Evaluation of fertility outcome as a consequence of intravaginal inoculation with sperm-impairing micro-organisms in a mouse model

Harpreet Vander and Vijay Prabha

INTRODUCTION

Infertility can be defined as the lack of conception after at least 1 year of constant, unprotected sexual intercourse and impacts 10% of couples in the general population (Habbema et al., 2004). It is a life crisis with invisible losses and diverse consequences. It can be due to a variety of diseases and medical conditions that affect one or both members of a couple. Genital infections are one of the most important causes of infertility worldwide, affecting anatomical urogenital sites in both males and females. Many micro-organisms seem to be involved in reproductive failure in different ways and to different degrees of statistical association (Pellati et al., 2008). These agents disturb female fertility as they lead to obstruction of parts of the reproductive system, pregnancy loss, and substantial effects on perinatal mortality and morbidity (Günyeli et al., 2011). The clinical significance of sexually transmitted micro-organisms such as Chlamydia trachomatis, Neisseria gonorrhoeae and Treponema pallidum has been implicated in infertility (Comar et al., 2012). Chlamydia trachomatis infection is generally confined to the lower genital tract; however, it may involve the upper genital tract, and can result in ectopic pregnancy and infertility (Pal et al., 1998). Similarly, N. gonorrhoeae can also lead to pelvic inflammatory disease resulting in infertility. Infertility in these cases is a recognized consequence of inflammation.

However, what about other micro-organisms, such as Escherichia coli (Huwe et al., 1998; Diemer et al., 2000), Ureaplasma urealyticum (Núñez Calonge et al., 1998), Mycoplasma hominis, Staphylococcus aureus (Jiang & Lu, 1999) and Candida albicans (Tian et al., 2007), that have been known to impede sperm motility and alter morphology in vitro, and whose role in vivo is yet to be elucidated? Well-designed studies on infections and fertility are still lacking. In our laboratory we have previously seen infertility as a result of vaginal colonization with sperm-impairing Staphylococcus aureus and E. coli. The present study was carried out with the aim to investigate the role of other sperm-impairing micro-organisms in female infertility.

METHODS

Micro-organisms. The standard strains of Serratia marcescens (MTCC 7641) and Candida albicans (MTCC 1637) used in the present study were procured from the Microbial Type Culture Collection, Institute of Microbial Technology, Sector 39, Chandigarh, India. The strains were grown in brain heart infusion (BHI) and Sabouraud’s dextrose agar, and maintained as glycerol stocks at −80°C.

Animals. Sexually mature, 5–6-week-old male and 4–5-week-old female BALB/c mice used in the present study were kept in polypolyene cages and housed in the animal room of the Department of Microbiology, Panjab University, Chandigarh, India. The animals were maintained under standard laboratory conditions (12 h light/12 h dark). Water and feed were available ad libitum. The experimental protocols to be carried out were approved by the Institutional Animal Ethics Committee of Panjab University (IAEC/504, dated 2 April 2014). The experiments were performed in accordance with the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals.
Extraction of spermatozoa from mice. Mouse spermatozoa were collected from 6–7-week-old male mice. The mice were sacrificed by cervical dislocation using a glass rod, and sperm from the vas deferens was collected in RPMI media by gentle teasing.

Sperm/micro-organism interaction. The standard strains were checked for their effect on sperm motility. For this, 100 μl bacterial culture was incubated with 100 μl sperm suspension at 37 °C. After different time intervals, a 10 μl aliquot of the mixture was placed on a clean glass slide, covered with a coverslip and observed under ×400 magnification using a bright-field microscope (Olympus). A control containing BHI/Sabouraud’s dextrose broth mixed with a semen sample was set up simultaneously.

Effect of sperm-agglutinating and sperm-immobilizing strains on fertility outcome

Screening of mice. Female BALB/c mice vaginas were screened for the presence of micro-organisms that naturally inhabit the vagina. For this, sterile cotton-tipped swabs were introduced into the vagina and the swabs were gently rotated against the vaginal wall. Swabs were cultured at 37 °C on BHI agar plates. These strains were further checked for any sperm-agglutinating/immobilizing activity in vitro. Mice harbouring micro-organisms that had sperm-agglutinating/immobilizing activity were excluded from the study.

Preparation of inoculum. *Serratia marcescens* was cultivated in BHI broth at 37 °C for 24 h, whereas *Candida albicans* was grown in Sabouraud’s dextrose broth for 24 h. The cell culture was centrifuged at 6,700 g for 20 min and the pellet obtained was washed twice with PBS (50 mM, pH 7.2). The cells were then resuspended in the same buffer so as to produce 10³, 10⁴ and 10⁶ c.f.u. in 20 μl.

