Murine model of *Bacillus cereus* gastrointestinal infection

Ivanna S. Rolny, Jessica Minnaard, Silvia M. Racedo and Pablo F. Pérez

1Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115-B1900AJI, La Plata, Argentina

2Centro de Investigación y Desarrollo en Criptococosis de Alimentos (CONICET-CCT La Plata), Calle 47 y 116-B1900AJI, La Plata, Argentina

Bacillus cereus is a spore-forming micro-organism responsible for foodborne illness. In this study, we focus on the host response following intragastric challenge with a pathogenic *B. cereus* strain (B10502) isolated from a foodborne outbreak. C57BL/6J female mice were infected by gavage with strain B10502. Controls were administered with PBS. Infection leads to significant modification in relevant immune cells in the spleen, Peyer’s patches (PP) and mesenteric lymph nodes (MLN). These findings correlated with an increase in the size of PP as compared with uninfected controls. Histological studies showed that *B. cereus* infection increased the ratio of intestinal goblet cells and induces mononuclear cell infiltrates in spleen at 5 days post-infection. Evaluation of cytokine mRNA expression demonstrated a significant increase in IFN-γ in MLN after 2 days of infection. The present work demonstrates that infection of mice with vegetative *B. cereus* is self-limited. Our findings determined relevant cell populations that were involved in the control of the pathogen through modification of the ratio and/or activation.

INTRODUCTION

The *Bacillus cereus* group constitutes a very homogeneous cluster of the genus *Bacillus*. This group, often called *B. cereus sensu lato*, comprises seven species: *Bacillus anthracis*, *B. cereus (sensu stricto)*, *B. thuringiensis*, *B. mycoides*, *B. pseudomycoideae*, *B. weihenstephanensis* and *B. cytotoxicus* (Guinebretière et al., 2008).

B. cereus (sensu stricto) is a Gram-positive spore-forming micro-organism that is widely distributed in the environment. It is found in soil and plant surfaces and frequently contaminates foodstuffs (Stenfors Arnesen et al., 2008).

B. cereus is responsible for foodborne illness and is associated with different pathologies such as emetic and diarrhoeic syndromes, endocarditis (Beecher & Wong, 1994; Moyer et al., 2008; Durand, 2013), endocarditis (Thomas et al., 2012; Barraud et al., 2012), osteomyelitis, oral cavity infections (Kotiranta et al., 1998), septicaemia, peritonitis, pneumonia, and meningitis (Rowan et al., 2001; Lede et al., 2011; Wright et al., 2011; Miyata et al., 2013). The nonintestinal infections mainly occur in immunocompromised patients (Rasko et al., 2005; Slamti & Lereclus, 2005; Schoeni & Wong, 2005; Bottone, 2010) and drug users (Dancer et al., 2002; McLauchlin et al., 2002). *B. cereus* infection usually leads to self-limited pathologies and it is not commonly reported, although severe and fatal cases have increased in recent years (Akiyama et al., 1997; Dierick et al., 2005; Mahler et al., 1997; Wright et al., 2011).

With respect to intestinal pathologies associated with *B. cereus*, two main syndromes have been reported: emetic and diarrhoeic. Whereas emetic syndrome is associated with cereulide, a thermostable dodecadepsipeptide (Agata et al., 1995; Horwood et al., 2004; Ehling-Schulz et al., 2005), the diarrhoeic syndrome has been related to a plethora of extracellular factors with different biological effects (Asano et al., 1997; Beecher & Wong, 2000; Kotiranta et al., 2000; Lund & Granum 1997; Stenfors Arnesen et al., 2008). Most of the secreted virulence factors are regulated by the PlcR regulon, which is the major virulence regulator in *B. cereus* (Gohar et al., 2002; Slamti et al., 2004). This regulation is relevant for the virulence in insect and mouse infections (Salamitou et al., 2000).

