Modulation of antibiotic resistance and induction of a stress response in *Pseudomonas aeruginosa* by silver nanoparticles

Katarzyna Markowska, Anna M. Grudniak, Krzysztof Krawczyk, Izabela Wróbel and Krystyna I. Wolska

Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland

The objective of this study was to characterize the effects of silver nanoparticles on *Pseudomonas aeruginosa*. Their interactions with several conventional antibiotics and ability to induce a stress response were examined. Interactions between silver nanoparticles (AgNPs) and antibiotics against free-living cells and biofilm of *P. aeruginosa* were studied using the chequerboard method and time-kill assays. The ability of AgNPs to induce a stress response was determined by evaluation of cellular levels of the DnaK and HtpG chaperones using SDS-PAGE and Western blot analysis. Synergistic activity against free-living *P. aeruginosa* between AgNPs and ampicillin, streptomycin, rifampicin and tetracycline, but not oxacillin, ciprofloxacin, meropenem or ceftazidime, was demonstrated by the chequerboard method. No such interactions were observed against *P. aeruginosa* biofilm. The results of time-kill assays confirmed synergy only for the AgNPs–streptomycin combination. AgNPs induced the expression of chaperone DnaK. No induction of the HtpG chaperone was detected. In conclusion, AgNPs not only display potent bactericidal activity against *P. aeruginosa*, but also act synergistically with several conventional antibiotics to enhance their effect against free-living bacteria as determined by the chequerboard method. The time-kill assay proved synergy between AgNPs and streptomycin only. The ability of AgNPs to induce the major chaperone protein DnaK may influence bacterial resistance to antimicrobials.

INTRODUCTION

Increasing antibiotic resistance among pathogenic bacterial species is a serious problem for public health and has stimulated research examining the antibacterial effects of alternative compounds and novel strategies (Kurek et al., 2011). The antibacterial activity of silver nanoparticles (AgNPs) is well known and they have many medical and technological applications (Edwards-Jones, 2009). The production of reactive oxygen species provoked by AgNPs causes the disruption of bacterial membranes (Singh et al., 2008), and they also interact with sulfur-containing membrane proteins (Rai et al., 2009). Proteomic analysis of the effects of AgNPs on *Escherichia coli* revealed that even short exposure to AgNPs can greatly influence the synthesis of several proteins (Lok et al., 2006). AgNPs are also active against bacterial biofilms (Kalishwaralal et al., 2010), so they may prove effective in combatting biofilm-mediated, drug-resistant and device-centred infections. It was shown that biofilm formation is inhibited by the ability of AgNPs to prevent the initial steps in their development, i.e. microbial adhesion to various surfaces (Monteiro et al., 2009). Besides the inherent antimicrobial activity of AgNPs, there is also the possibility of using them in combination with conventional antibiotics in order to improve their efficacy. Experiments performed using the disc diffusion assay provided evidence of synergy between AgNPs and several antibiotics, particularly against Gram-negative bacteria (Fayaz et al., 2010).

This study examined the effects of AgNPs in combination with several antimicrobial compounds on the antibiotic resistance and stress response of *Pseudomonas aeruginosa*. This ubiquitous opportunistic pathogen is able to form biofilms and is characterized by its multifactorial and increasing antibiotic resistance (Porras-Gómez et al., 2012). Thus, there is an urgent need for novel antimicrobial therapies and/or methods to enhance the activity of already ineffective antibiotics against this species. As the stress response is a determinant of antimicrobial resistance (Poole, 2012), the ability of AgNPs to induce this response can influence the susceptibility of *P. aeruginosa* to antibiotics.
Determination of MIC and minimum biofilm inhibitory concentration (MBIC). MICs were determined using the broth microdilution technique performed in 96-well microtitre plates. Aliquots of MH containing series of twofold dilutions of AgNPs, AMP, OXA, STR, RIF, CIP, TET, MEM, or CAZ were inoculated with P. aeruginosa (final cell density \(1 \times 10^6\) c.f.u. ml\(^{-1}\)) and incubated at 37 °C for 24 h. The lowest concentration of each tested agent that resulted in no visible turbidity was considered the MIC. To determine MBICs, a culture of P. aeruginosa was diluted 1:100 (final cell density \(1 \times 10^4\) c.f.u. ml\(^{-1}\)) in fresh medium and then mixed with MH supplemented with 0.45 % glucose and various concentrations of the tested agents in the wells of microtitre plates. Following incubation at 37 °C for 24 h, the lowest concentration of each substance that inhibited biofilm growth, as determined by the Crystal Violet staining method (Smith et al., 2008), was taken as the MBIC. Each determination was performed in triplicate.

