Evaluation of *Brilliance* VRE agar for the detection of vancomycin-resistant enterococci in rectal swab specimens

Vancomycin-resistant enterococci (VRE) infections in hospitalized patients cause significant morbidity and mortality, and current recommendations for hospital infection control include VRE faecal surveillance cultures (Stamper *et al.*, 2007). However, the optimal methods for these cultures have not been defined (Delmas *et al.*, 2007). This study compared the performance of novel chromogenic medium *Brilliance* VRE agar (Oxoid; Thermo Fisher Scientific) with that of traditional culture to screen rectal swab specimens for VRE. *Brilliance* VRE agar is a selective and differential chromogenic agar for the detection of vancomycin-resistant *Enterococcus faecium* and vancomycin-resistant *Enterococcus faecalis*. *Brilliance* VRE agar contains two chromogens that are targeted by specific enzymes: phosphatase and *z*-galactosidase. The presence of phosphatase enzymes in both *E. faecium* and *E. faecalis* results in light blue colonies. However, *E. faecium* also produces *z*-galactosidase, resulting in a mix of blue and pink chromophores within the bacterium, producing indigo to purple colonies.

VRE surveillance cultures were obtained from patients at Akdeniz University Hospital, Turkey, between August and September 2010. Rectal swab specimens were inoculated onto bile–aesculin–azide agar with 6 µg vancomycin ml⁻¹ (BEAV agar) and *Brilliance* VRE agar. Plates were incubated at 35 °C and were read at 24 and 48 h. Presumptive VRE colonies on each medium were subcultured onto sheep blood agar. After overnight incubation, colonies were identified by colour morphology, Gram stain and biochemical tests. Species identification and antimicrobial susceptibility testing were performed using the BD Phoenix System (BD Diagnostic Systems). The MICs of vancomycin and teicoplanin were also determined by the Etest method. Carriage of the *vanA* or *vanB* gene was confirmed using the Cepheid Xpert *vanA*/*vanB* RT-PCR assay. Identification and antimicrobial susceptibility test results were used to calculate the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of each medium evaluated at 24 and 48 h.

Over an 8-week period 183 rectal swab samples from 87 patients were screened for VRE. Twenty samples from nine patients were positive for VRE; all were *vanA* *E. faecium*, as demonstrated by the BD Phoenix System, MICs (≥32 µg ml⁻¹ for both vancomycin and teicoplanin) and Cepheid Xpert RT-PCR results.

The sensitivities, specificities, PPVs and NPVs of *Brilliance* VRE agar and BEAV agar are shown in Table 1. There were 21 and 32 false positives on *Brilliance* VRE agar, and 46 and 64 false positives on BEAV agar at 24 and 48 h, respectively. Vancomycin-susceptible *E. faecium*, *E. faecalis*, *E. casseliflavus*, *E. gallinarum*, *E. durans* and Gram-negative bacilli grew on both media, whereas *E. raffinosus*, *E. durans*, *Lactobacillus*, *Leuconostoc* and *Pediococcus* spp. were recovered only on BEAV agar. Coagulase-negative staphylococci and yeast organisms demonstrated white colonies on *Brilliance* VRE agar which make their identification easy.

Brilliance VRE agar exhibited sensitivity and specificity exceeding those of BEAV agar at 24 h. When the incubation time was extended to 48 h, both agars showed increased sensitivity and reduced specificity, but the specificity remained higher for *Brilliance* VRE agar. Of the four studies comparable to ours, three (Willey *et al.*, 2011; Scopes & Henry, 2010; Scopes & Silvius, 2010) reported specificity rates at 24 h for *Brilliance* VRE agar that ranged from 88.8 to 99.8 %, higher than that (87.1 %) obtained in our work, whereas in the study by Miller *et al.* (2011) the reported specificity at 26 h was 71 %, lower than that obtained in the present study. The specificity of *Brilliance* VRE agar at 48 h correlates with that (79.8 %)

Table 1. Performance of *Brilliance* VRE agar and BEAV agar for detection of VRE in 183 rectal swabs including 20 positive for *vanA* *E. faecium*

<table>
<thead>
<tr>
<th>Agar medium</th>
<th>Incubation period (h)</th>
<th>No. of:</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TP</td>
<td>FP</td>
<td>TN</td>
<td>FN</td>
<td></td>
</tr>
<tr>
<td>Brilliance VRE</td>
<td>24</td>
<td>19</td>
<td>21</td>
<td>142</td>
<td>1</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>20</td>
<td>32</td>
<td>131</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td>BEAV</td>
<td>24</td>
<td>13</td>
<td>46</td>
<td>117</td>
<td>7</td>
<td>65.0</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>20</td>
<td>64</td>
<td>99</td>
<td>0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
reported by Willey et al. (2011), whereas it was lower than the one (86.2%) reported by Scopes & Henry (2010). Although this study has some limitations, including the paucity of samples, the lack of an enrichment step and the exclusive use of vanA strains, it shows that VRE isolation at 24 h is consistently higher on Brilliance VRE agar than on BEAV agar, confirming the former as a reliable medium for the screening and presumptive identification of vancomycin-resistant E. faecium in rectal swab specimens.

Acknowledgements
This study was supported by the Akdeniz University Scientific Research Project Unit.

Gozde Ongut,1 Hafize Kilincakaya,1 Betil Ozhak Baysan,1 Dilara Ogunc,1 Dilek Colak,1 Dilara Inan,2 Kubra Kasaroglu3 and Filiz Gunseren2

1Akdeniz University Faculty of Medicine, Department of Medical Microbiology, Antalya, Turkey
2Akdeniz University Faculty of Medicine, Department of Clinical Microbiology and Infectious Diseases, Antalya, Turkey
3Akdeniz University Hospital, Central Laboratory, Antalya, Turkey

Correspondence: Dilara Ogunc (dogunc@akdeniz.edu.tr)