It is known that *B. cereus* extracellular factors are able to produce different biological effects on cultured enterocytes (Caco-2 cells) and erythrocytes (Minnaard et al., 2001). Moreover, direct bacteria–enterocyte interactions have been proposed as an important virulence factor (Rowan et al., 2001; Minnaard et al., 2004, 2007). Adherence combined with the ability of some strains to invade epithelial cells (Minnaard et al., 2004, 2007) could be involved in diarrhoeic syndromes. Andersson et al. (1998) showed that,
at least for some strains, *B. cereus* spores are able to germinate and produce enterotoxin when they are incubated with the target cells (Vero cells).

In the present study, we analysed the immunological and pathological characteristics of a mouse model infection induced by intragastric challenge with a pathogenic *B. cereus* strain (B10502). This strain is associated with a foodborne outbreak (Minnaard et al., 2004). In previous *in vitro* studies using Caco-2 monolayers, we showed that *B. cereus* B10502 is a non-invading strain (Minnaard et al., 2004). However, extracellular factors of strain B10502 lead to damage of cultured human enterocytes. This biological effect is related to the adhesion to eukaryotic cells (Minnaard et al., 2004, 2007).

In vivo studies of the effect of bacteria belonging to the *B. cereus* group were conducted mainly with *B. anthracis* spores. Studies included different routes of infection, e.g. intradermic, intravenous and intraperitoneal (Heninger et al., 2006; Glomski et al., 2007). Xie et al. (2013) developed a model of gastrointestinal infection with vegetative *B. anthracis* in complement-deficient mice. Vegetative cells were able to invade and grow within intestinal villi, with subsequent translocation to different organs. Interestingly, no immune activation was observed (Xie et al., 2013). Since no *in vivo* models have been developed for *B. cereus*, the present study sought to gain further insight on the effect of *B. cereus* on a murine model of intestinal infection.

METHODS

Bacterial strains and culture conditions. *B. cereus* strain B10502, isolated from a food-poisoning outbreak, was kindly provided by the Instituto Biológico Dr Tomás Perón (La Plata, Argentina). Micro-organisms were stored at -80 °C with 0.3 M sucrose as a cryoprotectant. Prior to the experiments, bacteria were cultured for 16 h at 32 °C with agitation in brain heart infusion broth medium (Biokar Diagnostics) supplemented with 0.1 % (w/v) glucose (BHIG). Afterwards, micro-organisms were inoculated (4%, v/v) in BHIG and incubated with agitation at 32 °C for 3 h (mid-exponential phase). Bacteria were harvested by centrifugation (900 g for 10 min).

Bacterial concentration was estimated by optical density based on previously determined correlations with c.f.u. (data not shown). The bacterial suspension was then diluted in sterile PBS (0.144 g KH₂PO₄ l⁻¹, 0.795 g Na₂HPO₄ l⁻¹, 9 g NaCl l⁻¹, pH: 7) to obtain the desired inoculum.

Animals. C57BL/6j female mice (6–8-weeks-old) were purchased from Facultad de Ciencias Veterinarias, UNLP (La Plata, Argentina). Each experimental group consisted of 5–7 mice housed in cages that were maintained at a controlled temperature and light cycle; the mice were fed with a balanced conventional diet. Animals were handled in accordance with international regulations for animal welfare.

Infection. Bacteria were administered by intragastric gavage using a blunt end needle. Two different experiments were performed. For experimental protocol I mice were randomly allocated into different groups of five mice each. One group (control mice) received only sterile PBS and the other groups were challenged with 1 x 10⁹ *B. cereus* B10502 per mouse. Mice were euthanized by CO₂ inhalation at 2 and 5 days after infection. For experimental protocol II each mouse was infected with 1 x 10⁹ *B. cereus* B10502. After different times post-infection (30 min, 2 h 30 min, 4 h 30 min, 20 h and 2 days) mice were euthanized by CO₂ inhalation. In both experiments, each animal received 100 μl of the corresponding bacterial suspension or sterile PBS. Prior to infection, animals were starved for 16 h. Samples from different regions of the intestinal tract and mesenteric lymph nodes (MLN) were taken.