RESULTS

Antibacterial effect of AgNPs

Precise broth microdilution assays were determined for P. aeruginosa ATCC 10145. The low MIC (1 µg ml\(^{-1}\) and MBIC (4 µg ml\(^{-1}\)) values of AgNPs confirmed the strong antimicrobial activity of this agent. MICs of antibiotics tested varied greatly, from 768 µg ml\(^{-1}\) for OXA to 0.25 µg ml\(^{-1}\) for CIP. MBICs of all antibiotics tested except CIP were higher than MICs. MBIC of CIP was equal to the respective MIC (Tables 1 and 2).

Combined effect of AgNPs and antibiotics on P. aeruginosa

The susceptibility of free-living P. aeruginosa to different combinations of AgNPs and antibiotics is presented in
Table 1. AgNPs interacted synergistically with four of the six tested antibiotics: AMP, RIF, TET and STR. No interaction with OXA, CIP, MEM and CAZ was observed. Note that the last two compounds are used to treat Pseudomonas infections. None of the AgNP–antibiotic combinations were antagonistic. The results obtained for P. aeruginosa biofilms using the same method showed a lack of interaction between the silver nanoparticles and any of the antibiotics tested (Table 2). We also did not observe synergy between AgNPs and STR and RIF against free-living P. aeruginosa spontaneous mutants, resistant to 512 mg STR ml⁻¹ and 256 mg RIF ml⁻¹ (i.e. 21 times and 16 times higher concentrations, respectively, in comparison to the parental P. aeruginosa strain), suggesting that the synergistic interactions depend on the doses of the compounds used.

The time-kill experiments determined that only the combination with STR confirmed the synergy of these two antimicrobial agents against this strain of P. aeruginosa (Fig. 1a). Compared with the AgNPs and STR added separately, a combination of 0.25 μg AgNPs ml⁻¹ with 6 μg STR ml⁻¹ produced a decrease in c.f.u. of 2.7 log₁₀ (to 1.0 × 10⁷ c.f.u. ml⁻¹) was observed compared with both single compounds (Fig. 1a). For combinations of AgNPs with AMP, RIF and TET, no synergistic differences in bacterial survival were noticed after 8 h or 24 h of incubation (Fig. 1b–d).

Induction of a stress response by AgNPs

Western blot analysis of proteins extracted from late-exponential-phase cells of P. aeruginosa ATCC 10145 indicated that AgNP treatment substantially induced synthesis of DnaK (Fig. 2). Densitometric measurements showed that, on average, treatment of P. aeruginosa cells with AgNPs caused a 2.5- to threefold increase in the level of DnaK compared with untreated control cells. No significant increase in HtpG synthesis was observed (Table 3).

DISCUSSION

The results of chequerboard assays performed to identify interactions between AgNPs and several conventional antibiotics demonstrated the existence of synergy with AMP, STR, RIF and TET, but only against free-living cells and not biofilms of P. aeruginosa. From the medical point

Table 1. Susceptibility of free-living P. aeruginosa to individual antimicrobial agents and their combinations as determined using the chequerboard assay

Results of three separate experiments are presented; no differences were noticed among experiments.

<table>
<thead>
<tr>
<th>Agent</th>
<th>MIC (μg ml⁻¹)</th>
<th>Agent combination (μg ml⁻¹)</th>
<th>FICI</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
<td>256</td>
<td>AMP (16) + AgNPs (0.25)</td>
<td>0.3125</td>
<td>Synergistic</td>
</tr>
<tr>
<td>OXA</td>
<td>768</td>
<td>OXA (96) + AgNPs (0.5)</td>
<td>0.625</td>
<td>No interaction</td>
</tr>
<tr>
<td>STR</td>
<td>24</td>
<td>STR (6) + AgNPs (0.25)</td>
<td>0.5</td>
<td>Synergistic</td>
</tr>
<tr>
<td>RIF</td>
<td>16</td>
<td>RIF (4) + AgNPs (0.125)</td>
<td>0.375</td>
<td>Synergistic</td>
</tr>
<tr>
<td>CIP</td>
<td>0.25</td>
<td>CIP (0.01563) + AgNPs (0.5)</td>
<td>0.5625</td>
<td>No interaction</td>
</tr>
<tr>
<td>TET</td>
<td>10</td>
<td>TET (2.5) + AgNPs (0.25)</td>
<td>0.5</td>
<td>Synergistic</td>
</tr>
<tr>
<td>MEM</td>
<td>0.5</td>
<td>MEM (0.25) + AgNPs (0.25)</td>
<td>0.75</td>
<td>No interaction</td>
</tr>
<tr>
<td>CAZ</td>
<td>2</td>
<td>CAZ (1) + AgNPs (0.25)</td>
<td>0.75</td>
<td>No interaction</td>
</tr>
<tr>
<td>AgNPs</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Susceptibility of P. aeruginosa biofilm to individual agents and their combinations as determined by chequerboard assay

Results of three separate experiments are presented; no differences were noticed among experiments.