Intravaginal inoculation. Female BALB/c mice were divided into four groups (Groups I–IV) of five mice each. Three groups (Groups I–III) of female mice were inoculated intravaginally without any anaesthesia with 10³, 10⁴ or 10⁶ c.f.u. of either *Serratia marcescens* or *Candida albicans* per mouse in 20 μl PBS, respectively, for 10 consecutive days. Group IV served as a control and was inoculated with 20 μl PBS alone for 10 consecutive days. Vaginal swabs were taken every third day so as to monitor vaginal colonization. The reisolated micro-organisms were confirmed as *Serratia marcescens* and *Candida albicans* by culture characteristics and biochemical identification, and checked for sperm-impairing activity. Vaginal cultures for sperm-impairing micro-organisms were always negative in the control group administered with PBS. The female mice were synchronized in their oestrus cycle by the Whitten effect. This was done by introducing the bedding of male mice soiled with faeces and urine in to the cages of females.

On day 12, these female mice were allowed to mate overnight with breeder male mice at a ratio of 2:1 to check the effect on fertility outcome. Mating was confirmed on the next morning by observing for the presence of a vaginal plug. The females that did not show a plug were excluded from the study. For the entire period of gestation (21 days), animals were examined for weight change or any pregnancy-related changes, such as abdominal distension and delivery of pups. The control group mice receiving PBS showed consistent weight gain, and a string of pearls’ could be palpated by day 14 and pups delivered at the end of the gestation period (Figs 1 and 2).

Histopathological examination of reproductive organs after 10 days’ intravaginal administration of *Serratia marcescens* and *Candida albicans*

The histopathological examination was carried out to check any adverse effects of *Serratia marcescens* or *Candida albicans*.
albicans on tissue morphology of the reproductive organs (i.e. ovary, uterus and vagina). The results revealed that these organs had normal morphology and there were no signs of inflammation following inoculation with 10^4, 10^6 or 10^8 c.f.u. of either Serratia marcescens or Candida albicans for 10 days as compared with the control group (Fig. 3).

Fig. 2. Representative photographs of pregnancy-related changes in mice. (a) No abdominal distension after different doses of either Serratia marcescens or Candida albicans. (b) Abdominal distension after PBS. (c) Delivery of pups in controls after the end of the gestation period.

Fig. 3. Histopathological examination of reproductive organs (i.e. ovary, uterus and vagina). Representative photomicrographs showing normal tissue morphology of ovary, uterus, vagina of mice treated with PBS (a, b, c), C. albicans (d, e, f) and S. marcescens (g, h, i) respectively.
DISCUSSION

The greatest hope for lowering the occurrence of infertility related to infection lies in the prevention, detection and treatment of freshly acquired asymptomatic or mildly symptomatic infections (Novy et al., 2008). Sexually transmitted infections have long been linked with infertility. These infections are associated with inflammatory changes in the genital tract that lead to infertility. In females, Chlamydia trachomatis infection sometimes presents itself without symptoms, thereby remaining unnoticed and untreated for long durations. This chronic infection can lead to pelvic inflammatory disease, ectopic pregnancy and tubal infertility (Carey & Beagley, 2010). In men, chlamydial infection can affect sperm quality and function, leading to urethritis, prostatitis and epididymitis (Cunningham & Beagley, 2008). Likewise, N. gonorrhoeae infection also has a negative effect on fertility outcome, by causing pelvic inflammatory disease in women. Apart from these sexually transmitted micro-organisms, the association of other urogenital tract organisms and infertility still remains speculative. In vitro studies have revealed the detrimental effects of various micro-organisms on human spermatozoa, but their role in vivo on fertility outcome is still controversial. Therefore, the present work aimed to carry out parallel studies under in vitro and in vivo conditions to provide a better understanding of sperm-impairing micro-organisms as a cause of infertility.

The standard strains of Serratia marcescens and Candida albicans were found to impede sperm motility in vitro by sperm agglutination and immobilization, respectively. These results are in concordance with earlier studies showing that Candida albicans had an inhibitory effect on human sperm motility and impaired the ultrastructure of human spermatozoa (Tian et al., 2007), and Serratia marcescens deteriorated the quality of boar spermatozoa (Ubedha et al., 2013). Furthermore, when in vivo studies were carried out to assess the role of these sperm-impairing micro-organisms, the results showed that all the female mice were rendered infertile after 10 days of intravaginal inoculation, whereas control mice delivered pups. Infertility in these mice could not be attributed to inflammation as no histopathological changes were observed in any of the reproductive organs (i.e. ovary, uterus and vagina). From the results it seems reasonable to conclude that the infertility caused by Serratia marcescens and Candida albicans may be due to their sperm-agglutinating and sperm-immobilizing activity, respectively. These results are in concordance with earlier studies performed in our laboratory wherein sperm-agglutinating activity, urealyticum and filtrates interfere with human spermatozoal motility and impaired the ultrastructure of spermatozoa: an electron microscopy analysis. Int J Androl 23, 178–186.

ACKNOWLEDGEMENTS

The support of the University Grants Commission, New Delhi, India is gratefully acknowledged.

REFERENCES