Histological analysis. The spleen and small intestine were aseptically removed for histological preparation. Samples were fixed in absolute ethanol, dehydrated and embedded in Histowax (Leica Microsystems) following the technique of Sainte-Marie (1962). Four-micron tissue sections were stained with haematoxylin–eosin. Small intestine samples were also stained with Alcian Blue–eosin for goblet cell staining. Villous-to-crypt ratios and presence of inflammatory cell infiltrates were assessed.

Localization of *B. cereus*. The presence of viable *B. cereus* was assessed in the stomach, duodenum, jejunum, ileum, caecum, faeces, Peyer’s patches (PP), MLN and spleen. Stomach and intestinal luminal contents were collected by washing with sterile PBS. The spleen, PP and MLN were aseptically removed. Afterwards samples were mechanically disrupted and centrifuged, and cells were lysed with distilled water (Pérez et al., 2007). One millilitre samples were inoculated in 9 ml BHIG for growth assessment. One hundred microlitres were spread out on nutritive agar. Both broth and agar were supplemented with polymyxin B (0.01 g l⁻¹). After incubation at 32 °C for 24 h positive cultures were streaked on nutritive agar.

Flow cytometry analysis. The immune-cell population in the spleen, PP and MLN were evaluated by flow cytometry (Medrano et al., 2011). The following mAbs were used: FITC-conjugated anti-mouse CD4 (clone GK 1.5), phycoerythrin (PE)-conjugated anti-mouse CD8 (clone CT-CD8b), FITC-conjugated anti-mouse/human CD45R (clone RA3-6B2), biotin-conjugated anti-mouse F4/80 antigen-pan macrophage marker (BM8-100), biotin-conjugated anti-mouse CD11c (clone N418) and PE-conjugated anti-mouse CD86 (clone B7-2) (clone P03.1). The corresponding isotype controls were used. The antibodies were purchased from ebioScience and used according to the manufacturer’s instructions. Spleen, PP and MLN were aseptically removed from animals infected with 1 x 10⁹ *B. cereus* B10502 per mouse. Cell suspensions were obtained by mechanical disruption of tissue and collected in ice-cold PBS. Samples were centrifuged for 5 min (250 g) at 4 °C and suspended in PBS supplemented with 2% (v/v) heat-inactivated fetal bovine serum (PAA Laboratories). Red blood cells in spleen samples were lysed with sterile water. The concentration of viable cells was determined by Trypan blue exclusion. A total of 5 x 10⁵ cells per tube were washed twice with PBS, 2% fetal bovine serum, centrifuged for 5 min at 250 g and incubated for 30 min on ice with 50 μl of the corresponding specific antibody. Cells were then washed with PBS and fixed in 1% (w/v) paraformaldehyde in PBS. Unlabelled control cells were also processed for each sample. All samples were analysed with a FACScalibur flow cytometer (Becton and Dickinson) and CellQuest software (BD Biosciences). A total of 10 000 events per sample were collected.

Real-time PCR. Mice infected according to experimental protocol II were euthanized at different times after infection: 30 min, 2 h 30 min, 4 h 30 min, 20 h and 2 days. MLN and PP were aseptically removed, RNA extraction was performed using the Illustra Illustra RNA spin RNA mini isolation kit (GE Healthcare) following RNA extraction protocol LG according to the manufacturer’s instructions, and RNA concentration was measured by optical density at 260 nm. Reverse transcription was conducted by using random primers and MMLV-reverse transcriptase (Promega), and the resulting cDNA was
amplified using 1 IQ SYBR Green PCR mix (Bio-Rad Laboratories). Real-time PCR was performed following the manufacturer’s protocol using an iCycler thermal cycler (Bio-Rad). The housekeeping gene β-actin was used as control. The specificity of the PCR was verified by melting curves. The relative difference calculation using the ΔCt method has been described elsewhere (Rumbo et al., 2004; Anderle et al., 2005; Smaldini et al., 2012; Moreno et al., 2013). Primers specific for mouse were designed using the software Primer Express (Applied Biosystems):