<table>
<thead>
<tr>
<th>Agent</th>
<th>MBIC (μg ml⁻¹)</th>
<th>Agent combination (μg ml⁻¹)</th>
<th>FICI</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
<td>512</td>
<td>AMP (128) + AgNPs (2)</td>
<td>0.75</td>
<td>No interaction</td>
</tr>
<tr>
<td>OXA</td>
<td>1152</td>
<td>OXA (576) + AgNPs (0.25)</td>
<td>0.5625</td>
<td>No interaction</td>
</tr>
<tr>
<td>STR</td>
<td>32</td>
<td>STR (16) + AgNPs (0.5)</td>
<td>0.625</td>
<td>No interaction</td>
</tr>
<tr>
<td>RIF</td>
<td>32</td>
<td>RIF (16) + AgNPs (2)</td>
<td>1</td>
<td>No interaction</td>
</tr>
<tr>
<td>CIP</td>
<td>32</td>
<td>CIP (0.125) + AgNPs (0.5)</td>
<td>0.625</td>
<td>No interaction</td>
</tr>
<tr>
<td>TET</td>
<td>32</td>
<td>TET (16) + AgNPs (2)</td>
<td>1</td>
<td>No interaction</td>
</tr>
<tr>
<td>MEM</td>
<td>2</td>
<td>MEM (1) + AgNPs (2)</td>
<td>1</td>
<td>No interaction</td>
</tr>
<tr>
<td>CAZ</td>
<td>4</td>
<td>CAZ (2) + AgNPs (2)</td>
<td>1</td>
<td>No interaction</td>
</tr>
<tr>
<td>AgNPs</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
of view, synergistic interactions are the most important since they allow the continued use of antibiotics against antibiotic-resistant isolates. The combined antibacterial activity of two compounds can utilize several strategies (Fischbach, 2011). There have been few reports concerning synergy between silver metal ions or nanoparticles and antibiotics. Fayaz et al. (2010) observed synergistic activity of AgNPs with several antibiotics, particularly AMP, against Gram-negative bacteria and proposed a model in which AgNPs–penicillin complexes interact with the bacterial cell wall and inhibit the formation of peptidoglycan cross-links, leading to bacterial lysis. Hwang et al. (2012) showed that AgNPs possess antimicrobial, including antibiofilm, effects and can act synergistically with several antibiotics. Their experiments revealed that the antibacterial activity was influenced by the ATP-associated metabolism rather than the permeability of the outer membrane. Synergy of AgNPs in combination with STR against E. coli (Ghosh et al., 2012) and with RIF against Bacillus subtilis (Konwarh et al., 2011) was also shown but only by the measurement of the growth inhibition zones on agar plates.

The antibiotics used in our study belong to several classes and have various cellular targets, modes of action and bacterial resistance mechanisms. Of four antibiotics displaying synergy with AgNPs, AMP inhibits the synthesis of peptidoglycan (the main component of the bacterial cell wall), STR and TET hamper various steps of translation and RIF inhibits initiation of transcription by binding to the beta subunit of RNA polymerase. For the two other antibiotics which do not act synergistically with AgNPs, CIP (a fluoroquinolone antibiotic) interferes with DNA gyrase and thus inhibits DNA replication, and OXA is a

Fig. 1. Time-kill curves showing the effect of a combination of antibiotic and AgNPs in comparison with the separate addition of each compound. (a) 0.25 MIC STR (6 μg ml⁻¹) + 0.25 MIC AgNPs (0.25 μg ml⁻¹). (b) 0.0625 MIC AMP (16 μg ml⁻¹) + 0.25 MIC AgNPs (0.25 μg ml⁻¹). (c) 0.25 MIC TET (2.5 μg ml⁻¹) + 0.25 MIC AgNPs (0.25 μg ml⁻¹). (d) 0.25 MIC RIF (4 μg ml⁻¹) + 0.125 MIC AgNPs (0.125 μg ml⁻¹). Mean ± SD values of triplicate cultures.
Heat-shock proteins of inhibitory cooperation. The same reasons can be used to explain the absence of inhibitory cooperation.

