicemia in Japan: an estimated number of
infections and physicians’ knowledge of the syndrome. Epidemiol Infect
132, 993–996.
Osorio, C. R. & Klose, K. E. (2000). A region of the transmembrane regu-
latory protein ToxR that tethers the transcriptional activation domain to
the cytoplasmic membrane displays wide divergence among Vibrio
alginolyticus-associated wound infection acquired in British waters,
Schets, F. M., van den Berg, H. H., Demeulmeester, A. A., van Dijk, E.,
alginolyticus infections in the Netherlands after swimming in the
North Sea. Euro Surveill 11, 3077.
Tarr, C. L., Patel, J. S., Puhr, N. D., Sowers, E. G., Bopp, C. A. &
Vezzulli, L., Brettar, I., Pezzati, E., Reid, P. C., Colwell, R. R.,
Höfle, M. G. & Pruzzo, C. (2012). Long-term effects of ocean warming on
the prokaryotic community: evidence from the vibrios. ISME J 6, 21–30.
Ye, L., Li, R., Lin, D., Zhou, Y., Fu, A., Ding, Q., Chan, E. W., Yao, W. &
Chen, S. (2016). Characterization of an IncA/C multidrug resistance plas-