CXCL2fwd CCACTCAGGAAAGACAAA, CXCL2rev CACATCA-GTGACATCCAGGC; TNF-αfwd CATCTCTAAAAATTGAGTC-ACAA, TNF-αrev CCTCCACTTGTGGTCTTGCT; IL-6fwd GTCTC-CTGGGAATCGTGGAAA, IL-6rev AAGTGCATCATCGTGTTC-ATAACA; IL-10fwd and actin was used as control. The specificity of the PCR was verified by melting curves. The relative difference calculation using the ΔCt method has been described elsewhere (Rumbo et al., 2004; Anderle et al., 2005; Smaldini et al., 2012; Moreno et al., 2013). Primers specific for mouse were designed using the software Primer Express (Applied Biosystems):

Statistical analysis. Results were compared by means of a two-tailed Student’s t-test (InfoStat version 2008; InfoStat). *P*<0.05 was considered significant.

RESULTS AND DISCUSSION

Localisation of *B. cereus* B10502 in infected mice

Fig. 1 shows the progress of *B. cereus* along the digestive tract. As expected, shortly after inoculation (30 min), viable bacteria were found at proximal localizations (i.e. the stomach, duodenum and jejunum). At 2 h 30 min microorganisms were also found in the ileum. At 4 h 30 min viable micro-organisms reached the caecum and faeces, but stomach samples were negative. Twenty hours after inoculation all the samples were negative. Non-infected mice were negative for *B. cereus* in all the samples and time points analysed (data not shown). Results are in agreement with published studies on gastrointestinal transit of markers such as charcoal or radiopaque balls, which were found in faeces a few hours after administration (Marona & Lucchesi, 2004; Myagmarjalbhuu et al., 2013). Lack of viable *B. cereus* in faeces 20 h after inoculation indicates that bacteria follow the same kinetics as inert transit markers, although these findings do not necessarily exclude colonization or bacterial translocation (see below).

In vitro survival studies in simulated gastric conditions demonstrated that *B. cereus* vegetative forms are able to survive passage through the acidic conditions of the stomach (Wijnands et al., 2009). However, it was shown that survivors represent only around 10% of the initial inoculum (Ceuppens et al., 2012). In addition, survival was higher in the stomach after food ingestion than after food deprivation (Clavel et al., 2004).

Our results show a transient passage of vegetative bacteria through the gastrointestinal tract. Even though a high proportion of the bacterial population was inactivated, this finding does not rule out that low numbers of microorganisms could be present adhered to the epithelium or internalized into the host’s cells.

Histological analysis

We analysed the effect of infection on different regions of the intestinal tract and other relevant organs. Infected mice showed larger PP than control mice. This could be appreciated macroscopically at 2 and 5 days after infection (Fig. 2). Histological sections of small intestine showed a significant (*P*<0.005) increase of mucus-producing cells (Goblet cells) with no evidence of villous widening, shortening or blunting (Fig. 3). There are several mechanisms involved in the maintenance of barrier function; i.e. integrity of epithelial cells, tight and adherens junctions, and secretions from specialized cells. Goblet cells are key players of the barrier function through the secretion of mucus as well as proteins involved in epithelial repair and function such as Trefoil factor 3 and RELM-β (Kim & Ho, 2010). The increase in the number of goblet cells suggests
that there is a response of the intestinal mucosa following *B. cereus* infection, although no dramatic effects were observed on the intestinal epithelium.

Histological sections of spleen stained with haematoxylin–eosin showed differences between infected and control animals. Indeed, evidence of cell infiltration was found in spleens of infected mice 5 days after infection (Fig. 4). Overall, the observed biological effects on different localizations could be due to the direct interaction of the bacteria with the host’s cells (Minnaard *et al.*, 2004) or the release of intracellular bacterial toxins after lysis (Henderson *et al.*, 1999), although effects related to the host’s immune response cannot be ruled out.

Effect on the balance of immune-cell populations

T cells. T cell populations (CD4+ and CD8+) were evaluated by flow cytometry in the PP, MLN and spleen of control and infected mice. The ratio of CD8+ cells decreased in MLN at 2 and 5 days post-infection, whereas there was an increase of this cell population in the spleens of the infected mice as compared with non-infected mice (Table 1).