No synergy was reported for any antibacterial combination tested when studying the susceptibility of P. aeruginosa tested when studying the susceptibility of the DnaK and HtpG chaperones. These proteins are representative indicators of stress conditions and are induced by a variety of stressors including heat, ethanol and antibiotics (Yura et al., 1996). DnaK and HtpG play roles in the correct folding of newly translocated polypeptides, disaggregation of misfolded proteins, suppressing their aggregation, unfolding of peptides for translocation and also heat shock signalling (Sabil, 2008).

We found that the presence of AgNPs caused an increase in levels of DnaK by 2.5–3-fold, indicating their ability to induce a stress response. However, no induction of HtpG was observed in P. aeruginosa. It should be noted that the mode of induction of HtpG by heat or chemical agents in E. coli has several unique features compared to the induction of other chaperones (Mason et al., 1999). The induction of chaperone synthesis by antibiotics is well documented (Cardoso et al, 2010) but there have been few reports on the effects of AgNPs on cellular chaperone levels. The ability of AgNPs to induce two inclusion body chaperones, LbpA and LbpB, was demonstrated by a proteomic analysis of E. coli K-12 strain MC1655.6 (Lok et al., 2006).

It is well known that proteins, such as DnaK, induced in bacterial cells exposed to antibiotics affect their susceptibility to these agents. It was shown that mutations in dnaK increased E. coli susceptibility to fluoroquinolones (Yamaguchi et al., 2003). Recently a protective effect of DnaK, and especially GroEL/GroES chaperonins, against aminoglycoside antibiotics was also reported (Goltermann et al., 2013). It is possible that the ability of AgNPs to induce DnaK could diminish its antimicrobial activity and also influence the activity of other antimicrobials applied simultaneously.

In conclusion, we have demonstrated the modulation of antibiotic susceptibility in P. aeruginosa by AgNPs. AgNPs acted synergistically with AMP, STR, RIF and TET against free-living cells of P. aeruginosa as determined by the chequerboard method. The time-kill assay proved the presence of synergy between AgNPs and STR only. By contrast, no effect on a P. aeruginosa biofilm was observed. Treatment with AgNPs enhanced cellular levels of the

![Image](https://example.com/image.png)

Table 3. Effect of AgNPs on the induction of selected P. aeruginosa heat-shock proteins

<table>
<thead>
<tr>
<th>AgNP treatment</th>
<th>Relative amount of DnaK</th>
<th>Relative amount of HtpG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (no AgNPs)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.15 MIC AgNPs</td>
<td>2.43±0.22</td>
<td>1.18±0.22</td>
</tr>
<tr>
<td>0.3 MIC AgNPs</td>
<td>2.50±0.35</td>
<td>1.17±0.15</td>
</tr>
<tr>
<td>0.45 MIC AgNPs</td>
<td>3.03±0.67</td>
<td>1.02±0.22</td>
</tr>
</tbody>
</table>

*P<0.05.

The time-kill experiments were performed for antimicrobial combinations showing synergy in the chequerboard assay. Synergy was confirmed only for AgNPs in combination with STR but not with AMP, RIF and TET. Chequerboard and time-kill methods, although time-consuming and labour-intensive, are still, along with the E-test, the most widely used techniques to assess synergy. A variety of investigators have found that these two methods are not interchangeable (White et al., 1996). For example Bonapace et al. (2000), studying antibiotic synergy against Acinetobacter baumannii, found that the agreement between these two methods was only 51% (range 30–67%). In view of the above, the difference between synergistic interactions found by us was not unexpected.

In the present study, we also examined the ability of AgNPs to induce a stress response by measuring cellular levels of the DnaK and HtpG chaperones. Representative Western blots are shown.

![Western Blot](https://example.com/western-blot.png)

Fig. 2. Influence of AgNPs on cellular levels of DnaK and HtpG chaperone proteins. Representative Western blots are shown. Lanes: 1, Control without AgNPs; 2, 0.15 MIC AgNPs; 3, 0.3 MIC AgNPs; 4, 0.45 MIC AgNPs; 5, molecular mass standards.
chaperone DnaK but not HtpG. The ability of AgNPs to influence chaperone concentration may be correlated with the susceptibility of \emph{P. aeruginosa} to nanosilver and antibiotics.

ACKNOWLEDGEMENTS

We are extremely grateful to Professor Sabina Kędzierska-Mieczkowska for providing the anti-DnaK serum. This research was supported by the Polish Ministry of Sciences and Higher Education intramural grant BST 163100 through the Faculty of Biology, University of Warsaw.

REFERENCES