Some strains of *B. cereus* have demonstrated the ability to gain access to intracellular compartments of epithelial cells (Minnaard *et al.*, 2004). It is known that there is a correlation between the intracellular localization of microorganisms and immune response. Indeed, it has been demonstrated that access of *Listeria monocytogenes* to different cellular compartments leads to a shift in CD8 T cell response (Bahjat *et al.*, 2006). This response occurs even when the micro-organism fails to enter and multiply within the cytosol (Bahjat *et al.*, 2006). The above findings could be related to the results of the histological analysis shown in Fig. 4, since an increase of cytotoxic T cells in the spleen could account for the cell infiltrates found at 5 days post-infection.

The increase of CD8+ T cells in the spleen and the concomitant decrease in MLN is compatible with a recruitment of T cells by the spleen. These findings correlated
encourages further studies. In contrast, no differences in the ratio of CD4+ cells were found between control and infected mice (Table 1).

B cells. Consistent with the above results, infection with strain B10502 led to changes in other spleen-cell populations. As shown in Table 2, a significant decrease (P<0.05) in B220+ cells was observed in the spleen at 5 days post-infection. These results could suggest a migration of these cells from the spleen due to infection. No changes in the expression of MHCII were found in any of the analysed samples (data not shown).

Dendritic cells (CD11c+/CD86+). Percentages of dendritic cells (CD11c+) expressing the co-stimulatory marker CD86 were assessed in the PP, MLN and spleen. As for other immune markers studied, the main changes were found in the spleen where a significant decrease of double positive CD11c+/CD86+ cells was observed at day 2 post-infection (P<0.05) (Table 3). In addition, there was a trend (P=0.07) of a decrease in the ratio of activated dendritic cells in MLN after 5 days of infection (Table 3) but no other changes were observed (Table 3). Since no changes in the total number of dendritic cells were observed (data not shown), we concluded that infection of mice with strain B10502 leads to a decrease in the activation of antigen presenting cells. This hypothesis correlates with the demonstrated ability of a key enzyme of the B. cereus group (phosphatidylinositol phospholipase C, PI-PLC) to decrease the expression of the co-stimulatory marker CD86 in dendritic cells (Zenewicz et al., 2005).

Macrophages (F4/80+) and MHCII expression. Changes in the macrophage population following *B. cereus* infection showed a different pattern as compared with other relevant cell populations. Indeed, whereas other cell populations

Table 1. Percentages of T cells (CD4+ and CD8+) in the PP, MLN and spleen of infected mice (2 and 5 days post-infection) and untreated (control) mice

Values were calculated from the gates of lymphocytes in the Forward Scatter (FSC) versus Side Scatter (SSC) plots, and represent the means of five determinations ± SD. *Significant differences (t-test, P<0.05) as compared with control mice. PI, Post-infection.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Group</th>
<th>CD4+ cells</th>
<th>CD8+ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>Control</td>
<td>8.2±2.8</td>
<td>3.4±0.4</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>5.5±0.9</td>
<td>3.4±0.3</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>7.4±2.4</td>
<td>3.5±0.2</td>
</tr>
<tr>
<td>MLN</td>
<td>Control</td>
<td>19.7±3.9</td>
<td>31.7±6.1</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>21.9±2.9</td>
<td>24.7±6.6</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>21.9±4.4*</td>
<td>20.4±5.6*</td>
</tr>
<tr>
<td>Spleen</td>
<td>Control</td>
<td>5.6±1.3</td>
<td>12.3±1.1</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>6.6±1.4</td>
<td>16.3±2.2*</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>6.7±1.6</td>
<td>14.8±2.5</td>
</tr>
</tbody>
</table>

Table 2. Percentages of B220+ cells in the PP, MLN and spleen of infected mice (2 and 5 days post-infection) and untreated (control) mice

B220+ cells were selected from the gates of lymphocytes in the Forward Scatter (FSC) versus Side Scatter (SSC) plots. Values represent the means of five determinations ± SD. *Significant differences (t-test, P<0.05) as compared with control mice. PI, Post-infection.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Group</th>
<th>B220+ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>Control</td>
<td>67.9±3.2</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>62.4±4.4</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>67.1±3.5</td>
</tr>
<tr>
<td>MLN</td>
<td>Control</td>
<td>33.8±5.3</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>42.5±9.9</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>36.8±10.3</td>
</tr>
<tr>
<td>Spleen</td>
<td>Control</td>
<td>46.4±3.8</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>45.3±2.5</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>35.0±4.6*</td>
</tr>
</tbody>
</table>

Fig. 4. Spleen microphotography. Representative images generated from haematoxylin–eosin stained sections from the spleens of the mice. (a), (b) and (c) correspond to control mice (magnification ×10, ×20 and ×40, respectively); (d), (e) and (f) correspond to infected animals at 5 days post-infection using 1×108 B. cereus per mouse (magnification ×10, ×20 and ×40, respectively). Arrows indicate the presence of infiltrated cells.
were modified in the spleen, there were no changes in the ratio of macrophages in this organ. Instead, there was an increase of F4/80+ cells in the PP, a main site of interaction between bacteria and the host, at day 2 post-infection (Table 4). At day 5 post-infection, F4/80+ cells with high expression of MHCII showed a significant increase in the PP (P<0.05). Interestingly, F4/80+/MHCIIhigh spleen cells also were increased at day 5 post-infection.

Taken together, the above findings indicate that intestinal infection with B. cereus stimulates cells in the PP, thus leading to macroscopic changes in size as well as an increase of ratio and activation of F4/80+ cells. In the spleen, the increase of activated macrophages correlates with the altered structure observed in the histological analysis.

Table 3. Percentages of activated dendritic cells (CD11c+/CD86+) in the PP, MLN and spleen of infected mice (2 and 5 days post-infection) and untreated (control) mice

<table>
<thead>
<tr>
<th>Sample</th>
<th>Group</th>
<th>CD86+ DC+</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>Control</td>
<td>23.5 ± 11.2</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>19.7 ± 3.3</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>32.3 ± 14.3</td>
</tr>
<tr>
<td>MLN</td>
<td>Control</td>
<td>54.1 ± 12.4</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>47.3 ± 19.6</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>37.5 ± 14.3</td>
</tr>
<tr>
<td>Spleen</td>
<td>Control</td>
<td>43.3 ± 1.3</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>34.2 ± 1.3*</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>44.7 ± 3.0</td>
</tr>
</tbody>
</table>

+Percentages of CD86+ in the total population of CD11+ cells.

Table 4. Macrophages (F4/80+) and MHCII expression

<table>
<thead>
<tr>
<th>Sample</th>
<th>Group</th>
<th>F4/80+</th>
<th>F4/80+ MHCII low</th>
<th>F4/80+ MHCII high</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>Control</td>
<td>9.8 ± 1.4</td>
<td>51.4 ± 0.7</td>
<td>30.9 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>16.4 ± 1.8*</td>
<td>49.5 ± 4.7</td>
<td>34.5 ± 11.7</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>10.1 ± 0.7</td>
<td>47.2 ± 7.9</td>
<td>43.5 ± 9.2*</td>
</tr>
<tr>
<td>MLN</td>
<td>Control</td>
<td>4.9 ± 1.1</td>
<td>33.7 ± 4.8</td>
<td>58.0 ± 6.6</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>4.4 ± 1.9</td>
<td>41.5 ± 9.4</td>
<td>50.7 ± 9.1</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>8.5 ± 4.2</td>
<td>42.6 ± 6.5</td>
<td>50.3 ± 9.4</td>
</tr>
<tr>
<td>Spleen</td>
<td>Control</td>
<td>9.8 ± 0.5</td>
<td>32.8 ± 4.4</td>
<td>47.6 ± 1.3</td>
</tr>
<tr>
<td></td>
<td>2 days PI</td>
<td>10.7 ± 2.5</td>
<td>38.1 ± 6.0</td>
<td>42.7 ± 9.9</td>
</tr>
<tr>
<td></td>
<td>5 days PI</td>
<td>10.1 ± 0.7</td>
<td>28.8 ± 3.6</td>
<td>54.0 ± 3.8*</td>
</tr>
</tbody>
</table>

Relative mRNA expression of cytokines. After infection with 1×10^9 micro-organisms per mouse, the mRNA expression of cytokines was analysed by Real-Time Quantitative PCR (qRT-PCR). IFN-γ mRNA expression was significantly increased ($P<0.05$) when compared to the control at 2 days post-infection in MLN (Fig. 5). There were slight increases in IL-12 mRNA (trend at 20 h $P=0.18$; trend at 2 days $P=0.28$) and TNF-α mRNA (trend at 20 h $P=0.14$; trend at 2 days $P=0.35$) expression when 20 h and 2 days MLN post-infection samples were analysed (Fig. 5). Other cytokines studied, i.e. IL-6, CXCL2 and IL-10, were not modified in MLN. In the PP, no changes in the levels of mRNA of the cytokines studied were found (data not shown).

INF-γ is related to macrophage activation and to an increase in MHCII expression on the surface of antigen presenting cells. This is associated with antigen processing and presentation, and a Th1 immune response (Murphy et al., 2007). Our findings are in agreement with a sequential response following mouse infection with B. cereus. This response encompasses the activation in the expression of chemical mediators such as IFN-γ and the modification of cell populations relevant for the immune response.

Studies of cytokine expression after B. cereus infection have been conducted mainly with cultured cells. Infection of macrophages with B. cereus showed TNF-α, IL-6 and IL-1β production in addition to microbicide factors (Huttunen et al., 2003). In the B. cereus group, in vivo studies have been conducted mainly with B. anthracis. In a study on a murine model of B. anthracis gastrointestinal infection, Xie et al. (2013) demonstrated that infection preferentially localized in the small intestine and did not lead to immune activation. These findings are in agreement with the immunosuppressive effects of anthrax lethal toxin (Xie et al., 2013).

Conclusion

The present work shows that gastrointestinal infection with B. cereus B10502 vegetative cells induces an immune response...
response in the host. Although self-limiting, the intestinal infection with *B. cereus* modifies the balance of relevant cell populations in different regions of the intestinal mucosa and immune-associated tissues. Our results show that populations in different regions of the intestinal mucosa in the host following infection are orchestrated by soluble factors (i.e. IFN-γ). Following infection, the host orchestrates an immune response mediated by soluble factors such as IFN-γ. Our results show that populations in different regions of the intestinal mucosa are orchestrated by soluble factors (i.e. IFN-γ) and that this response includes the spleen as the target organ where the main changes in cell populations take place.

In contrast with murine gastrointestinal anthrax, which leads to dramatic effects including intestinal haemorrhage, oedema, systemic dissemination and death, infection with *B. cereus* led to a transient passage of the micro-organism through the digestive tract. Although limited, this host-microbe interaction is enough to trigger a Th1 response that includes modification of the ratio of cell populations in relevant tissues, as well as to a diminution of the ability for antigen presentation. This shift in the immune status of the host following *B. cereus* infection could modify the response to other intestinal micro-organisms that concomitantly are found together with *B. cereus* in the intestine. It is worth noting that strain B10502 was unable, *in vitro*, to invade enterocytes (Minnaard et al., 2004) and that invasive strains could lead to a very different outcome. Although other studies are necessary, our model of a *B. cereus* intestinal infection constitutes a promising approach for elucidating the mechanisms involved in the interaction of *B. cereus* with the host, as well as for gaining further insight on the differences between members of the *B. cereus* group.

ACKNOWLEDGEMENTS

I. Rolny is a fellow of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina); J. Minnaard is a member of the Carrera de Investigador Científico y Tecnológico, CONICET (Argentina); and P.F. Pérez is a member of the Carrera de Investigador Científico y Tecnológico, CONICET (Argentina) and Professor of Microbiology at the Facultad de Ciencias Exactas of the Universidad Nacional de La Plata, Argentina. This work was financed by the Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT:0760/08), CONICET (PIP 0708-2009), Universidad Nacional de La Plata (X574) and Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.

REFERENCES

between cow’s milk and soybean proteins in a mouse model of food allergy. *Int Arch Allergy Immunol* 158, 335–346.

